1. 矩陣乘法如何計算詳細步驟!
回答:
此題2行2列矩陣乘以2行3列矩陣。
所得的矩陣是:2行3列矩陣
最後結果為: |1 3 5|
|0 4 6|
拓展資料
1、確認矩陣是否可以相乘。只有第一個矩陣的列的個數等於第二個矩陣的行的個數,這樣的兩個矩陣才能相乘。
圖示的兩個矩陣可以相乘,因為第一個矩陣,矩陣A有3列,而第二個矩陣,矩陣B有3行。
6、檢查相應的數字是否出現在正確的位置。19在左下角,-34在右下角,-2在左上角,-12在右上角。
2. 矩陣如何計算,矩陣的概念。
方法一:初等變換(此方法適用於單獨給出一個矩陣求逆矩陣,考試中一般矩陣的階數不會太高的,放心);
方法二:公式變換(抽象矩陣之間的運算,等式左邊一坨,右邊一坨,比如求a的逆,先把含a的劃到等式一邊,提取公因式後:b坨
a
c坨=d坨,根據定義,等號兩邊分別左乘b坨的逆右乘c坨的逆,即a=b坨的逆
d坨
c坨的逆);左乘就是等號兩邊都從左邊乘,同理右乘;
方法三:一些特殊的舉證,比如對角陣什麼的(書上總共沒幾個),對角線上的元素直接分之一。
夠用了
3. 計算一個矩陣給出詳細推導過程
如果:AA'=E(E為單位矩陣,A'表示「矩陣A的轉置矩陣」。)或A′A=E,則n階實矩陣A稱為正交矩陣,演算法:可以算是矩陣A的轉置矩陣,接著將矩陣A乘以轉置矩陣,若得到的是單位陣,則矩陣A是正交矩陣,若得到的不是單位陣,則矩陣A不是正交矩陣。
若A為正交陣,則滿足以下條件:
1、A^T是正交矩陣。
2、A^T的各行是單位向量且兩兩正交;各列是單位向量且兩兩正交。
3、(Ax,Ay)=(x,y)x,y∈R
4、|A|=1或-1
5、A^T等於A逆
(3)矩陣演算法怎麼求出來擴展閱讀:
正交矩陣的性質:
1、方陣A正交的充要條件是A的行(列)向量組是單位正交向量組;
2、方陣A正交的充要條件是A的n個行(列)向量是n維向量空間的一組標准正交基;
3、A是正交矩陣的充要條件是:A的行向量組兩兩正交且都是單位向量;
4、A的列向量組也是正交單位向量組。
5、正交方陣是歐氏空間中標准正交基到標准正交基的過渡矩陣。
4. 矩陣的計算是什麼
矩陣相乘最重要的方法是一般矩陣乘積。它只有在第一個矩陣的列數(column)和第二個矩陣的行數(row)相同時才有意義。一般單指矩陣乘積時,指的便是一般矩陣乘積。
1、當矩陣A的列數(column)等於矩陣B的行數(row)時,A與B可以相乘。
2、矩陣C的行數等於矩陣A的行數,C的列數等於B的列數。
3、乘積C的第m行第n列的元素等於矩陣A的第m行的元素與矩陣B的第n列對應元素乘積之和。
矩陣乘法的運算規則:
頓時矩陣乘法的運算規則誕生了。也許凱萊特別幸運,也或許是他的數學直覺格外敏銳,但不論如何,他給出了一個自然而且有用的矩陣乘法定義。
凱萊的基本思想是用矩陣乘積來表示線性復合映射,但他並不是第一個考慮線性復合映射問題的數學家。早在 1801 年,高斯(Carl Friedrich Gauss) 就已經使用這種復合計算,但高斯並沒有以陣列形式記錄系數。
5. 矩陣怎麼算
有下面三種情況:
1、如果你所要求的是一般矩陣的高次冪的話,是沒有捷徑可走的,只能夠一個個去乘出來。
至於低次冪,如果能夠相似對角化,即:存在簡便演算法的話,在二階矩陣的情況下簡便演算法未必有直接乘來得快,所以推薦直接乘。
2、如果你要求的是能夠相似對角化的矩陣的高次冪的話,是存在簡便演算法的。
設要求矩陣A的n次冪,且A=Q^(-1)*Λ*Q,其中Q為可逆陣,Λ為對角陣。
即:A可以相似對角化。那麼此時,有求冪公式:A^n=Q^(-1)*(Λ)^n*Q,而對角陣求n次方,只需要每個對角元素變為n次方即可,這樣就可以快速求出二階矩陣A的的高次冪。
