導航:首頁 > 源碼編譯 > 演算法晶元的編譯器

演算法晶元的編譯器

發布時間:2022-07-22 16:50:55

1. 寫演算法一般用什麼軟體c語言

Vim、C++編譯器、Dev-C++、Code::Blocks、Visual Studio等。
Vim是一個類似於Vi的著名的功能強大、高度可定製的文本編輯器,在Vi的基礎上改進和增加了很多特性。VIM是自由軟體。Vim普遍被推崇為類Vi編輯器中最好的一個,事實上真正的勁敵來自Emacs的不同變體。
「Borland C/C++ 5.5.1 for Win32」是一個C/C++編譯器,其功能完整、包含多種SDK,且容量極小,安裝版本大小僅8MB。Borland公司的旗艦級產品「C++ Builder 5」內置的就是這一編譯器。

2. 開發工具,模擬器,燒錄器,編譯器,交叉編譯器到底是什麼關系

房東太多的此長啊,不拉。
開發工具,模擬器,燃燒器,編譯器:開發工具模擬器,燃燒器和編譯器。模擬器只能燒一些簡單的IC,少數還行。燃燒器的程序員更強大的通配符量單一類型的刻錄機其實很簡單,就是你編譯程序寫入片內Flash內的介質燃燒器改造,我從事燒傷,我為自己代言

3. 主流C51單片機編譯器比對

int short 的大小是因機器而異嘛(准確點應該是編譯器)。你都說了人家規定的是「最小」為16位,又不是只能是16位,也沒有說兩者應該相等(事實上是short不超過int就OK啦)。所以當然可以short類型為半個機器字長,而int類型則為一個機器字長的啦。

「C++標准規定了每個算術類型的最小存儲空間,但他並不自知編譯器使用更大的存儲空間 」

說簡單點就是C++規定了個最小的值,但是將你的代碼編譯成機器碼的編譯器則確定了你這個長度值為多少。因為C++是一種語言,一個規范,或者說只是一種規定,然後要將你按這種規范寫的代碼編譯成能在機器上運行的代碼的是編譯器。而在不同的機器上運行的程序的實際結構是不一樣的,比如單片機與PC相差就很大。要將按相同規范寫的程序在各種各樣亂七八糟的機器上運行,就需要相應的編譯器了。所以實際的大小是由你編譯代碼的編譯器確定的。

PS:當然當前一般的PC上int都是32位,short16位的。因為現在32位的機子是主流嘛。如果你不寫什麼單片機的程序可以不用太在意這個問題。但是寫單片機程序時就要注意了,因為一般一個單片機的編譯器可以編譯很多種型號晶元的代碼,而這些型號有可能從8位到32位都有……

4. 做數據加解密項目,提到要使用加密晶元,加密晶元的品牌和型號太多了,應該怎麼選取

加解密數據不僅只有演算法的參與,還涉及到密鑰,肯定是保證密鑰的安全從而保證數據的安全啊

5. 關於編譯器的產生

編譯器本身也是程序,通常也是C語言寫的,世界上第一個編譯器的部分內容肯定只能用機器碼寫。。。但機器碼建立的一些文本處理功後,自然就用這個功能處理宏文本來代替機器碼。。。當然第一台計算機能用一種文本語言來代替機器碼,自然可以用這個簡單的編譯器去編譯復雜的編譯器,一個復雜的去編譯更復雜的。。。。
當然最終結果就是C語言編譯器本身也會是C語言寫的,區別只是PC機的C語言編譯器,去編譯一個非PC機上運行的程序的
程序的編譯器。。。。即使編譯器編譯編譯器。。。 比如java編譯器是C/C++寫的。。。還有現在的某款晶元的匯編編譯器,本身會是C/c++語言寫的,因為編譯器也是程序,當然可以用C語言編譯器去編譯一個匯編編譯器。。。 只就是錘子可以做機器,當然機器也可以生產錘子。。。

