① 查找的計算機演算法
⒈順序查找的思想是:
將查找值順序逐個與結點值進行比較,相等即為查找成功,否則查找失敗.
程序如下:
program sxcz;
const n=7;
type
arr=array[1..n] of integer;
var x1,i:integer;
a:arr;
b:boolean;
place:integer;
procere search(r:arr;m,x:integer; var found:boolean;var p:integer);
begin
p:=1;found:=false;
while(p<=m) and not found do
if r[p]=x then found:=true else p:=p+1;
end;
begin
write('Enter array:');
for i:=1 to n do read(a[i]);
writeln;
write('Enter search data:');
read(x1);
search(a,n,x1,b,place);
if b then begin writeln('yes');writeln('Place of',x1:5,'is:',place); end
else writeln('no');
end. ⒈二分查找的基本思想:首先將結點按關鍵字排序,其次將查找值與中間位置的值比較,相等,查找成功;不等,則中間數據大於或小於查找值,無論怎樣查找將在一半的數據中查找。
⒉例:輸入序列數據查找指定值.
程序:
program sxcz;
const n=7;
type
arr=array[1..n] of integer;
var x1,i:integer;
a:arr;
place:integer;
procere paixv(var r:arr;m:integer);
var k,j,i,t:integer;
begin
k:=m;
while k>0 do
begin
j:=k-1;k:=0;
for i:=1 to j do
if r[i]>r[i+1] then
begin t:=r[i];a[i]:=r[i+1];r[i+1]:=t;k:=i;end;
end;
end;
procere search(r:arr;m,x:integer; var p:integer);
var low,high,mid:integer;
begin
p:=0;low:=1;high:=m;
while low<=high do
begin
mid:=(low+high) div 2;
if x>r[mid] then low:=mid+1 else
if x<r[mid] then high:=mid-1 else
begin p:=mid;exit;end;
end;
end;
begin
write('Enter array:');
for i:=1 to n do read(a[i]);
writeln;
write('Enter search data:');
read(x1);
paixv(a,n);
search(a,n,x1,place);
if place<>0 then writeln('yes') else writeln('no');
end. 因為二叉排序樹的左子樹若不為空則左子樹的所有結點的值均小於它的根結點的值,而右子樹若不為空,則右子樹的所有結點的值均不小大於它的根結點的值,根據這個性質查找演算法如下:
program pxtree;
const
a:array[1..8] of integer=(10,18,3,8,12,2,7,3);
type point=^nod;
nod=record
w:integer;
right,left:point ;
end;
var root,first:point;k:boolean;i,x:integer;
procere maketr(d:integer;var p:point);
begin
if p=nil then
begin
new(p);
with p^ do begin w:=d;right:=nil;left:=nil end;
if k then begin root:=p; k:=false end;
end
else with p^ do if d>=w then maketr(d,right) else maketr(d,left);
end;
function searchtr(x:integer;p:point):boolean;
begin
if p=nil then searchtr:=false
else if x=p^.w then searchtr:=true
else if x<p^.w then searchtr:=searchtr(x,p^.left)
else searchtr:=searchtr(x,p^.right);
end;
begin
first:=nil;k:=true;
for i:=1 to 8 do maketr(a[i],first);
write('want find data x:');read(x);
