『壹』 人臉識別演算法的簡介
人臉識別(Facial Recognition),就是通過視頻採集設備獲取用戶的面部圖像,再利用核心的演算法對其臉部的五官位置、臉型和角度進行計算分析,進而和自身資料庫里已有的範本進行比對,後判斷出用戶的真實身份。人臉識別技術基於局部特徵區域的單訓練樣本人臉識別方法。第一步,需要對局部區域進行定義;第二步,人臉局部區域特徵的提取,依據經過樣本訓練後得到的變換矩陣將人臉圖像向量映射為人臉特徵向量;第三步,局部特徵選擇(可選);後一步是進行分類。分類器多採用組合分類器的形式,每個局部特徵 對應一個分類器,後可用投票或線性加權等方式得到終識別結果。 人臉識別綜合運用了數字圖像/視頻處理、模式識別、計算機視覺等多種技術,核心技 術是人臉識別演算法。目前人臉識別的演算法有 4 種:基於人臉特徵點的識別演算法、基於整幅 人臉圖像的識別演算法、基於模板的識別演算法、利用神經網路進行識別的演算法。
作為人臉識別的第一步,人臉檢測所進行的工作是將人臉從圖像背景中檢測出來,由於受圖像背景、亮度變化以及人的頭部姿勢等因素影響使人臉檢測成為一項復雜研究內容。檢測定位:檢測是判別一幅圖像中是否存在人臉,定位則是給出人臉在圖像中的位置。定位後得到的臉部圖像信息是測量空間的模式,要進行識別工作,首先要將測量空間中的數據映射到特徵空間中。採用主分量分析方法,原理是將一高維向量,通過一個特殊的特徵向量矩陣,投影到一個低維的向量空間中,表徵為一個低維向量,並且僅僅損失一些次要信息。通過對經過檢測和定位過的人臉圖像進行特徵提取操作可以達到降低圖像維數,從而可以減小識別計算量,提高識別精度的作用。人臉識別系統採用基於特徵臉的主 成分分析法(PCA),根據一組人臉訓練樣本構造主元子空間,檢測時,將測試圖像投影到 主元空間上,得到一組投影系數,再和各已知的人臉圖像模式比較,從而得到檢測結果。
『貳』 人臉識別的演算法
1、人體面貌識別技術的內容
人體面貌識別技術包含三個部分:
(1) 人體面貌檢測
面貌檢測是指在動態的場景與復雜的背景中判斷是否存在面像,並分離出這種面像。一般有下列幾種方法:
①參考模板法
首先設計一個或數個標准人臉的模板,然後計算測試採集的樣品與標准模板之間的匹配程度,並通過閾值來判斷是否存在人臉;
②人臉規則法
由於人臉具有一定的結構分布特徵,所謂人臉規則的方法即提取這些特徵生成相應的規則以判斷測試樣品是否包含人臉;
③樣品學習法
這種方法即採用模式識別中人工神經網路的方法,即通過對面像樣品集和非面像樣品集的學習產生分類器;
④膚色模型法
這種方法是依據面貌膚色在色彩空間中分布相對集中的規律來進行檢測。
⑤特徵子臉法
這種方法是將所有面像集合視為一個面像子空間,並基於檢測樣品與其在子孔間的投影之間的距離判斷是否存在面像。
值得提出的是,上述5種方法在實際檢測系統中也可綜合採用。
(2)人體面貌跟蹤
面貌跟蹤是指對被檢測到的面貌進行動態目標跟蹤。具體採用基於模型的方法或基於運動與模型相結合的方法。
此外,利用膚色模型跟蹤也不失為一種簡單而有效的手段。
(3)人體面貌比對
面貌比對是對被檢測到的面貌像進行身份確認或在面像庫中進行目標搜索。這實際上就是說,將采樣到的面像與庫存的面像依次進行比對,並找出最佳的匹配對象。所以,面像的描述決定了面像識別的具體方法與性能。目前主要採用特徵向量與面紋模板兩種描述方法:
①特徵向量法
該方法是先確定眼虹膜、鼻翼、嘴角等面像五官輪廓的大小、位置、距離等屬性,然後再計算出它們的幾何特徵量,而這些特徵量形成一描述該面像的特徵向量。
②面紋模板法
