① 什麼是人工神經網路及其演算法實現方式
人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。
最近十多年來,人工神經網路的研究工作不斷深入,已經取得了很大的進展,其在模式識別、智能機器人、自動控制、預測估計、生物、醫學、經濟等領域已成功地解決了許多現代計算機難以解決的實際問題,表現出了良好的智能特性。
② Matlab神經網路原理中可以用於尋找最優解的演算法有哪些
若果對你有幫助,請點贊。
神經網路的結構(例如2輸入3隱節點1輸出)建好後,一般就要求神經網路里的權值和閾值。現在一般求解權值和閾值,都是採用梯度下降之類的搜索演算法(梯度下降法、牛頓法、列文伯格-馬跨特法、狗腿法等等),這些演算法會先初始化一個解,在這個解的基礎上,確定一個搜索方向和一個移動步長(各種法算確定方向和步長的方法不同,也就使各種演算法適用於解決不同的問題),使初始解根據這個方向和步長移動後,能使目標函數的輸出(在神經網路中就是預測誤差)下降。 然後將它更新為新的解,再繼續尋找下一步的移動方向的步長,這樣不斷的迭代下去,目標函數(神經網路中的預測誤差)也不斷下降,最終就能找到一個解,使得目標函數(預測誤差)比較小。
而在尋解過程中,步長太大,就會搜索得不仔細,可能跨過了優秀的解,而步長太小,又會使尋解過程進行得太慢。因此,步長設置適當非常重要。
學習率對原步長(在梯度下降法中就是梯度的長度)作調整,如果學習率lr = 0.1,那麼梯度下降法中每次調整的步長就是0.1*梯度,
而在matlab神經網路工具箱里的lr,代表的是初始學習率。因為matlab工具箱為了在尋解不同階段更智能的選擇合適的步長,使用的是可變學習率,它會根據上一次解的調整對目標函數帶來的效果來對學習率作調整,再根據學習率決定步長。
機制如下:
if newE2/E2 > maxE_inc %若果誤差上升大於閾值
lr = lr * lr_dec; %則降低學習率
else
if newE2 < E2 %若果誤差減少
lr = lr * lr_inc;%則增加學習率
end
詳細的可以看《神經網路之家》nnetinfo里的《[重要]寫自己的BP神經網路(traingd)》一文,裡面是matlab神經網路工具箱梯度下降法的簡化代碼
③ 機器學習之人工神經網路演算法
機器學習中有一個重要的演算法,那就是人工神經網路演算法,聽到這個名稱相信大家能夠想到人體中的神經。其實這種演算法和人工神經有一點點相似。當然,這種演算法能夠解決很多的問題,因此在機器學習中有著很高的地位。下面我們就給大家介紹一下關於人工神經網路演算法的知識。
1.神經網路的來源
我們聽到神經網路的時候也時候近一段時間,其實神經網路出現有了一段時間了。神經網路的誕生起源於對大腦工作機理的研究。早期生物界學者們使用神經網路來模擬大腦。機器學習的學者們使用神經網路進行機器學習的實驗,發現在視覺與語音的識別上效果都相當好。在BP演算法誕生以後,神經網路的發展進入了一個熱潮。
2.神經網路的原理
那麼神經網路的學習機理是什麼?簡單來說,就是分解與整合。一個復雜的圖像變成了大量的細節進入神經元,神經元處理以後再進行整合,最後得出了看到的是正確的結論。這就是大腦視覺識別的機理,也是神經網路工作的機理。所以可以看出神經網路有很明顯的優點。
3.神經網路的邏輯架構
讓我們看一個簡單的神經網路的邏輯架構。在這個網路中,分成輸入層,隱藏層,和輸出層。輸入層負責接收信號,隱藏層負責對數據的分解與處理,最後的結果被整合到輸出層。每層中的一個圓代表一個處理單元,可以認為是模擬了一個神經元,若干個處理單元組成了一個層,若干個層再組成了一個網路,也就是」神經網路」。在神經網路中,每個處理單元事實上就是一個邏輯回歸模型,邏輯回歸模型接收上層的輸入,把模型的預測結果作為輸出傳輸到下一個層次。通過這樣的過程,神經網路可以完成非常復雜的非線性分類。
4.神經網路的應用。