6. MCU的編譯器有哪些

編譯器與晶元要對應,不存在各晶元通用的編譯器。

51,IDE是keil或tkstudio,編譯器都是keil內置的
pic,IDE是mplab,編譯器是picc
avr,不了解
freescale,IDE用codewarrior,不同系列版本不同,編譯器內置
ARM,IDE是ADS(codewarrior改的),編譯器內置
等等

7. 指令集、編譯器、演算法、CPU

CPU就是用來計算的,CPU可以做不同的計算,每種計算是一個命令,你可以用命令通知CPU做這種計算,所有的命令構成了指令集。
你寫的代碼CPU是不懂的,需要翻譯成上面說的命令,這個翻譯者就是編譯器。
演算法跟他們的關系稍遠一些。如果把計算比作生產的話,那演算法就是配方和工藝,指導著從原材料到產品的生產過程。

希望能幫助到你。

8. 求晶元C8051F320/1 對應的編譯器

你指的是Keilc51嗎?有關C8051FXXX更多的資料可以去下面的網址看看:
http://www.xhl.com.cn/
呵呵

9. PCM編譯器晶元Tp3057

1. 點到點PCM多路電話通信原理
脈沖編碼調制(PCM)技術與增量調制(ΔM)技術已經在數字通信系統中得到廣泛應用。當信道雜訊比較小時一般用PCM,否則一般用ΔM。目前速率在155MB以下的准同步數字系列(PDH)中,國際上存在A解和μ律兩種PCM編解碼標准系列,在155MB以上的同步數字系列(SDH)中,將這兩個系列統一起來,在同一個等級上兩個系列的碼速率相同。而ΔM在國際上無統一標准,但它在通信環境比較惡劣時顯示了巨大的優越性。
點到點PCM多路電話通信原理可用圖9-1表示。對於基帶通信系統,廣義信道包括傳輸媒質、收濾波器、發濾波器等。對於頻帶系統,廣義信道包括傳輸媒質、調制器、解調器、發濾波器、收濾波器等。
本實驗模塊可以傳輸兩路話音信號。採用TP3057編譯器,它包括了圖9-1中的收、發低通濾波器及PCM編解碼器。編碼器輸入信號可以是本實驗模塊內部產生的正弦信號,也可以是外部信號源的正弦信號或電話信號。本實驗模塊中不含電話機和混合電路,廣義信道是理想的,即將復接器輸出的PCM信號直接送給分接器。
2. PCM編解碼模塊原理
本模塊的原理方框圖圖9-2所示,電原理圖如圖9-3所示(見附錄),模塊內部使用+5V和-5V電壓,其中-5V電壓由-12V電源經7905變換得到。
圖9-2 PCM編解碼原理方框圖
該模塊上有以下測試點和輸入點:
• BS PCM基群時鍾信號(位同步信號)測試點
• SL0 PCM基群第0個時隙同步信號
• SLA 信號A的抽樣信號及時隙同步信號測試點
• SLB 信號B的抽樣信號及時隙同步信號測試點
• SRB 信號B解碼輸出信號測試點
• STA 輸入到編碼器A的信號測試點
• SRA 信號A解碼輸出信號測試點
• STB 輸入到編碼器B的信號測試點
• PCM PCM基群信號測試點
• PCM-A 信號A編碼結果測試點
• PCM-B 信號B編碼結果測試點
• STA-IN 外部音頻信號A輸入點
• STB-IN 外部音頻信號B輸入點
本模塊上有三個開關K5、K6和K8,K5、K6用來選擇兩個編碼器的輸入信號,開關手柄處於左邊(STA-IN、STB-IN)時選擇外部信號、處於右邊(STA-S、STB-S)時選擇模塊內部音頻正弦信號。K8用來選擇SLB信號為時隙同步信號SL1、SL2、SL5、SL7中的某一個。
圖9-2各單元與電路板上元器件之間的對應關系如下:
•晶振 U75:非門74LS04;CRY1:4096KHz晶體
•分頻器1 U78:A:U78:D:觸發器74LS74;U79:計數器74LS193
•分頻器2 U80:計數器74LS193;U78:B:U78:D:觸發器74LS74
•抽樣信號產生器 U81:單穩74LS123;U76:移位寄存器74LS164
•PCM編解碼器A U82:PCM編解碼集成電路TP3057(CD22357)
•PCM編解碼器B U83:PCM編解碼集成電路TP3057(CD22357)
•幀同步信號產生器 U77:8位數據產生器74HC151;U86:A:與門7408
•正弦信號源A U87:運放UA741
•正弦信號源B U88:運放UA741