該方法是在庫中存貯若干標准面像模板或面像器官模板,在進行比對時,將采樣面像所有象素與庫中所有模板採用歸一化相關量度量進行匹配。
此外,還有採用模式識別的自相關網路或特徵與模板相結合的方法。
人體面貌識別技術的核心實際為「局部人體特徵分析」和「圖形/神經識別演算法。」這種演算法是利用人體面部各器官及特徵部位的方法。如對應幾何關系多數據形成識別參數與資料庫中所有的原始參數進行比較、判斷與確認。一般要求判斷時間低於1秒。
2、人體面貌的識別過程
一般分三步:
(1)首先建立人體面貌的面像檔案。即用攝像機採集單位人員的人體面貌的面像文件或取他們的照片形成面像文件,並將這些面像文件生成面紋(Faceprint)編碼貯存起來。
(2)獲取當前的人體面像
即用攝像機捕捉的當前出入人員的面像,或取照片輸入,並將當前的面像文件生成面紋編碼。
(3)用當前的面紋編碼與檔案庫存的比對
即將當前的面像的面紋編碼與檔案庫存中的面紋編碼進行檢索比對。上述的「面紋編碼」方式是根據人體面貌臉部的本質特徵和開頭來工作的。這種面紋編碼可以抵抗光線、皮膚色調、面部毛發、發型、眼鏡、表情和姿態的變化,具有強大的可靠性,從而使它可以從百萬人中精確地辯認出某個人。
人體面貌的識別過程,利用普通的圖像處理設備就能自動、連續、實時地完成。
『叄』 想問一下有沒有比較方便的人臉識別演算法,求推薦
主流的人臉識別技術基本上可以歸結為三類,即:基於幾何特徵的方法、基於模板的方法和基於模型的方法。
1. 基於幾何特徵的方法是最早、最傳統的方法,通常需要和其他演算法結合才能有比較好的效果;
2. 基於模板的方法可以分為基於相關匹配的方法、特徵臉方法、線性判別分析方法、奇異值分解方法、神經網路方法、動態連接匹配方法等。
3. 基於模型的方法則有基於隱馬爾柯夫模型,主動形狀模型和主動外觀模型的方法等。
1. 基於幾何特徵的方法
人臉由眼睛、鼻子、嘴巴、下巴等部件構成,正因為這些部件的形狀、大小和結構上的各種差異才使得世界上每個人臉千差萬別,因此對這些部件的形狀和結構關系的幾何描述,可以做為人臉識別的重要特徵。幾何特徵最早是用於人臉側面輪廓的描述與識別,首先根據側面輪廓曲線確定若干顯著點,並由這些顯著點導出一組用於識別的特徵度量如距離、角度等。Jia 等由正麵灰度圖中線附近的積分投影模擬側面輪廓圖是一種很有新意的方法。
採用幾何特徵進行正面人臉識別一般是通過提取人眼、口、鼻等重要特徵點的位置和眼睛等重要器官的幾何形狀作為分類特徵,但Roder對幾何特徵提取的精確性進行了實驗性的研究,結果不容樂觀。
可變形模板法可以視為幾何特徵方法的一種改進,其基本思想是 :設計一個參數可調的器官模型 (即可變形模板),定義一個能量函數,通過調整模型參數使能量函數最小化,此時的模型參數即做為該器官的幾何特徵。
這種方法思想很好,但是存在兩個問題,一是能量函數中各種代價的加權系數只能由經驗確定,難以推廣,二是能量函數優化過程十分耗時,難以實際應用。 基於參數的人臉表示可以實現對人臉顯著特徵的一個高效描述,但它需要大量的前處理和精細的參數選擇。同時,採用一般幾何特徵只描述了部件的基本形狀與結構關系,忽略了局部細微特徵,造成部分信息的丟失,更適合於做粗分類,而且目前已有的特徵點檢測技術在精確率上還遠不能滿足要求,計算量也較大。
2. 局部特徵分析方法(Local Face Analysis)