圖像識別領域是神經網路中的一個著名應用,這個程序是一個基於多個隱層構建的神經網路。通過這個程序可以識別多種手寫數字,並且達到很高的識別精度與擁有較好的魯棒性。可以看出,隨著層次的不斷深入,越深的層次處理的細節越低。但是進入90年代,神經網路的發展進入了一個瓶頸期。其主要原因是盡管有BP演算法的加速,神經網路的訓練過程仍然很困難。因此90年代後期支持向量機演算法取代了神經網路的地位。
在這篇文章中我們大家介紹了關於神經網路的相關知識,具體的內容就是神經網路的起源、神經網路的原理、神經網路的邏輯架構和神經網路的應用,相信大家看到這里對神經網路知識有了一定的了解,希望這篇文章能夠幫助到大家。
④ 神經網路預測方法
神經網路分析法是從神經心理學和認知科學研究成果出發,應用數學方法發展起來的一種具有高度並行計算能力、自學能力和容錯能力的處理方法。
⑤ 神經網路bp演算法可以對樣本進行預測,具體是預測什麼
關於神經網路(matlab)歸一化的整理
由於採集的各數據單位不一致,因而須對數據進行[-1,1]歸一化處理,歸一化方法主要有如下幾種,供大家參考:(by james)
1、線性函數轉換,表達式如下:
y=(x-MinValue)/(MaxValue-MinValue)
說明:x、y分別為轉換前、後的值,MaxValue、MinValue分別為樣本的最大值和最小值。
2、對數函數轉換,表達式如下:
y=log10(x)
說明:以10為底的對數函數轉換。
3、反餘切函數轉換,表達式如下:
y=atan(x)*2/PI
歸一化是為了加快訓練網路的收斂性,可以不進行歸一化處理
歸一化的具體作用是歸納統一樣本的統計分布性。歸一化在0-1之間是統計的概率分布,歸一化在-1--+1之間是統計的坐標分布。歸一化有同一、統一和合一的意思。無論是為了建模還是為了計算,首先基本度量單位要同一,神經網路是以樣本在事件中的統計分別幾率來進行訓練(概率計算)和預測的,歸一化是同一在0-1之間的統計概率分布;
當所有樣本的輸入信號都為正值時,與第一隱含層神經元相連的權值只能同時增加或減小,從而導致學習速度很慢。為了避免出現這種情況,加快網路學習速度,可以對輸入信號進行歸一化,使得所有樣本的輸入信號其均值接近於0或與其均方差相比很小。
歸一化是因為sigmoid函數的取值是0到1之間的,網路最後一個節點的輸出也是如此,所以經常要對樣本的輸出歸一化處理。所以這樣做分類的問題時用[0.9 0.1 0.1]就要比用[1 0 0]要好。
但是歸一化處理並不總是合適的,根據輸出值的分布情況,標准化等其它統計變換方法有時可能更好。
關於用premnmx語句進行歸一化:
premnmx語句的語法格式是:[Pn,minp,maxp,Tn,mint,maxt]=premnmx(P,T)
其中P,T分別為原始輸入和輸出數據,minp和maxp分別為P中的最小值和最大值。mint和maxt分別為T的最小值和最大值。
premnmx函數用於將網路的輸入數據或輸出數據進行歸一化,歸一化後的數據將分布在[-1,1]區間內。
我們在訓練網路時如果所用的是經過歸一化的樣本數據,那麼以後使用網路時所用的新數據也應該和樣本數據接受相同的預處理,這就要用到tramnmx。
下面介紹tramnmx函數:
[Pn]=tramnmx(P,minp,maxp)
其中P和Pn分別為變換前、後的輸入數據,maxp和minp分別為premnmx函數找到的最大值和最小值。
(by terry2008)
matlab中的歸一化處理有三種方法
1. premnmx、postmnmx、tramnmx
2. restd、poststd、trastd
3. 自己編程
具體用那種方法就和你的具體問題有關了
(by happy)
pm=max(abs(p(i,:))); p(i,:)=p(i,:)/pm;
和
for i=1:27
p(i,:)=(p(i,:)-min(p(i,:)))/(max(p(i,:))-min(p(i,:)));
