導航:首頁 > 源碼編譯 > 以下哪種演算法不能用於路徑規劃

以下哪種演算法不能用於路徑規劃

發布時間:2022-09-13 01:27:42

⑴ A*演算法介紹

姓名:車文揚 學號:16020199006

【嵌牛導讀】:A*演算法的逐步詳解

【嵌牛鼻子】:啟發式演算法

【嵌牛提問】:A*演算法的原理是什麼?

【嵌牛正文】:

A*演算法

路徑規劃是指的是機器人的最優路徑規劃問題,即依據某個或某些優化准則(如工作代價最小、行走路徑最短、行走時間最短等),在工作空間中找到一個從起始狀態到目標狀態能避開障礙物的最優路徑。機器人的路徑規劃應用場景極豐富,最常見如游戲中NPC及控制角色的位置移動,網路地圖等導航問題,小到家庭掃地機器人、無人機大到各公司正爭相開拓的無人駕駛汽車等。

目前路徑規劃演算法分為:

A*演算法原理:

在計算機科學中,A*演算法作為Dijkstra演算法的擴展,因其高效性而被廣泛應用於尋路及圖的遍歷,如星際爭霸等游戲中就大量使用。在理解演算法前,我們需要知道幾個概念:

搜索區域(The Search Area):圖中的搜索區域被劃分為了簡單的二維數組,數組每個元素對應一個小方格,當然我們也可以將區域等分成是五角星,矩形等,通常將一個單位的中心點稱之為搜索區域節點(Node)。

開放列表(Open List):我們將路徑規劃過程中待檢測的節點存放於Open List中,而已檢測過的格子則存放於Close List中。

父節點(parent):在路徑規劃中用於回溯的節點,開發時可考慮為雙向鏈表結構中的父結點指針。

路徑排序(Path Sorting):具體往哪個節點移動由以下公式確定:F(n) = G + H 。G代表的是從初始位置A沿著已生成的路徑到指定待檢測格子的移動開銷。H指定待測格子到目標節點B的估計移動開銷。

啟發函數(Heuristics Function):H為啟發函數,也被認為是一種試探,由於在找到唯一路徑前,我們不確定在前面會出現什麼障礙物,因此用了一種計算H的演算法,具體根據實際場景決定。在我們簡化的模型中,H採用的是傳統的曼哈頓距離(Manhattan Distance),也就是橫縱向走的距離之和。

如下圖所示,綠色方塊為機器人起始位置A,紅色方塊為目標位置B,藍色為障礙物。

我們把要搜尋的區域劃分成了正方形的格子。這是尋路的第一步,簡化搜索區域。這個特殊的方法把我們的搜索區域簡化為了2 維數組。數組的每一項代表一個格子,它的狀態就是可走(walkalbe)或不可走(unwalkable) 。現用A*演算法尋找出一條自A到B的最短路徑,每個方格的邊長為10,即垂直水平方向移動開銷為10。因此沿對角移動開銷約等於14。具體步驟如下:

從起點 A 開始,把它加入到一個由方格組成的open list(開放列表) 中,這個open list像是一個購物清單。Open list里的格子是可能會是沿途經過的,也有可能不經過。因此可以將其看成一個待檢查的列表。查看與A相鄰的8個方格 ,把其中可走的 (walkable) 或可到達的(reachable) 方格加入到open list中。並把起點 A 設置為這些方格的父節點 (parent node) 。然後把 A 從open list中移除,加入到close list(封閉列表) 中,close list中的每個方格都是不需要再關注的。

如下圖所示,深綠色的方格為起點A,它的外框是亮藍色,表示該方格被加入到了close list 。與它相鄰的黑色方格是需要被檢查的,他們的外框是亮綠色。每個黑方格都有一個灰色的指針指向他們的父節點A。

下一步,我們需要從open list中選一個與起點A相鄰的方格。但是到底選擇哪個方格好呢?選F值最小的那個。我們看看下圖中的一些方格。在標有字母的方格中G = 10 。這是因為水平方向從起點到那裡只有一個方格的距離。與起點直接相鄰的上方,下方,左方的方格的G 值都是10 ,對角線的方格G 值都是14 。H值通過估算起點到終點( 紅色方格) 的Manhattan 距離得到,僅作橫向和縱向移動,並且忽略沿途的障礙。使用這種方式,起點右邊的方格到終點有3 個方格的距離,因此H = 30 。這個方格上方的方格到終點有4 個方格的距離( 注意只計算橫向和縱向距離) ,因此H = 40 。