•復接器 U85:或門74LS32
晶振、分頻器1、分頻器2及抽樣信號(時隙同步信號)產生器構成一個定時器,為兩個PCM編解碼器提供2.048MHz的時鍾信號和8KHz的時隙同步信號。在實際通信系統中,解碼器的時鍾信號(即位同步信號)及時隙同步信號(即幀同步信號)應從接收到的數據流中提取,方法如實驗五及實驗六所述。此處將同步器產生的時鍾信號及時隙同步信號直接送給解碼器。
由於時鍾頻率為2.048MHz,抽樣信號頻率為8KHz,故PCM-A及PCM-B的碼速率都是2.048MB,一幀中有32個時隙,其中1個時隙為PCM編碼數據,另外31個時隙都是空時隙。
PCM信號碼速率也是2.048MB,一幀中的32個時隙中有29個是空時隙,第0時隙為幀同步碼(×1110010)時隙,第2時隙為信號A的時隙,第1(或第5、或第7 —由開關K8控制)時隙為信號B的時隙。
本實驗產生的PCM信號類似於PCM基群信號,但第16個時隙沒有信令信號,第0時隙中的信號與PCM基群的第0時隙的信號也不完全相同。
由於兩個PCM編解碼器用同一個時鍾信號,因而可以對它們進行同步復接(即不需要進行碼速調整)。又由於兩個編碼器輸出數據處於不同時隙,故可對PCM-A和PCM-B進行線或。本模塊中用或門74LS32對PCM-A、PCM-B及幀同步信號進行復接。在解碼之前,不需要對PCM進行分接處理,解碼器的時隙同步信號實際上起到了對信號分路的作用。
3. TP3057簡介
本模塊的核心器件是A律PCM編解碼集成電路TP3057,它是CMOS工藝製造的專用大規模集成電路,片內帶有輸出輸入話路濾波器,其引腳及內部框圖如圖9-4、圖9-5所示。引腳功能如下:
圖9-4 TP3057引腳圖
(1) V一 接-5V電源。
(2) GND 接地。
(3) VFRO 接收部分濾波器模擬信號輸出端。
(4) V+ 接+5V電源。
(5) FSR 接收部分幀同信號輸入端,此信號為8KHz脈沖序列。
(6) DR 接收部分PCM碼流輸入端。
(7) BCLKR/CLKSEL 接收部分位時鍾(同步)信號輸入端,此信號將PCM碼流在FSR上升沿後逐位移入DR端。位時鍾可以為64KHz到2.048MHz的任意頻率,或者輸入邏輯「1」或「0」電平器以選擇1.536MHz、1.544MHz或2.048MHz用作同步模式的主時鍾,此時發時鍾信號BCLKX同時作為發時鍾和收時鍾。
(8) MCLKR/PDN 接收部分主時鍾信號輸入端,此信號頻率必須為1.536MHz、1.544MHz或2.048MHz。可以和MCLKX非同步,但是同步工作時可達到最佳狀態。當此端接低電平時,所有的內部定時信號都選擇MCLKX信號,當此端接高電平時,器件處於省電狀態。
(9) MCLKX 發送部分主時鍾信號輸入端,此信號頻率必須為1.536MHz、1.544MHz或2.048MHz。可以和MCLKR非同步,但是同步工作時可達到最佳狀態。
(10) BCLKX 發送部分位時鍾輸入端,此信號將PCM碼流在FSX信號上升沿後逐位移出DX端,頻率可以為64KHz到2.04MHz的任意頻率,但必須與MCLKX同步。
圖9-5 TP3057內部方框圖
(11) DX 發送部分PCM碼流三態門輸出端。
(12) FSX 發送部分幀同步信號輸入端,此信號為8KHz脈沖序列。
(13) TSX 漏極開路輸出端,在編碼時隙輸出低電平。
(14) GSX 發送部分增益調整信號輸入端。
(15) VFXi- 發送部分放大器反向輸入端。
(16) VFXi+ 發送部分放大器正向輸入端。
TP3057由發送和接收兩部分組成,其功能簡述如下。
發送部分:
包括可調增益放大器、抗混淆濾波器、低通濾波器、高通濾波器、壓縮A/D轉換器。抗混淆濾波器對采樣頻率提供30dB以上的衰減從而避免了任何片外濾波器的加入。低通濾波器是5階的、時鍾頻率為128MHz。高通濾波器是3階的、時鍾頻率為32KHz。高通濾波器的輸出信號送給階梯波產生器(采樣頻率為8KHz)。階梯波產生器、逐次逼近寄存器(S•A•R)、比較器以及符號比特提取單元等4個部分共同組成一個壓縮式A/D轉換器。S•A•R輸出的並行碼經並/串轉換後成PCM信號。參考信號源提供各種精確的基準電壓,允許編碼輸入電壓最大幅度為5VP-P。