主元子空間的表示是緊湊的,特徵維數大大降低,但它是非局部化的,其核函數的支集擴展在整個坐標空間中,同時它是非拓撲的,某個軸投影後臨近的點與原圖像空間中點的臨近性沒有任何關系,而局部性和拓撲性對模式分析和分割是理想的特性,似乎這更符合神經信息處理的機制,因此尋找具有這種特性的表達十分重要。基於這種考慮,Atick提出基於局部特徵的人臉特徵提取與識別方法。這種方法在實際應用取得了很好的效果,它構成了FaceIt人臉識別軟體的基礎。
3. 特徵臉方法(Eigenface或PCA)
特徵臉方法是90年代初期由Turk和Pentland提出的目前最流行的演算法之一,具有簡單有效的特點, 也稱為基於主成分分析(principal component analysis,簡稱PCA)的人臉識別方法。
特徵子臉技術的基本思想是:從統計的觀點,尋找人臉圖像分布的基本元素,即人臉圖像樣本集協方差矩陣的特徵向量,以此近似地表徵人臉圖像。這些特徵向量稱為特徵臉(Eigenface)。
實際上,特徵臉反映了隱含在人臉樣本集合內部的信息和人臉的結構關系。將眼睛、面頰、下頜的樣本集協方差矩陣的特徵向量稱為特徵眼、特徵頜和特徵唇,統稱特徵子臉。特徵子臉在相應的圖像空間中生成子空間,稱為子臉空間。計算出測試圖像窗口在子臉空間的投影距離,若窗口圖像滿足閾值比較條件,則判斷其為人臉。
基於特徵分析的方法,也就是將人臉基準點的相對比率和其它描述人臉臉部特徵的形狀參數或類別參數等一起構成識別特徵向量,這種基於整體臉的識別不僅保留了人臉部件之間的拓撲關系,而且也保留了各部件本身的信息,而基於部件的識別則是通過提取出局部輪廓信息及灰度信息來設計具體識別演算法。現在Eigenface(PCA)演算法已經與經典的模板匹配演算法一起成為測試人臉識別系統性能的基準演算法;而自1991年特徵臉技術誕生以來,研究者對其進行了各種各樣的實驗和理論分析,FERET'96測試結果也表明,改進的特徵臉演算法是主流的人臉識別技術,也是具有最好性能的識別方法之一。
該方法是先確定眼虹膜、鼻翼、嘴角等面像五官輪廓的大小、位置、距離等屬性,然後再計算出它們的幾何特徵量,而這些特徵量形成一描述該面像的特徵向量。其技術的核心實際為「局部人體特徵分析」和「圖形/神經識別演算法。」這種演算法是利用人體面部各器官及特徵部位的方法。如對應幾何關系多數據形成識別參數與資料庫中所有的原始參數進行比較、判斷與確認。Turk和Pentland提出特徵臉的方法,它根據一組人臉訓練圖像構造主元子空間,由於主元具有臉的形狀,也稱為特徵臉 ,識別時將測試 圖像投影到主元子空間上,得到一組投影系數,和各個已知人的人臉圖像比較進行識別。Pentland等報告了相當好的結果,在 200個人的 3000幅圖像中得到 95%的正確識別率,在FERET資料庫上對 150幅正面人臉象只有一個誤識別。但系統在進行特徵臉方法之前需要作大量預處理工作如歸一化等。
在傳統特徵臉的基礎上,研究者注意到特徵值大的特徵向量 (即特徵臉 )並不一定是分類性能好的方向,據此發展了多種特徵 (子空間 )選擇方法,如Peng的雙子空間方法、Weng的線性歧義分析方法、Belhumeur的FisherFace方法等。事實上,特徵臉方法是一種顯式主元分析人臉建模,一些線性自聯想、線性壓縮型BP網則為隱式的主元分析方法,它們都是把人臉表示為一些向量的加權和,這些向量是訓練集叉積陣的主特徵向量,Valentin對此作了詳細討論。總之,特徵臉方法是一種簡單、快速、實用的基於變換系數特徵的演算法,但由於它在本質上依賴於訓練集和測試集圖像的灰度相關性,而且要求測試圖像與訓練集比較像,所以它有著很大的局限性。
基於KL 變換的特徵人臉識別方法
基本原理:
KL變換是圖象壓縮中的一種最優正交變換,人們將它用於統計特徵提取,從而形成了子空間法模式識別的基礎,若將KL變換用於人臉識別,則需假設人臉處於低維線性空間,且不同人臉具有可分性,由於高維圖象空間KL變換後可得到一組新的正交基,因此可通過保留部分正交基,以生成低維人臉空間,而低維空間的基則是通過分析人臉訓練樣本集的統計特性來獲得,KL變換的生成矩陣可以是訓練樣本集的總體散布矩陣,也可以是訓練樣本集的類間散布矩陣,即可採用同一人的數張圖象的平均來進行訓練,這樣可在一定程度上消除光線等的干擾,且計算量也得到減少,而識別率不會下降。
4. 基於彈性模型的方法
Lades等人針對畸變不變性的物體識別提出了動態鏈接模型 (DLA),將物體用稀疏圖形來描述 (見下圖),其頂點用局部能量譜的多尺度描述來標記,邊則表示拓撲連接關系並用幾何距離來標記,然後應用塑性圖形匹配技術來尋找最近的已知圖形。Wiscott等人在此基礎上作了改進,用FERET圖像庫做實驗,用 300幅人臉圖像和另外 300幅圖像作比較,准確率達到 97.3%。此方法的缺點是計算量非常巨大 。
Nastar將人臉圖像 (Ⅰ ) (x,y)建模為可變形的 3D網格表面 (x,y,I(x,y) ) (如下圖所示 ),從而將人臉匹配問題轉化為可變形曲面的彈性匹配問題。利用有限元分析的方法進行曲面變形,並根據變形的情況判斷兩張圖片是否為同一個人。這種方法的特點在於將空間 (x,y)和灰度I(x,y)放在了一個 3D空間中同時考慮,實驗表明識別結果明顯優於特徵臉方法。
Lanitis等提出靈活表現模型方法,通過自動定位人臉的顯著特徵點將人臉編碼為 83個模型參數,並利用辨別分析的方法進行基於形狀信息的人臉識別。彈性圖匹配技術是一種基於幾何特徵和對灰度分布信息進行小波紋理分析相結合的識別演算法,由於該演算法較好的利用了人臉的結構和灰度分布信息,而且還具有自動精確定位面部特徵點的功能,因而具有良好的識別效果,適應性強識別率較高,該技術在FERET測試中若干指標名列前茅,其缺點是時間復雜度高,速度較慢,實現復雜。
5. 神經網路方法(Neural Networks)
人工神經網路是一種非線性動力學系統,具有良好的自組織、自適應能力。目前神經網路方法在人臉識別中的研究方興未艾。Valentin提出一種方法,首先提取人臉的 50個主元,然後用自相關神經網路將它映射到 5維空間中,再用一個普通的多層感知器進行判別,對一些簡單的測試圖像效果較好;Intrator等提出了一種混合型神經網路來進行人臉識別,其中非監督神經網路用於特徵提取,而監督神經網路用於分類。Lee等將人臉的特點用六條規則描述,然後根據這六條規則進行五官的定位,將五官之間的幾何距離輸入模糊神經網路進行識別,效果較一般的基於歐氏距離的方法有較大改善,Laurence等採用卷積神經網路方法進行人臉識別,由於卷積神經網路中集成了相鄰像素之間的相關性知識,從而在一定程度上獲得了對圖像平移、旋轉和局部變形的不變性,因此得到非常理想的識別結果,Lin等提出了基於概率決策的神經網路方法 (PDBNN),其主要思想是採用虛擬 (正反例 )樣本進行強化和反強化學習,從而得到較為理想的概率估計結果,並採用模塊化的網路結構 (OCON)加快網路的學習。這種方法在人臉檢測、人臉定位和人臉識別的各個步驟上都得到了較好的應用,其它研究還有 :Dai等提出用Hopfield網路進行低解析度人臉聯想與識別,Gutta等提出將RBF與樹型分類器結合起來進行人臉識別的混合分類器模型,Phillips等人將MatchingPursuit濾波器用於人臉識別,國內則採用統計學習理論中的支撐向量機進行人臉分類。