3、如果矩陣可以相似對角化,求相似對角化的矩陣Q的具體步驟為:
求|λE-A|=0 (其中E為單位陣)的解,得λ1和λ2(不管是否重根),這就是Λ矩陣的對角元素。
依次把λ1和λ2帶入方程(如果λ是重根只需代一次,就可求得兩個基礎解)[λE-A][x]=[0],求得兩個解向量[x1]、[x2],從而矩陣Q的形式就是[x1 x2]。
接下來的求逆運算是一種基礎運算,這里不再贅述。
下面可以舉一個例子:
二階方陣:
1 a
0 1
求它的n次方矩陣
方陣A的k次冪定義為 k 個A連乘: A^k = AA...A (k個)
一些常用的性質有:
1. (A^m)^n = A^mn
2. A^mA^n = A^(m+n)
一般計算的方法有:
1. 計算A^2,A^3 找規律, 然後用歸納法證明
2. 若r(A)=1, 則A=αβ^T, A^n=(β^Tα)^(n-1)A
注: β^Tα =α^Tβ = tr(αβ^T)
3. 分拆法: A=B+C, BC=CB, 用二項式公式展開
適用於 B^n 易計算, C的低次冪為零矩陣: C^2 或 C^3 = 0.
4. 用對角化 A=P^-1diagP
A^n = P^-1diag^nP
(5)矩陣演算法怎麼求出來擴展閱讀:
冪等矩陣的主要性質:
1.冪等矩陣的特徵值只可能是0,1;
2.冪等矩陣可對角化;
3.冪等矩陣的跡等於冪等矩陣的秩,即tr(A)=rank(A);
4.可逆的冪等矩陣為E;
5.方陣零矩陣和單位矩陣都是冪等矩陣;
6.冪等矩陣A滿足:A(E-A)=(E-A)A=0;
7.冪等矩陣A:Ax=x的充要條件是x∈R(A);
8.A的核N(A)等於(E-A)的列空間R(E-A),且N(E-A)=R(A)。考慮冪等矩陣運算後仍為冪等矩陣的要求,可以給出冪等矩陣的運算:
1)設 A1,A2都是冪等矩陣,則(A1+A2) 為冪等矩陣的充分必要條件為:A1·A2 =A2·A1=0,且有:R(A1+A2) =R (A1) ⊕R (A2);N(A1+A2) =N(A1)∩N(A2);
2)設 A1, A2都是冪等矩陣,則(A1-A2) 為冪等矩陣的充分必要條件為:A1·A2=A2·A1=A2,且有:R(A1-A2) =R(A1)∩N (A2);N (A1- A2) =N (A1)⊕R (A2);
3)設 A1,A2都是冪等矩陣,若A1·A2=A2·A1,則A1·A2為冪等矩陣,且有:R (A1·A2) =R(A1) ∩R (A2);N (A1·A2) =N (A1) +N (A2)。
6. 矩陣怎麼求
矩陣的1范數:將矩陣沿列方向取絕對值求和,取最大值作為1范數。例如如下的矩陣,1范數求法如下:
對於實矩陣,矩陣A的2范數定義為:A的轉置與A乘積的最大特徵值開平方根。對於以上矩陣,直接調用函數可以求得2范數為16.8481,使用定義計算的過程,說明計算是正確的。
對於復矩陣,將轉置替換為共軛轉置,矩陣A的∞范數定義為先沿著行方向取絕對值之和,取最大值(與1范數類似)。
(6)矩陣演算法怎麼求出來擴展閱讀:
注意事項:
1、應用中常將有限維賦范向量空間之間的映射以矩陣的形式表現,這時映射空間上裝備的范數也可以通過矩陣范數的形式表達。
2、矩陣范數卻不存在公認唯一的度量方式, 一般來講矩陣范數除了正定性,齊次性和三角不等式之外,還規定其必須滿足相容性。
3、如果║·║α是相容範數,且任何滿足║·║β≤║·║α的范數║·║β都不是相容範數,那麼║·║α稱為極小范數。對於n階實方陣(或復方陣)全體上的任何一個范數║·║,總存在唯一的實數k>0,使得k║·║是極小范數。