發幀同步信號FSX為采樣信號。每個采樣脈沖都使編碼器進行兩項工作:在8比特位同步信號BCLKX的作用下,將采樣值進行8位編碼並存入逐次逼近寄存器;將前一采樣值的編碼結果通過輸出端DX輸出。在8比特位同步信號以後,DX端處於高阻狀態。
接收部分:
包括擴張D/A轉換器和低通濾波器。低通濾波器符合AT&T D3/D4標准和CCITT建議。D/A轉換器由串/並變換、D/A寄存器組成、D/A階梯波形成等部分構成。在收幀同步脈沖FSR上升沿及其之後的8個位同步脈沖BCLKR作用下,8比特PCM數據進入接收數據寄存器(即D/A寄存器),D/A階梯波單元對8比特PCM數據進行D/A變換並保持變換後的信號形成階梯波信號。此信號被送到時鍾頻率為128KHz的開關電容低通濾波器,此低通濾波器對階梯波進行平滑濾波並對孔徑失真(sinx)/x進行補嘗。
在通信工程中,主要用動態范圍和頻率特性來說明PCM編解碼器的性能。
動態范圍的定義是解碼器輸出信噪比大於25dB時允許編碼器輸入信號幅度的變化范圍。PCM編解碼器的動態范圍應大於圖9-6所示的CCITT建議框架(樣板值)。
當編碼器輸入信號幅度超過其動態范圍時,出現過載雜訊,故編碼輸入信號幅度過大時量化信噪比急劇下降。TP3057編解碼系統不過載輸入信號的最大幅度為5VP-P。
由於採用對數壓擴技術,PCM編解碼系統可以改善小信號的量化信噪比,TP3057採用A律13折線對信號進行壓擴。當信號處於某一段落時,量化雜訊不變(因在此段落內對信號進行均勻量化),因此在同一段落內量化信噪比隨信號幅度減小而下降。13折線壓擴特性曲線將正負信號各分為8段,第1段信號最小,第8段信號最大。當信號處於第一、二段時,量化雜訊不隨信號幅度變化,因此當信號太小時,量化信噪比會小於25dB,這就是動態范圍的下限。TP3057編解碼系統動態范圍內的輸入信號最小幅度約為0.025Vp-p。
常用1KHz的正弦信號作為輸入信號來測量PCM編解碼器的動態范圍。
圖9-6 PCM編解碼系統動態范圍樣板值
語音信號的抽樣信號頻率為8KHz,為了不發生頻譜混疊,常將語音信號經截止頻率為3.4KHz的低通濾波器處理後再進行A/D處理。語音信號的最低頻率一般為300Hz。TP3057編碼器的低通濾波器和高通濾波器決定了編解碼系統的頻率特性,當輸入信號頻率超過這兩個濾波器的頻率范圍時,解碼輸出信號幅度迅速下降。這就是PCM編解碼系統頻率特性的含義。
四、實驗步驟
1. 熟悉PCM編解碼單元工作原理,開關K9接通8KHz(置為1000狀態),開關K8置為SL1(或SL5、SL7),開關K5、K6分別置於STA-S、STB-S端,接通實驗箱電源。
2. 用示波器觀察STA、STB,調節電位器R19(對應STA)、R20(對應STB),使正弦信號STA、STB波形不失真(峰峰值小於5V)。
3. 用示波器觀察PCM編碼輸出信號。
示波器CH1接SL0,(調整示波器掃描周期以顯示至少兩個SL0脈沖,從而可以觀察完整的一幀信號)CH2分別接SLA、PCM-A、SLB、PCM-B以及PCM,觀察編碼後的數據所處時隙位置與時隙同步信號的關系以及PCM信號的幀結構(注意:本實驗的幀結構中有29個時隙是空時隙,SL0、SLA及SLB的脈沖寬度等於一個時隙寬度)。
開關K8分別接通SL1、SL2、SL5、SL7,觀察PCM基群幀結構的變化情況。
4. 用示波器觀察PCM解碼輸出信號
示波器的CH1接STA,CH2接SRA,觀察這兩個信號波形是否相同(有相位差)。
5. 用示波器定性觀察PCM編解碼器的動態范圍。
開關K5置於STA-IN端,將低失真低頻信號發生器輸出的1KHz正弦信號從STA-IN輸入到TP3057(U82)編碼器。示波器的CH1接STA(編碼輸入),CH2接SRA(解碼輸出)。將信號幅度分別調至大於5VP-P、等於5VP-P,觀察過載和滿載時的解碼輸出波形。再將信號幅度分別衰減10dB、20dB、30dB、40dB、45dB、50dB,觀察解碼輸出波形(當衰減45dB以上時,解碼輸出信號波形上疊加有較明顯的雜訊)。
也可以用本模塊上的正弦信號源來觀察PCM編解碼系統的過載雜訊(只要將STA-S或STB-S信號幅度調至5VP-P以上即可),但必須用專門的信號源才能較方便地觀察到動態范圍。