end 可以歸一到0 1 之間
0.1+(x-min)/(max-min)*(0.9-0.1)其中max和min分別表示樣本最大值和最小值。
這個可以歸一到0.1-0.9
⑥ 該代碼為基於bp神經網路的預測演算法怎麼看
BP(Back Propagation)神經網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hidden layer)和輸出層(output layer)。
上傳的m文件里是一個電力系統負荷預測的實例,用的是最簡單的BP演算法,你可以參考。
很抱歉,回答者上傳的附件已失效
⑦ BP人工神經網路預測
完全可以,神經網路就是這樣用的,極其適用於描述難以給出具體的數學表達式的非線性映射。通過歷史樣本對網路的訓練,可以使網路映射該非線性關系,從而進行可靠性很高的預測。可以使用BP、Elman、RBF網路,這些網路效果較好。建議使用MATLAB編程,較為方便,因為該數學軟體包含神經網路工具箱。
如果你裝了Matlab,可以運行下附件的例子試一下。
⑧ 神經網路演算法的人工神經網路
人工神經網路(Artificial Neural Networks,ANN)系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信 息存儲、良好的自組織自學習能力等特點。BP(Back Propagation)演算法又稱為誤差 反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理 論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。 人工神經元的研究起源於腦神經元學說。19世紀末,在生物、生理學領域,Waldeger等人創建了神經元學說。人們認識到復雜的神經系統是由數目繁多的神經元組合而成。大腦皮層包括有100億個以上的神經元,每立方毫米約有數萬個,它們互相聯結形成神經網路,通過感覺器官和神經接受來自身體內外的各種信息,傳遞至中樞神經系統內,經過對信息的分析和綜合,再通過運動神經發出控制信息,以此來實現機體與內外環境的聯系,協調全身的各種機能活動。
神經元也和其他類型的細胞一樣,包括有細胞膜、細胞質和細胞核。但是神經細胞的形態比較特殊,具有許多突起,因此又分為細胞體、軸突和樹突三部分。細胞體內有細胞核,突起的作用是傳遞信息。樹突是作為引入輸入信號的突起,而軸突是作為輸出端的突起,它只有一個。
樹突是細胞體的延伸部分,它由細胞體發出後逐漸變細,全長各部位都可與其他神經元的軸突末梢相互聯系,形成所謂「突觸」。在突觸處兩神經元並未連通,它只是發生信息傳遞功能的結合部,聯系界面之間間隙約為(15~50)×10米。突觸可分為興奮性與抑制性兩種類型,它相應於神經元之間耦合的極性。每個神經元的突觸數目正常,最高可達10個。各神經元之間的連接強度和極性有所不同,並且都可調整、基於這一特性,人腦具有存儲信息的功能。利用大量神經元相互聯接組成人工神經網路可顯示出人的大腦的某些特徵。
人工神經網路是由大量的簡單基本元件——神經元相互聯接而成的自適應非線性動態系統。每個神經元的結構和功能比較簡單,但大量神經元組合產生的系統行為卻非常復雜。
人工神經網路反映了人腦功能的若干基本特性,但並非生物系統的逼真描述,只是某種模仿、簡化和抽象。
與數字計算機比較,人工神經網路在構成原理和功能特點等方面更加接近人腦,它不是按給定的程序一步一步地執行運算,而是能夠自身適應環境、總結規律、完成某種運算、識別或過程式控制制。
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對於寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。 (1)人類大腦有很強的自適應與自組織特性,後天的學習與訓練可以開發許多各具特色的活動功能。如盲人的聽覺和觸覺非常靈敏;聾啞人善於運用手勢;訓練有素的運動員可以表現出非凡的運動技巧等等。