if searchtr(x,first) then writeln('yes') else writeln('No');
end. 以上講的查找方法基於比較的,查找效率依賴比較次數,其實理想的查找希望不經比較,一次存取便能得到所查記錄,那就必須在記錄的存儲位置和它的關鍵字之間建立一個確定的對應關系f,這樣查找k時,只要根據這個對應關系f找到給定值k的像f(k)。這種對應關系f叫哈希(hash)函數。按這種思想建立的表叫哈希表(也叫散列表)。哈希表存取方便但存儲時容易沖突(collision):即不同的關鍵字可以對應同一哈希地址。如何確定哈希函數和解決沖突是關鍵。
⒈哈希函數的構造方法
直接定址法:H(k)=k 或H(k)=a*k+b(線形函數)
如:人口數字統計表 地址 1 2 3 ... 100 年齡 1 2 3 ... 100 人數 67 3533 244 ... 4 數字分析法:取關鍵字的若干數位組成哈希地址
如:關鍵字如下:若哈希表長為100則可取中間兩位10進制數作為哈希地址。 81346532 81372242 81387422 81301367 81322817 81338967 81354157 81368537 平方取中法:關鍵字平方後取中間幾位數組成哈希地址
折疊法:將關鍵數字分割成位數相同的幾部分(最後一部分的位數可以不同)然後取幾部分的疊加和(捨去進位)作為哈希地址。
除留余數法:取關鍵字被某個不大於表長m的數p除後所得的余數為哈希地址。
H(k)=k mod p p<=m
隨機數法:H(k)=rondom(k)。
⒉處理沖突的方法
假設地址集為0..n-1,由關鍵字得到的哈希地址為j(0<=j<=n-1)的位置已存有記錄,處理沖突就是為該關鍵字的記錄找到另一個空的哈希地址。在處理中可能得到一個地址序列Hi i=1,2,...k
0<=Hi<=n-1),即在處理沖突時若得到的另一個哈希地址H1仍發生沖突,再求下一地址H2,若仍沖突,再求H3...。怎樣得到Hi呢?
開放定址法:Hi=(H(k)+di) mod m (H(k)為哈希函數;m為哈希表長;di為增量序列)
當di=1,2,3,... m-1 時叫線性探測再散列。
當di=1,-1,2,-2,3,-3,...,k,-k時叫二次探測再散列。
當di=random(m)時叫偽隨機探測序列。
例:長度為11的哈希表關鍵字分別為17,60,29,哈希函數為H(k)=k mod 11,第四個記錄的關鍵字為38,分別按上述方法添入哈希表的地址為8,4,3(隨機數=9)。
再哈希法:Hi=RHi(key) i=1,2,...,k,其中RHi均為不同的哈希函數。
鏈地址法:這種方法很象基數排序,相同的地址的關鍵字值均鏈入對應的鏈表中。
建立公益區法:另設一個溢出表,不管得到的哈希地址如何,一旦發生沖突,都填入溢出表。
⒊哈希表的查找
例:如下一組關鍵字按哈希函數H(k)=k mod 13和線性探測處理沖突所得的哈希表a[0..15]: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 01 68 27 55 19 20 84 79 23 11 10 當給定值k=84,則首先和a[6]比在依次和a[7],a[8]比結果a[8]=84查找成功。
當給定值k=38,則首先和a[12]比,再和a[13]比,由於a[13]沒有,查找不成功,表中不存在關鍵字等於38的記錄。 查找第k小元素即在n個元素中(未排序)找到第k小的元素。方法同快速排序,採用遞歸方式。
程序如下:
program kspv;
const n=7;
type
arr=array[1..n] of integer;
var
b:arr;
i,k:integer;
function p(s,t:integer):integer;
var i,j,t1,x:integer;
begin
i:=s;j:=t;x:=b[i];
repeat
while (b[j]>=x) and (j>i) do j:=j-1;
if j>i then begin t1:=b[i]; b[i]:=b[j];b[j]:=t1;end;
while (b[i]<=x) and (i<j) do i:=i+1;
if i<j then begin t1:=b[j];b[j]:=b[i];b[i]:=t1; end
until i=j;
b[i]:=x;
p:=i;
end;
function find(s,t,k:integer):integer;
var p1,q:integer;
begin
if s=t then find:=b[s] else
begin
p1:=p(s,t);
q:=p1-s+1;
if k<=q then find:=find(s,p1,k) else find:=find(p1+1,t,k-q);
end;
end;
begin
write('input data:');
for i:=1 to n do read(b[i]);readln;
write('input k:');read(k);
write('output data:');
writeln('kthsmall:=',find(1,n,k));
end.