10. x86與ARM架構下的編譯器的區別

ARM是簡單指令集。。。 指令集長度短

閱讀全文

與演算法晶元的編譯器相關的資料

熱點內容
特價雲伺服器如何注冊 瀏覽:296
安卓手機賬戶忘記密碼怎麼解鎖 瀏覽:821
如何用健身app確定一個特工 瀏覽:911
多級壓縮的原理 瀏覽:864
java項目開發案例視頻 瀏覽:70
文件夾快速查找表格不同內容 瀏覽:493
合並排序演算法java 瀏覽:920
如何將文件夾刪除的部分恢復 瀏覽:808
eco為什麼連接不上伺服器 瀏覽:294
查看linux的命令是 瀏覽:12
蘋果郵件伺服器地址 瀏覽:343
U盤超級加密3000時間 瀏覽:737
如何跟別人解釋什麼是伺服器 瀏覽:939
安卓11原生如何隱藏軟體 瀏覽:712
解壓清潔面部女士 瀏覽:856
美的變頻空調壓縮啟動一下報p1 瀏覽:472
濟南如何申請app多少錢 瀏覽:166
帶加密功能的u盤啟動盤製作 瀏覽:819
計算機編程知識 瀏覽:436
c語言編程軟體都有哪些 瀏覽:157