神經網路方法在人臉識別上的應用比起前述幾類方法來有一定的優勢,因為對人臉識別的許多規律或規則進行顯性的描述是相當困難的,而神經網路方法則可以通過學習的過程獲得對這些規律和規則的隱性表達,它的適應性更強,一般也比較容易實現。因此人工神經網路識別速度快,但識別率低 。而神經網路方法通常需要將人臉作為一個一維向量輸入,因此輸入節點龐大,其識別重要的一個目標就是降維處理。
PCA的演算法描述:利用主元分析法 (即 Principle Component Analysis,簡稱 PCA)進行識別是由 Anderson和 Kohonen提出的。由於 PCA在將高維向量向低維向量轉化時,使低維向量各分量的方差最大,且各分量互不相關,因此可以達到最優的特徵抽取。
『肆』 python人臉識別所用的優化演算法有什麼
python三步實現人臉識別
Face Recognition軟體包
這是世界上最簡單的人臉識別庫了。你可以通過Python引用或者命令行的形式使用它,來管理和識別人臉。
該軟體包使用dlib中最先進的人臉識別深度學習演算法,使得識別准確率在《Labled Faces in the world》測試基準下達到了99.38%。
它同時提供了一個叫face_recognition的命令行工具,以便你可以用命令行對一個文件夾中的圖片進行識別操作。
特性
在圖片中識別人臉
找到圖片中所有的人臉
這里是一個例子:
1『伍』 現在人臉識別最有效的演算法是什麼
最好的人臉識別系統在理想情況下比人類識別的表現要好的多。但是一旦環境情況變糟,系統的表現就差強人意了。而計算機科學家們當然是非常想要開發出一種演算法,在各種情況下都能夠表現優異。
現在,中國香港大學的湯曉鷗教授和他的學生路超超(音譯)宣布他們攻克了這個難題。他們開發了一種叫「高斯」的人臉識別演算法首次超過了人類自身。
新的識別系統對於各種平台都能夠提供人類級別的識別能力,從手機到電腦游戲中的人臉識別,從安全系統到密碼控制等等。
任何一個人臉自動識別程序,首先要考慮的就是去構建一個合適的數據集來測試演算法。那需要一個非常大范圍的,各種各樣的,帶著各種復雜動作、光線和表情的,不同臉的圖像,各種人種、年齡和性別都要考慮在內。然後還要考察服裝、發型以及化妝等其他因素的影響。
比較幸運的是,已經有這么一個擁有各種不同人臉的標准資料庫——Labelled Faces。它擁有超過13,000張不同人臉的圖片,它們是從網路上收集的6000個不同的公眾人物。更重要的是,每個人都擁有不止一張人臉圖片。
當然也存在其他的人臉資料庫,但是Labelled faces目前是計算機科學家們所公認的最具參考價值的測試數據集。
面部識別的任務是去比較兩張不同的圖片,然後判斷他們是否是同一個人。(你可以試試看,能否看出這里展示的每對圖片是否是同一個人。)
人類在這個資料庫上的表現可以達到97.53%的准確度。但是沒有任何一個計算機演算法能夠達到這個成績。
直到這個新演算法的出現。新的演算法依照5點圖片特徵,把每張臉圖規格化成一個150*120的像素圖,這些特徵分別是:兩隻眼睛、鼻子和嘴角的位置。
然後,演算法把每張圖片劃分成重疊的25*25像素的區域,並用一個數學向量來描述每一個區域的基本特徵。做完了這些,就可以比較兩張圖片的相似度了。
但是首先需要知道的是到底要比較什麼。這個時候就需要用到訓練數據集了。一般的方法是使用一個獨立的數據集來訓練演算法,然後用同一個數據集中的圖片來測試演算法。
但是當演算法面對訓練集中完全不同的兩張圖片的時候,經常都會識別失敗。「當圖片的分布發生改變的時候,這種訓練方法就一點都不好了。」超超和曉鷗說到。