② 常見的搜索演算法有哪幾種
廣度優先搜索(BFS)
深度優先搜索(DFS)
爬山法(Hill Climbing)
最佳優先演算法(Best-first search strategy)
回溯法 (Backtracking)
分支限界演算法(Branch-and-bound Search Algorithm)
③ 10個常用演算法
原理:
二分法查找,也稱為折半法,是一種在有序數組中查找特定元素的搜索演算法。
一般步驟:
(1)確定該區間的中間位置K;
(2)將查找的值T與array[k]比較。
若相等,查找成功返回此位置;否則確定新的查找區域,繼續二分查找。每一次查找與中間值比較,可以確定是否查找成功,不成功當前查找區間將縮小一半,遞歸查找即可。
原理:
一種通過重復將問題分解為同類的子問題而解決問題的方法
典型例子:
斐波那契數列
描述: 斐波那契數列 指的是這樣一個數列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368.....自然中的斐波那契數列") 自然中的斐波那契數列,這個數列從第3項開始,每一項都等於前兩項之和。
解決方式:
原理:
在搜索嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就「回溯」返回,嘗試別的路徑。
回溯法是一種選優搜索法,按選優條件向前搜索,以達到目標。
但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術為回溯法,而滿足回溯條件的某個狀態的點稱為「回溯點」。
解決問題一般步驟:
1、 針對所給問題,定義問題的解空間,它至少包含問題的一個(最優)解。
2 、確定易於搜索的解空間結構,使得能用回溯法方便地搜索整個解空間 。
3 、以深度優先的方式搜索解空間,並且在搜索過程中用剪枝函數避免無效搜索。
典型例子:
八皇後問題
描述:在8×8格的國際象棋上擺放八個皇後,使其不能互相攻擊,即任意兩個皇後都不能處於同一行、同一列或同一斜線上,問有多少種擺法。
解決方式: https://blog.csdn.net/weixin_41865447/article/details/80034433
概念:
將雜亂無章的數據元素,通過一定的方法按關鍵字順序排列的過程叫做排序。
分類:
非穩定排序演算法:快速排序、希爾排序、堆排序、直接選擇排序
穩定的排序演算法:基數排序、冒泡排序、直接插入排序、折半插入排序、歸並排序
十個常用排序演算法
利用計算機的高性能來有目的的窮舉一個問題解空間的部分或所有的可能情況,從而求出問題的解的一種方法。
分類:
枚舉演算法、深度優先搜索、廣度優先搜索、A*演算法、回溯演算法、蒙特卡洛樹搜索、散列函數等演算法。
將一個數據轉換為一個標志,這個標志和源數據的每一個位元組都有十分緊密的關系。
很難找到逆向規律
只要符合散列思想的演算法都可以被稱為是Hash演算法
對不同的關鍵字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),這種現象稱為 碰撞 。
原理
在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的是在 某種意義上的局部最優解 。
從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。每一步只考慮一個數據,他的選取應該滿足局部優化的條件。若下一個數據和部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加演算法停止。
一種近似演算法
一般步驟:
1、建立數學模型來描述問題;
2、把求解的問題分成若干個子問題;
3、對每一子問題求解,得到子問題的局部最優解;
4、把子問題的解局部最優解合成原來解問題的一個解。
典型例子:
0/1背包問題
馬踏棋盤
均分紙牌