比較open list中節點的F值後,發現起點A右側節點的F=40,值最小。選作當前處理節點,並將這個點從Open List刪除,移到Close List中。

對這個節點周圍的8個格子進行判斷,若是不可通過(比如牆,水,或是其他非法地形)或已經在Close List中,則忽略。否則執行以下步驟:

若當前處理節點的相鄰格子已經在Open List中,則檢查這條路徑是否更優,即計算經由當前處理節點到達那個方格是否具有更小的 G值。如果沒有,不做任何操作。相反,如果G值更小,則把那個方格的父節點設為當前處理節點 ( 我們選中的方格 ) ,然後重新計算那個方格的 F 值和 G 值。

若當前處理節點的相鄰格子不在Open List中,那麼把它加入,並將它的父節點設置為該節點。

按照上述規則我們繼續搜索,選擇起點右邊的方格作為當前處理節點。它的外框用藍線打亮,被放入了close list 中。然後我們檢查與它相鄰的方格。它右側的3個方格是牆壁,我們忽略。它左邊的方格是起點,在close list 中,我們也忽略。其他4個相鄰的方格均在open list 中,我們需要檢查經由當前節點到達那裡的路徑是否更好。我們看看上面的方格,它現在的G值為14 ,如果經由當前方格到達那裡,G值將會為20( 其中10為從起點到達當前方格的G值,此外還要加上從當前方格縱向移動到上面方格的G值10) ,因此這不是最優的路徑。看圖就會明白直接從起點沿對角線移動到那個方格比先橫向移動再縱向移動要好。

當把4個已經在open list 中的相鄰方格都檢查後,沒有發現經由當前節點的更好路徑,因此不做任何改變。接下來要選擇下一個待處理的節點。因此再次遍歷open list ,現在open list中只有7 個方格了,我們需要選擇F值最小的那個。這次有兩個方格的F值都是54,選哪個呢?沒什麼關系。從速度上考慮,選擇最後加入open list 的方格更快。因此選擇起點右下方的方格,如下圖所示。

接下來把起點右下角F值為54的方格作為當前處理節點,檢查其相鄰的方格。我們發現它右邊是牆(牆下面的一格也忽略掉,假定牆角不能直接穿越),忽略之。這樣還剩下 5 個相鄰的方格。當前方格下面的 2 個方格還沒有加入 open list ,所以把它們加入,同時把當前方格設為他們的父親。在剩下的 3 個方格中,有 2 個已經在 close list 中 ( 一個是起點,一個是當前方格上面的方格,外框被加亮的 ) ,我們忽略它們。最後一個方格,也就是當前方格左邊的方格,檢查經由當前方格到達那裡是否具有更小的 G 值。沒有,因此我們准備從 open list 中選擇下一個待處理的方格。

不斷重復這個過程,直到把終點也加入到了open list 中,此時如下圖所示。注意在起點下方2 格處的方格的父親已經與前面不同了。之前它的G值是28並且指向它右上方的方格。現在它的G 值為20 ,並且指向它正上方的方格。這是由於在尋路過程中的某處使用新路徑時G值更小,因此父節點被重新設置,G和F值被重新計算。

那麼我們怎樣得到實際路徑呢?很簡單,如下圖所示,從終點開始,沿著箭頭向父節點移動,直至回到起點,這就是你的路徑。

A*演算法總結:

1. 把起點加入 open list 。

2. 重復如下過程:

a. 遍歷open list ,查找F值最小的節點,把它作為當前要處理的節點,然後移到close list中

b. 對當前方格的 8 個相鄰方格一一進行檢查,如果它是不可抵達的或者它在close list中,忽略它。否則,做如下操作:

□  如果它不在open list中,把它加入open list,並且把當前方格設置為它的父親

□  如果它已經在open list中,檢查這條路徑 ( 即經由當前方格到達它那裡 ) 是否更近。如果更近,把它的父親設置為當前方格,並重新計算它的G和F值。如果你的open list是按F值排序的話,改變後你可能需要重新排序。

c. 遇到下面情況停止搜索:

□  把終點加入到了 open list 中,此時路徑已經找到了,或者

□  查找終點失敗,並且open list 是空的,此時沒有路徑。

3. 從終點開始,每個方格沿著父節點移動直至起點,形成路徑。

⑵ 有哪些應用於移動機器人路徑規劃的演算法

機器人家上了解到,在二維二值地圖(FREE or OCCUPIED)場景下進行路徑規劃的方法。我看之前有同學在回答的時候配上了這幅圖:

這幅圖上的演算法羅列的還是很全面的,體現了各個演算法的出生順序。但是並不能很好的對他們進行一個本質的分類。剛剛那位同學說的graph-based和sampling-based的分類方法我感覺有點概念重疊不能夠對規劃演算法進行這樣的分類,下面通過自己這一年多的研究和實踐對規劃演算法進行一個簡單的分類:

這幅圖上的演算法羅列的還是很全面的,體現了各個演算法的出生順序。但是並不能很好的對他們進行一個本質的分類。剛剛那位同學說的graph-based和sampling-based的分類方法我感覺有點概念重疊不能夠對規劃演算法進行這樣的分類,下面通過自己這一年多的研究和實踐對規劃演算法進行一個簡單的分類:

兩大類:
1. 完備的(complete)
2. 基於采樣的(sampling-based)又稱為概率完備的

一 完備的規劃演算法

A*演算法

所謂完備就是要達到一個systematic的標准,即:如果在起始點和目標點間有路徑解存在那麼一定可以得到解,如果得不到解那麼一定說明沒有解存在。
這一大類演算法在移動機器人領域通常直接在occupancy grid網格地圖上進行規劃(可以簡單理解成二值地圖的像素矩陣)以深度優先尋路演算法、廣度優先尋路演算法、Dijkstra(迪傑斯特拉)演算法為始祖,以A*演算法(Dijstra演算法上以減少計算量為目的加上了一個啟發式代價)最為常用,近期的Theta*演算法是在A*演算法的基礎上增加了line-of-sight優化使得規劃出來的路徑不完全依賴於單步的柵格形狀(答主以為這個演算法意義不大,不就是規劃了一條路徑再簡單平滑了一下么)。
完備的演算法的優勢在與它對於解的捕獲能力是完全的,但是由此產生的缺點就是演算法復雜度較大。這種缺點在二維小尺度柵格地圖上並不明顯,但是在大尺度,尤其是多維度規劃問題上,比如機械臂、蛇形機器人的規劃問題將帶來巨大的計算代價。這樣也直接促使了第二大類演算法的產生。

二 基於采樣的規劃演算法

RRT-connect演算法
這種演算法一般是不直接在grid地圖進行最小柵格解析度的規劃,它們採用在地圖上隨機撒一定密度的粒子來抽象實際地圖輔助規劃。如PRM演算法及其變種就是在原始地圖上進行撒點,抽取roadmap在這樣一個拓撲地圖上進行規劃;RRT以及其優秀的變種RRT-connect則是在地圖上每步隨機撒一個點,迭代生長樹的方式,連接起止點為目的,最後在連接的圖上進行規劃。這些基於采樣的演算法速度較快,但是生成的路徑代價(可理解為長度)較完備的演算法高,而且會產生「有解求不出」的情況(PRM的逢Narrow space卒的情況)。這樣的演算法一般在高維度的規劃問題中廣泛運用。

三 其他規劃演算法
除了這兩類之外還有間接的規劃演算法:Experience-based(Experience Graph經驗圖演算法)演算法:基於經驗的規劃演算法,這是一種存儲之前規劃路徑,建立知識庫,依賴之進行規劃的方法,題主有興趣可以閱讀相關文獻。這種方法犧牲了一定的空間代價達到了速度與完備兼得的優勢。此外還有基於廣義Voronoi圖的方法進行的Fast-marching規劃,類似dijkstra規劃和勢場的融合,該方法能夠完備地規劃出位於道路中央,遠離障礙物的路徑。答主最近也在研究此類演算法相關的工作。