相反,他們用四個擁有不同圖片的,完全不同的數據集來測試「高斯」演算法。舉個例子,其中一個數據集是著名的Multi-PIE資料庫,它包含了 337個不同的物體,從15種不同的角度,在19種不同的光照情況下,分別拍攝4組圖片。另一個資料庫叫做Life Photes包含400個不同的人物,每個人物擁有10張圖片。
用這些資料庫訓練了演算法後,他們最終讓新演算法在Labelled Faces資料庫上進行測試。目標是去識別出所有匹配和不匹配的圖片對。
請記住人類在這個資料庫上的表現是97.53%的精確度。「我們的「高斯」演算法能夠達到98.52%的精確度,這也是識別演算法第一次擊敗人類。」超超和曉鷗說到。
這是一個令人印象深刻的結果,因為數據中的照片包含各種各樣不同的情況。
超超和曉鷗指出,仍然有很多挑戰在等著他們。現實情況中,人們可以利用各種附加的線索來識別,比如脖子和肩膀的位置。「超過人類的表現也許只是一個象徵性的成就罷了」他們說。
另一個問題是花費在訓練新演算法上的時間,還有演算法需要的內存大小以及識別兩幅圖所需要的時間。這可以用並行計算和特製處理器等技術來加快演算法的運行時間。
總之,精確的人臉自動識別演算法已經到來了,而且鑒於現在的事實,這只會更快。
『陸』 人臉識別演算法的種類
二維人臉識別演算法
三維人臉識別演算法
『柒』 人臉識別的識別演算法
人臉識別的基本方法
人臉識別的方法很多,以下介紹一些主要的人臉識別方法。
(1)幾何特徵的人臉識別方法
幾何特徵可以是眼、鼻、嘴等的形狀和它們之間的幾何關系(如相互之間的距離)。這些演算法識別速度快,需要的內存小,但識別率較低。
(2)基於特徵臉(PCA)的人臉識別方法
特徵臉方法是基於KL變換的人臉識別方法,KL變換是圖像壓縮的一種最優正交變換。高維的圖像空間經過KL變換後得到一組新的正交基,保留其中重要的正交基,由這些基可以張成低維線性空間。如果假設人臉在這些低維線性空間的投影具有可分性,就可以將這些投影用作識別的特徵矢量,這就是特徵臉方法的基本思想。這些方法需要較多的訓練樣本,而且完全是基於圖像灰度的統計特性的。目前有一些改進型的特徵臉方法。
(3)神經網路的人臉識別方法
神經網路的輸入可以是降低解析度的人臉圖像、局部區域的自相關函數、局部紋理的二階矩等。這類方法同樣需要較多的樣本進行訓練,而在許多應用中,樣本數量是很有限的。
(4)彈性圖匹配的人臉識別方法
彈性圖匹配法在二維的空間中定義了一種對於通常的人臉變形具有一定的不變性的距離,並採用屬性拓撲圖來代表人臉,拓撲圖的任一頂點均包含一特徵向量,用來記錄人臉在該頂點位置附近的信息。該方法結合了灰度特性和幾何因素,在比對時可以允許圖像存在彈性形變,在克服表情變化對識別的影響方面收到了較好的效果,同時對於單個人也不再需要多個樣本進行訓練。
(5)線段Hausdorff 距離(LHD) 的人臉識別方法
心理學的研究表明,人類在識別輪廓圖(比如漫畫)的速度和准確度上絲毫不比識別灰度圖差。LHD是基於從人臉灰度圖像中提取出來的線段圖的,它定義的是兩個線段集之間的距離,與眾不同的是,LHD並不建立不同線段集之間線段的一一對應關系,因此它更能適應線段圖之間的微小變化。實驗結果表明,LHD在不同光照條件下和不同姿態情況下都有非常出色的表現,但是它在大表情的情況下識別效果不好。
(6)支持向量機(SVM) 的人臉識別方法