普通計算機的功能取決於程序中給出的知識和能力。顯然,對於智能活動要通過總結編製程序將十分困難。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。
(2)泛化能力
泛化能力指對沒有訓練過的樣本,有很好的預測能力和控制能力。特別是,當存在一些有雜訊的樣本,網路具備很好的預測能力。
(3)非線性映射能力
當對系統對於設計人員來說,很透徹或者很清楚時,則一般利用數值分析,偏微分方程等數學工具建立精確的數學模型,但當對系統很復雜,或者系統未知,系統信息量很少時,建立精確的數學模型很困難時,神經網路的非線性映射能力則表現出優勢,因為它不需要對系統進行透徹的了解,但是同時能達到輸入與輸出的映射關系,這就大大簡化設計的難度。
(4)高度並行性
並行性具有一定的爭議性。承認具有並行性理由:神經網路是根據人的大腦而抽象出來的數學模型,由於人可以同時做一些事,所以從功能的模擬角度上看,神經網路也應具備很強的並行性。
多少年以來,人們從醫學、生物學、生理學、哲學、信息學、計算機科學、認知學、組織協同學等各個角度企圖認識並解答上述問題。在尋找上述問題答案的研究過程中,這些年來逐漸形成了一個新興的多學科交叉技術領域,稱之為「神經網路」。神經網路的研究涉及眾多學科領域,這些領域互相結合、相互滲透並相互推動。不同領域的科學家又從各自學科的興趣與特色出發,提出不同的問題,從不同的角度進行研究。
下面將人工神經網路與通用的計算機工作特點來對比一下:
若從速度的角度出發,人腦神經元之間傳遞信息的速度要遠低於計算機,前者為毫秒量級,而後者的頻率往往可達幾百兆赫。但是,由於人腦是一個大規模並行與串列組合處理系統,因而,在許多問題上可以作出快速判斷、決策和處理,其速度則遠高於串列結構的普通計算機。人工神經網路的基本結構模仿人腦,具有並行處理特徵,可以大大提高工作速度。
人腦存貯信息的特點為利用突觸效能的變化來調整存貯內容,也即信息存貯在神經元之間連接強度的分布上,存貯區與計算機區合為一體。雖然人腦每日有大量神經細胞死亡 (平均每小時約一千個),但不影響大腦的正常思維活動。
普通計算機是具有相互獨立的存貯器和運算器,知識存貯與數據運算互不相關,只有通過人編出的程序使之溝通,這種溝通不能超越程序編制者的預想。元器件的局部損壞及程序中的微小錯誤都可能引起嚴重的失常。 心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。
生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。
人工神經網路早期的研究工作應追溯至上世紀40年代。下面以時間順序,以著名的人物或某一方面突出的研究成果為線索,簡要介紹人工神經網路的發展歷史。
1943年,心理學家W·Mcculloch和數理邏輯學家W·Pitts在分析、總結神經元基本特性的基礎上首先提出神經元的數學模型。此模型沿用至今,並且直接影響著這一領域研究的進展。因而,他們兩人可稱為人工神經網路研究的先驅。
1945年馮·諾依曼領導的設計小組試製成功存儲程序式電子計算機,標志著電子計算機時代的開始。1948年,他在研究工作中比較了人腦結構與存儲程序式計算機的根本區別,提出了以簡單神經元構成的再生自動機網路結構。但是,由於指令存儲式計算機技術的發展非常迅速,迫使他放棄了神經網路研究的新途徑,繼續投身於指令存儲式計算機技術的研究,並在此領域作出了巨大貢獻。雖然,馮·諾依曼的名字是與普通計算機聯系在一起的,但他也是人工神經網路研究的先驅之一。