4、如果不考慮相容性,那麼矩陣范數和向量范數就沒有區別,因為mxn矩陣全體和mn維向量空間同構。引入相容性主要是為了保持矩陣作為線性運算元的特徵,這一點和運算元范數的相容性一致,並且可以得到Mincowski定理以外的信息。
7. 矩陣怎麼計算
比如乘法AB
一、
1、用A的第1行各個數與B的第1列各個數對應相乘後加起來,就是乘法結果中第1行第1列的數;
2、用A的第1行各個數與B的第2列各個數對應相乘後加起來,就是乘法結果中第1行第2列的數;
3、用A的第1行各個數與B的第3列各個數對應相乘後加起來,就是乘法結果中第1行第3列的數;
依次進行,(直到)用A的第1行各個數與B的第末列各個數對應相乘後加起來,就是乘法結果中第1行第末列的的數。
二、
1、用A的第2行各個數與B的第1列各個數對應相乘後加起來,就是乘法結果中第2行第1列的數;
2、用A的第2行各個數與B的第2列各個數對應相乘後加起來,就是乘法結果中第2行第2列的數;
3、用A的第2行各個數與B的第3列各個數對應相乘後加起來,就是乘法結果中第2行第3列的數;
依次進行,(直到)用A的第2行各個數與B的第末列各個數對應相乘後加起來,就是乘法結果中第2行第末列的的數。
依次進行,
(直到)用A的第末行各個數與B的第1列各個數對應相乘後加起來,就是乘法結果中第末行第1列的數;
用A的第末行各個數與B的第2列各個數對應相乘後加起來,就是乘法結果中第末行第2列的數;
用A的第末行各個數與B的第3列各個數對應相乘後加起來,就是乘法結果中第末行第3列的數;
依次進行,
(直到)用A的第末行各個數與B的第末列各個數對應相乘後加起來,就是乘法結果中第末行第末列的的數。
矩陣相乘最重要的方法是一般矩陣乘積。它只有在第一個矩陣的列數(column)和第二個矩陣的行數(row)相同時才有意義[1]。一般單指矩陣乘積時,指的便是一般矩陣乘積。一個m×n的矩陣就是m×n個數排成m行n列的一個數陣。由於它把許多數據緊湊的集中到了一起,所以有時候可以簡便地表示一些復雜的模型。
8. 怎麼求矩陣
計算矩陣的除法,其實就是將被除的矩陣先轉化為它的逆矩陣,它的逆矩陣相當於被除的矩陣分之一,那麼矩陣的除法就相當於前面的矩陣和後面的矩陣的逆矩陣相乘的乘積。
1、計算矩陣的除法,先將被除的矩陣先轉化為它的逆矩陣,再將前面的矩陣和後面的矩陣的逆矩陣相乘。
2、那麼,一個矩陣的逆矩陣的求解方法是:先把一個單位矩陣放在目的矩陣的右邊,然後把左邊的矩陣通過初等行變換轉換為單位矩陣,此時右邊的矩陣就是我們要求的逆矩陣。
3、我們再通過舉一個實例來說明矩陣的除法的具體計算方法。
4、先把單位矩陣放在矩陣A的右邊並放在同一個矩陣里邊。現用第二行和第三行分別減去第一行的3倍和-1倍。
5、先用第一行和第三行分別加上第二行的2/5倍。再用第一行和第二行分別加上第三行的1/9倍和-1/5倍。
6、最後用矩陣B與矩陣A的逆矩陣相乘即可得出最後的結果,即矩陣B除以矩陣A得出的商。
拓展資料:
在數學中,矩陣(Matrix)是一個按照長方陣列排列的復數或實數集合,最早來自於方程組的系數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。
矩陣是高等代數學中的常見工具,也常見於統計分析等應用數學學科中。
在物理學中,矩陣於電路學、力學、光學和量子物理中都有應用;計算機科學中,三維動畫製作也需要用到矩陣。 矩陣的運算是數值分析領域的重要問題。將矩陣分解為簡單矩陣的組合可以在理論和實際應用上簡化矩陣的運算。對一些應用廣泛而形式特殊的矩陣,例如稀疏矩陣和准對角矩陣,有特定的快速運算演算法。關於矩陣相關理論的發展和應用,請參考《矩陣理論》。在天體物理、量子力學等領域,也會出現無窮維的矩陣,是矩陣的一種推廣。