APF(人工勢場)演算法

至於D* 、勢場法、DWA(動態窗口法)、SR-PRM屬於在動態環境下為躲避動態障礙物、考慮機器人動力學模型設計的規劃演算法。

⑶ 路徑規劃有幾種方法

路徑規劃模塊需要根據局部環境感知、可用的全局車道級路徑、相關交通規則,提供能夠將車輛引導向目的地(或目的點)的路徑。路徑規劃可分為全局路徑規劃方法、局部路徑規劃方法和混合路徑規劃方法三種。

⑷ A*演算法用於路徑規劃,有什麼缺點

缺點:A*演算法通過比較當前路徑柵格的8個鄰居的啟發式函數值F來逐步確定下一個路徑柵格,當存在多個最小值時A*演算法不能保證搜索的路徑最優。
A*演算法;A*(A-Star)演算法是一種靜態路網中求解最短路徑最有效的直接搜索方法。估價值與實際值越接近,估價函數取得就越好。A*[1] (A-Star)演算法是一種靜態路網中求解最短路最有效的直接搜索方法。注意是最有效的直接搜索演算法。之後涌現了很多預處理演算法(ALT,CH,HL等等),在線查詢效率是A*演算法的數千甚至上萬倍。公式表示為: f(n)=g(n)+h(n),其中 f(n) 是從初始點經由節點n到目標點的估價函數,g(n) 是在狀態空間中從初始節點到n節點的實際代價,h(n) 是從n到目標節點最佳路徑的估計代價。保證找到最短路徑(最優解的)條件,關鍵在於估價函數f(n)的選取:估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。並且如果h(n)=d(n),即距離估計h(n)等於最短距離,那麼搜索將嚴格沿著最短路徑進行, 此時的搜索效率是最高的。如果 估價值>實際值,搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。

⑸ 全局路徑規劃演算法

全局路徑規劃,主要演算法有
1、網格法、
2、拓撲法、
3、視圖法。

⑹ 流程規劃區路徑選擇及依據

摘要 您好,很高興為您解答該問題!

⑺ 蟻群演算法用於路徑規劃時的優缺點

蟻群演算法受起止點位置和障礙分布的影響,環境復雜時螞蟻容易陷入不可行點,甚至出現路徑迂迴和死鎖。

⑻ 以下不屬於SLAM演算法的是哪一項

CRB-SLAM

SLAM演算法,簡單來說,就是機器人要實現智能化需要完成的三個任務:定位、建圖、路徑規劃,這套流程,就是SLAM技術,沒有CRB-SLAM演算法。

⑼ 局部路徑規劃演算法

局部路徑規劃,常用的演算法有柵格法、人工勢場法、遺傳演算法、空間搜索法、層次法、動作行為法、Dijkstra演算法、Lee演算法、Floyd演算法等

⑽ 常見的路徑規劃方法有那些

最速下降法、部分貪婪演算法, Dijkstra演算法、Floyed演算法、SPFA演算法(Bellman_Ford的改進演算法)、A*演算法、D*演算法、圖論最短演算法,遺傳演算法、元胞自動機、免疫演算法、禁忌搜索、模擬退火、人工神經網路、蟻群演算法、粒子群演算法等

閱讀全文

與以下哪種演算法不能用於路徑規劃相關的資料

熱點內容
卡爾曼濾波演算法書籍 瀏覽:763
安卓手機怎麼用愛思助手傳文件進蘋果手機上 瀏覽:840
安卓怎麼下載60秒生存 瀏覽:799
外向式文件夾 瀏覽:232
dospdf 瀏覽:428
怎麼修改騰訊雲伺服器ip 瀏覽:382
pdftoeps 瀏覽:489
為什麼鴻蒙那麼像安卓 瀏覽:732
安卓手機怎麼拍自媒體視頻 瀏覽:183
單片機各個中斷的初始化 瀏覽:720
python怎麼集合元素 瀏覽:477
python逐條解讀 瀏覽:829
基於單片機的濕度控制 瀏覽:496
ios如何使用安卓的帳號 瀏覽:879
程序員公園采訪 瀏覽:807
程序員實戰教程要多長時間 瀏覽:970
企業數據加密技巧 瀏覽:132
租雲伺服器開發 瀏覽:809
程序員告白媽媽不同意 瀏覽:332
攻城掠地怎麼查看伺服器 瀏覽:597