例題: https://www.cnblogs.com/hust-chen/p/8646009.html
概念:
分治演算法的基本思想是將一個規模為N的問題分解為K個規模較小的子問題,這些子問題相互獨立且與原問題性質相同。求出子問題的解,就可得到原問題的解。即一種分目標完成程序演算法,簡單問題可用二分法完成。
一般步驟:
(1)分解,將要解決的問題劃分成若干規模較小的同類問題;
(2)求解,當子問題劃分得足夠小時,用較簡單的方法解決;
(3)合並,按原問題的要求,將子問題的解逐層合並構成原問題的解。
典型例子:
排序中:歸並排序、堆排序、快速排序;
實例:找偽幣、求最值、棋盤覆蓋
https://ke..com/item/%E5%88%86%E6%B2%BB%E7%AE%97%E6%B3%95/3263297
概念:
用於求解具有某種最優性質的問題。在這類問題中,可能會有許多可行解。每一個解都對應於一個值,我們希望找到具有最優值的解。
動態規劃一般可分為線性動規,區域動規,樹形動規,背包動規四類。
舉例:
線性動規:攔截導彈,合唱隊形,挖地雷,建學校,劍客決斗等;
區域動規:石子合並, 加分二叉樹,統計單詞個數,炮兵布陣等;
樹形動規:貪吃的九頭龍,二分查找樹,聚會的歡樂,數字三角形等;
背包問題:01背包問題,完全背包問題,分組背包問題,二維背包,裝箱問題,擠牛奶(同濟)等;
應用實例:
最短路徑問題 ,項目管理,網路流優化等;
https://ke..com/item/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92/529408?fromtitle=%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%AE%97%E6%B3%95&fromid=15742703&fr=aladdin
概念:
在一個給定的字元文本內搜尋出自己想要找的一個字元串,平常所用的各種文本編輯器里的ctrl+F大多就是使用的這些字元匹配演算法。
分類:
KMP、BM、Sunday、Horspool、RK
參考:
https://cloud.tencent.com/developer/news/282694
https://blog.csdn.net/paincupid/article/details/81159320
④ 查找演算法有哪些
查找演算法常用的有,順序查找,二分查找,哈希表查找,等等。
⑤ 數據結構:重要的查找演算法有哪些
折半查找也就是二分查找,它必須滿足排序關系。
查找也可以用二叉查找樹,一般復雜度為O(logn),最壞為O(n)。
也可用平衡樹進行查找,如AVL,Treap,Splay等,可以做到保持O(logn)。
比二分查找性能更優的:大概只有Hash了吧。如果Hash函數設計的好,基本可以認為是O(1)
堆排序比較有意思,值得研究一下,理解了後,很有用~,也很重要。
⑥ 常見的搜索演算法有哪幾種
廣度優先搜索(BFS)
深度優先搜索(DFS)
爬山法(Hill Climbing)
最佳優先演算法(Best-first search strategy)
回溯法 (Backtracking)
分支限界演算法(Branch-and-bound Search Algorithm)
⑦ 幾種查找演算法的比較
文章摘要: 查找是在大量的信息中尋找一個特定的信息元素,在計算機應用中,查找是常用的基本運算,文中介紹四種查找演算法,分別是順序查找、二分查找、二叉排序樹查找和哈希查找。並用JAVA語言編寫了相應程序代碼,比較了查找同一個數據的時間復雜度和空間復雜度。
⑧ 【數據結構】幾種重要的查找演算法。
恩你是要問什麼?
順序查找就是按順序查找,復雜度O(n)
二分查找的前提是數據是有序的 一次復雜度O(logn)
例如在數組 A: 1 3 5 7 8 10 12 中
如果要找 10
我們先看中間的數是 7, 10比7大,那麼繼續在右側二分尋找,這是一個遞歸的過程.