50年代末,F·Rosenblatt設計製作了「感知機」,它是一種多層的神經網路。這項工作首次把人工神經網路的研究從理論探討付諸工程實踐。當時,世界上許多實驗室仿效製作感知機,分別應用於文字識別、聲音識別、聲納信號識別以及學習記憶問題的研究。然而,這次人工神經網路的研究高潮未能持續很久,許多人陸續放棄了這方面的研究工作,這是因為當時數字計算機的發展處於全盛時期,許多人誤以為數字計算機可以解決人工智慧、模式識別、專家系統等方面的一切問題,使感知機的工作得不到重視;其次,當時的電子技術工藝水平比較落後,主要的元件是電子管或晶體管,利用它們製作的神經網路體積龐大,價格昂貴,要製作在規模上與真實的神經網路相似是完全不可能的;另外,在1968年一本名為《感知機》的著作中指出線性感知機功能是有限的,它不能解決如異感這樣的基本問題,而且多層網路還不能找到有效的計算方法,這些論點促使大批研究人員對於人工神經網路的前景失去信心。60年代末期,人工神經網路的研究進入了低潮。
另外,在60年代初期,Widrow提出了自適應線性元件網路,這是一種連續取值的線性加權求和閾值網路。後來,在此基礎上發展了非線性多層自適應網路。當時,這些工作雖未標出神經網路的名稱,而實際上就是一種人工神經網路模型。
隨著人們對感知機興趣的衰退,神經網路的研究沉寂了相當長的時間。80年代初期,模擬與數字混合的超大規模集成電路製作技術提高到新的水平,完全付諸實用化,此外,數字計算機的發展在若干應用領域遇到困難。這一背景預示,向人工神經網路尋求出路的時機已經成熟。美國的物理學家Hopfield於1982年和1984年在美國科學院院刊上發表了兩篇關於人工神經網路研究的論文,引起了巨大的反響。人們重新認識到神經網路的威力以及付諸應用的現實性。隨即,一大批學者和研究人員圍繞著 Hopfield提出的方法展開了進一步的工作,形成了80年代中期以來人工神經網路的研究熱潮。
1985年,Ackley、Hinton和Sejnowski將模擬退火演算法應用到神經網路訓練中,提出了Boltzmann機,該演算法具有逃離極值的優點,但是訓練時間需要很長。
1986年,Rumelhart、Hinton和Williams提出了多層前饋神經網路的學習演算法,即BP演算法。它從證明的角度推導演算法的正確性,是學習演算法有理論依據。從學習演算法角度上看,是一個很大的進步。
1988年,Broomhead和Lowe第一次提出了徑向基網路:RBF網路。
總體來說,神經網路經歷了從高潮到低谷,再到高潮的階段,充滿曲折的過程。
⑨ 神經網路演算法原理
4.2.1 概述
人工神經網路的研究與計算機的研究幾乎是同步發展的。1943年心理學家McCulloch和數學家Pitts合作提出了形式神經元的數學模型,20世紀50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函數的概念提出了神經網路的一種數學模型,1986年,Rumelhart及LeCun等學者提出了多層感知器的反向傳播演算法等。
神經網路技術在眾多研究者的努力下,理論上日趨完善,演算法種類不斷增加。目前,有關神經網路的理論研究成果很多,出版了不少有關基礎理論的著作,並且現在仍是全球非線性科學研究的熱點之一。
神經網路是一種通過模擬人的大腦神經結構去實現人腦智能活動功能的信息處理系統,它具有人腦的基本功能,但又不是人腦的真實寫照。它是人腦的一種抽象、簡化和模擬模型,故稱之為人工神經網路(邊肇祺,2000)。
人工神經元是神經網路的節點,是神經網路的最重要組成部分之一。目前,有關神經元的模型種類繁多,最常用最簡單的模型是由閾值函數、Sigmoid 函數構成的模型(圖 4-3)。
儲層特徵研究與預測
以上演算法是對每個樣本作權值修正,也可以對各個樣本計算δj後求和,按總誤差修正權值。
⑩ 神經網路演算法原理
神經網路預測學習樣本中的駕駛行為特徵。如圖顯示了某個駕駛場景的行駛路徑深度學習訓練,通過神經網路可以學習駕駛人的行為,並根據當前獲取的環境信息決策行駛軌跡,進而可以控制車輛的轉向、制動、驅動實現軌跡跟蹤。