導航:首頁 > 源碼編譯 > python演算法中文版

python演算法中文版

發布時間:2022-08-25 07:28:53

1. Python之動態規劃演算法

動態規劃演算法中是將復雜問題遞歸分解為子問題,通過解決這些子問題來解決復雜問題。與遞歸演算法相比,動態編程減少了堆棧的使用,避免了重復的計算,效率得到顯著提升。

先來看一個簡單的例子,斐波那契數列.

斐波那契數列的定義如下。

斐波那契數列可以很容易地用遞歸演算法實現:

上述代碼,隨著n的增加,計算量呈指數級增長,演算法的時間復雜度是 。

採用動態規劃演算法,通過自下而上的計算數列的值,可以使演算法復雜度減小到 ,代碼如下。

下面我們再看一個復雜一些的例子。

這是小學奧數常見的硬幣問題: 已知有1分,2分,5分三種硬幣數量不限,用這些硬幣湊成為n分錢,那麼一共有多少種組合方法。

我們將硬幣的種類用列表 coins 定義;
將問題定義為一個二維數組 dp,dp[amt][j] 是使用 coins 中前 j+1 種硬幣( coins[0:j+1] )湊成總價amt的組合數。

例如: coins = [1,2,5]

dp[5][1] 就是使用前兩種硬幣 [1,2] 湊成總和為5的組合數。

對於所有的 dp[0][j] 來說,湊成總價為0的情況只有一種,就是所有的硬幣數量都為0。所以對於在有效范圍內任意的j,都有 dp[0][j] 為1。

對於 dp[amt][j] 的計算,也就是使用 coins[0:j+1] 硬幣總價amt的組合數,包含兩種情況計算:

1.當使用第j個硬幣時,有 dp[amt-coins[j]][j] 種情況,即amt減去第j個硬幣幣值,使用前j+1種硬幣的組合數;

2.當不使用第j個硬幣時,有 dp[amt][j-1] 種情況,即使用前j種硬幣湊成amt的組合數;

所以: dp[amt][j] = dp[amt - coins[j]][j]+dp[amt][j-1]

我們最終得到的結果是:dp[amount][-1]

上述分析省略了一些邊界情況。

有了上述的分析,代碼實現就比較簡單了。

動態規劃演算法代碼簡潔,執行效率高。但是與遞歸演算法相比,需要仔細考慮如何分解問題,動態規劃代碼與遞歸調用相比,較難理解。

我把遞歸演算法實現的代碼也附在下面。有興趣的朋友可以比較一下兩種演算法的時間復雜度有多大差別。

上述代碼在Python 3.7運行通過。

閱讀全文

與python演算法中文版相關的資料

熱點內容
泡沫APP在哪裡下載 瀏覽:937
簡述高級語言進行編譯全過程 瀏覽:39
管家婆輝煌2加密狗挪到另一台電腦 瀏覽:760
摩托車在哪裡app看考題 瀏覽:356
蘋果5app在哪裡設置 瀏覽:737
如何查看伺服器的磁碟使用 瀏覽:165
python蒙特卡洛模型投點圖 瀏覽:330
安卓手機屬於什麼介面 瀏覽:742
微信群推廣網站源碼 瀏覽:764
九江離鷹潭源碼 瀏覽:719
python可以當作函數的返回值 瀏覽:422
地鐵逃生體驗服怎麼進入安卓 瀏覽:833
齊魯工惠app的中獎記錄在哪裡 瀏覽:759
linuxkill命令詳解 瀏覽:104
dhcp伺服器動態分配地址 瀏覽:265
門禁卡加密了能破解嗎 瀏覽:215
在哪裡下載百度網盤app 瀏覽:917
伺服器要升級什麼意思 瀏覽:831
銀行還房貸解壓方法 瀏覽:702
伺服器主機辦公如何提速 瀏覽:920