偽代碼:
bool find(int L,int R,int What_You_Want) {
if (L > R) return false;
int mid = (L + R) / 2
if (A[mid] == What_You_Want) return true;
else if (A[mid] > What_You_Want) return find(L,mid - 1,What_You_Want);
else return find(mid + 1, R, What_You_Want);
}
二叉搜索樹的原理與二分查找相同
⑨ 常見查找和排序演算法
查找成功最多要n 次,平均(n+1)/2次, 時間復雜度為O(n) 。
優點:既適用順序表也適用單鏈表,同時對表中元素順序無要求,給插入帶來方便,只需插入表尾即可。
缺點:速度較慢。
改進:在表尾設置一個崗哨,這樣不用去循環判斷數組下標是否越界,因為最後必然成立。
適用條件:
二分查找的判定樹不僅是二叉排序樹,而且是一棵理想平衡樹。 時間復雜度為O(lbn) 。
循環實現
遞歸實現
待排序的元素需要實現 Java 的 Comparable 介面,該介面有 compareTo() 方法,可以用它來判斷兩個元素的大小關系。
從數組中選擇最小元素,將它與數組的第一個元素交換位置。再從數組剩下的元素中選擇出最小的元素,將它與數組的第二個元素交換位置。不斷進行這樣的操作,直到將整個數組排序。
選擇排序需要 ~N2/2 次比較和 ~N 次交換,==它的運行時間與輸入無關==,這個特點使得它對一個已經排序的數組也需要這么多的比較和交換操作。
從左到右不斷 交換相鄰逆序的元素 ,在一輪的循環之後,可以讓未排序的最大元素上浮到右側。
在一輪循環中,如果沒有發生交換,那麼說明數組已經是有序的,此時可以直接退出。
每次都 將當前元素插入到左側已經排序的數組中 ,使得插入之後左側數組依然有序。
對於數組 {3, 5, 2, 4, 1},它具有以下逆序:(3, 2), (3, 1), (5, 2), (5, 4), (5, 1), (2, 1), (4, 1),插入排序每次只能交換相鄰元素,令逆序數量減少 1,因此插入排序需要交換的次數為逆序數量。
==插入排序的時間復雜度取決於數組的初始順序,如果數組已經部分有序了,那麼逆序較少,需要的交換次數也就較少,時間復雜度較低==。
對於大規模的數組,插入排序很慢,因為它只能交換相鄰的元素,每次只能將逆序數量減少 1。希爾排序的出現就是為了解決插入排序的這種局限性,它通過交換不相鄰的元素,每次可以將逆序數量減少大於 1。
希爾排序使用插入排序對間隔 h 的序列進行排序。通過不斷減小 h,最後令 h=1,就可以使得整個數組是有序的。
希爾排序的運行時間達不到平方級別,使用遞增序列 1, 4, 13, 40, ... 的希爾排序所需要的比較次數不會超過 N 的若干倍乘於遞增序列的長度。後面介紹的高級排序演算法只會比希爾排序快兩倍左右。
歸並排序的思想是將數組分成兩部分,分別進行排序,然後歸並起來。
歸並方法將數組中兩個已經排序的部分歸並成一個。
將一個大數組分成兩個小數組去求解。
因為每次都將問題對半分成兩個子問題,這種對半分的演算法復雜度一般為 O(NlogN)。
先歸並那些微型數組,然後成對歸並得到的微型數組。
取 a[l] 作為切分元素,然後從數組的左端向右掃描直到找到第一個大於等於它的元素,再從數組的右端向左掃描找到第一個小於它的元素,交換這兩個元素。不斷進行這個過程,就可以保證左指針 i 的左側元素都不大於切分元素,右指針 j 的右側元素都不小於切分元素。當兩個指針相遇時,將切分元素 a[l] 和 a[j] 交換位置。
快速排序是原地排序,不需要輔助數組,但是遞歸調用需要輔助棧。
快速排序最好的情況下是每次都正好將數組對半分,這樣遞歸調用次數才是最少的。這種情況下比較次數為 CN=2CN/2+N,復雜度為 O(NlogN)。
最壞的情況下,第一次從最小的元素切分,第二次從第二小的元素切分,如此這般。因此最壞的情況下需要比較 N2/2。為了防止數組最開始就是有序的,在進行快速排序時需要隨機打亂數組。