近年來,支持向量機是統計模式識別領域的一個新的熱點,它試圖使得學習機在經驗風險和泛化能力上達到一種妥協,從而提高學習機的性能。支持向量機主要解決的是一個2分類問題,它的基本思想是試圖把一個低維的線性不可分的問題轉化成一個高維的線性可分的問題。通常的實驗結果表明SVM有較好的識別率,但是它需要大量的訓練樣本(每類300個),這在實際應用中往往是不現實的。而且支持向量機訓練時間長,方法實現復雜,該函數的取法沒有統一的理論。
人臉識別的方法很多,當前的一個研究方向是多方法的融合,以提高識別率。
在人臉識別中,第一類的變化是應該放大而作為區分個體的標準的,而第二類的變化應該消除,因為它們可以代表同一個個體。通常稱第一類變化為類間變化,而稱第二類變化為類內變化。對於人臉,類內變化往往大於類間變化,從而使在受類內變化干擾的情況下利用類間變化區分個體變得異常困難。正是基於上述原因,一直到21 世紀初,國外才開始出現人臉識別的商用,但由於人臉識別演算法非常復雜,只能採用龐大的伺服器,基於強大的計算機平台。
如果可以的話,可以Te一下colorreco,更好的技術解答。
『捌』 人臉識別考勤系統一般用什麼演算法
主流的人臉識別系統基本上可以歸結為三類,即:基於幾何特徵的方法、基於模板的方法和基於模型的方法。『玖』 opencv實現人臉識別有多少種演算法
OpenCV在2.4.1以後的版本中開始自帶人臉識別,共有三種人臉識別演算法的實現,分別是PCA , LDA , LBPH. OpenCV2創建方法如下:
cv::Ptr<cv::FaceRecognizer>facerPCA,facerLDA;
cv::Ptr<cv::FaceRecognizer>facerLBPH=cv::createLBPHFaceRecognizer();
facerPCA=cv::Algorithm::create<cv::FaceRecognizer>("FaceRecognizer.Eigenfaces");
facerLDA=cv::Algorithm::create<cv::FaceRecognizer>("FaceRecognizer.Fisherfaces");
在OpenCV3中,人臉識別的實現被移動到第三方庫opencv_contrib中,而且OpenCV3版本的各個版本3.0.0,3.2.0,3.3.0的創建方法均不同,且都被移動到cv::face::名字空間下.
『拾』 人臉識別原理及演算法
人臉識別原理就是指在動態的場景與復雜的背景中判斷是否存在面像,並分離出這種面像。
人臉識別是一項熱門的計算機技術研究領域,其中包括人臉追蹤偵測,自動調整影像放大,夜間紅外偵測,自動調整曝光強度等技術。
人臉識別技術是基於人的臉部特徵,對輸入的人臉圖像或者視頻流 . 首先判斷其是否存在人臉 , 如果存在人臉,則進一步的給出每個臉的位置、大小和各個主要面部器官的位置信息。並依據這些信息,進一步提取每個人臉中所蘊涵的身份特徵,並將其與已知的人臉進行對比,從而識別每個人臉的身份。
一般來說,人臉識別系統包括圖像攝取、人臉定位、圖像預處理、以及人臉識別(身份確認或者身份查找)。系統輸入一般是一張或者一系列含有未確定身份的人臉圖像,以及人臉資料庫中的若干已知身份的人臉圖象或者相應的編碼,而其輸出則是一系列相似度得分,表明待識別的人臉的身份。
人臉識別是採用的分析演算法。
人臉識別技術中被廣泛採用的區域特徵分析演算法,它融合了計算機圖像處理技術與生物統計學原理於一體,利用計算機圖像處理技術從視頻中提取人像特徵點,利用生物統計學的原理進行分析建立數學模型,即人臉特徵模板。利用已建成的人臉特徵模板與被測者的人的面像進行特徵分析,根據分析的結果來給出一個相似值。通過這個值即可確定是否為同一人。