因為快速排序在小數組中也會遞歸調用自己,對於小數組,插入排序比快速排序的性能更好,因此在小數組中可以切換到插入排序。
最好的情況下是每次都能取數組的中位數作為切分元素,但是計算中位數的代價很高。一種折中方法是取 3 個元素,並將大小居中的元素作為切分元素。
對於有大量重復元素的數組,可以將數組切分為三部分,分別對應小於、等於和大於切分元素。
三向切分快速排序對於有大量重復元素的隨機數組可以在線性時間內完成排序。
快速排序的 partition() 方法,會返回一個整數 j 使得 a[l..j-1] 小於等於 a[j],且 a[j+1..h] 大於等於 a[j],此時 a[j] 就是數組的第 j 大元素。
可以利用這個特性找出數組的第 k 大的元素。
該演算法是線性級別的,假設每次能將數組二分,那麼比較的總次數為 (N+N/2+N/4+..),直到找到第 k 個元素,這個和顯然小於 2N。
堆中某個節點的值總是大於等於其子節點的值,並且堆是一顆完全二叉樹。
堆可以用數組來表示,這是因為堆是完全二叉樹,而完全二叉樹很容易就存儲在數組中。位置 k 的節點的父節點位置為 k/2,而它的兩個子節點的位置分別為 2k 和 2k+1。這里不使用數組索引為 0 的位置,是為了更清晰地描述節點的位置關系。
在堆中,當一個節點比父節點大,那麼需要交換這個兩個節點。交換後還可能比它新的父節點大,因此需要不斷地進行比較和交換操作,把這種操作稱為上浮。
類似地,當一個節點比子節點來得小,也需要不斷地向下進行比較和交換操作,把這種操作稱為下沉。一個節點如果有兩個子節點,應當與兩個子節點中最大那個節點進行交換。
將新元素放到數組末尾,然後上浮到合適的位置。
從數組頂端刪除最大的元素,並將數組的最後一個元素放到頂端,並讓這個元素下沉到合適的位置。
把最大元素和當前堆中數組的最後一個元素交換位置,並且不刪除它,那麼就可以得到一個從尾到頭的遞減序列,從正向來看就是一個遞增序列,這就是堆排序。
一個堆的高度為logN,因此在堆中插入元素和刪除最大元素的復雜度都為 logN。
對於堆排序,由於要對 N 個節點進行下沉操作,因此復雜度為 NlogN。
堆排序是一種原地排序,沒有利用額外的空間。
現代操作系統很少使用堆排序,因為它無法利用局部性原理進行緩存,也就是數組元素很少和相鄰的元素進行比較和交換。
計數排序的核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中。作為一種線性時間復雜度的排序,==計數排序要求輸入的數據必須是有確定范圍的整數==。
當輸入的元素是 n 個 0 到 k 之間的整數時,它的==運行時間是 O(n + k)==。計數排序不是比較排序,排序的速度快於任何比較排序演算法。由於用來計數的數組C的長度取決於待排序數組中數據的范圍(等於待排序數組的最大值與最小值的差加上1),這使得計數排序對於數據范圍很大的數組,需要大量時間和內存。比較適合用來排序==小范圍非負整數數組的數組==。
桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在於這個映射函數的確定。為了使桶排序更加高效,我們需要做到這兩點:
同時,對於桶中元素的排序,選擇何種比較排序演算法對於性能的影響至關重要。
當輸入數據均勻分配到每一個桶時最快,當都分配到同一個桶時最慢。
實間復雜度N*K
快速排序是最快的通用排序演算法,它的內循環的指令很少,而且它還能利用緩存,因為它總是順序地訪問數據。它的運行時間近似為 ~cNlogN,這里的 c 比其它線性對數級別的排序演算法都要小。
使用三向切分快速排序,實際應用中可能出現的某些分布的輸入能夠達到線性級別,而其它排序演算法仍然需要線性對數時間。
⑩ 數據結構中關於數據查詢的演算法有哪些
數據查詢分靜態查找和動態查找:
靜態查找有:順序查找、有順序表的折半查找、分塊查
動態查找主要用二叉排序數查找。
哈希表 常用的哈希函數有;直接定址法,除留余數法,數字分析法,平方取中法,折疊法。
一般情況下這些就夠用了