『壹』 聚類演算法有哪幾種
聚類演算法有:聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。採用k均值、k中心點等演算法的聚類分析工具已被加入到許多著名的統計分析軟體包中,如SPSS、SAS等。
『貳』 有哪些常用的聚類演算法
聚類分析計算方法主要有如下幾種:
1.
劃分法(partitioning
methods)
給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K
評論
0
0
0
載入更多
『叄』 譜聚類演算法總結
聚類三種方法:k-means聚類、密度聚類、層次聚類和 譜聚類Spectrum Clustering
譜聚類 是一種基於圖論的聚類方法——將帶權無向圖劃分為兩個或兩個以上的最優子圖,使子圖內部盡量相似,而子圖間距離盡量距離較遠,以達到常見的聚類的目的。其中的最優是指最優目標函數不同,可以是割邊最小分割,也可以是分割規模差不多且割邊最小的分割。
譜聚類演算法首先根據給定的樣本數據集定義一個描述成對數據點相似度的親合矩陣,並且計算矩陣的特徵值和特徵向量 , 然後選擇合適 的特徵向量聚類不同的數據點。譜聚類演算法最初用於計算機視覺 、VLS I 設計等領域, 最近才開始用於機器學習中,並迅速成為國際上機器學習領域的研究熱點。譜聚類演算法建立在譜圖理論基礎上,其本質是 將聚類問題轉化為圖的最優劃分 問題,是一種 點對聚類演算法 ,與傳統的聚類演算法相比,它具有能在任意形狀的樣本空間上聚類且收斂於全局最優解的優點。
根據不同的圖拉普拉斯構造方法,可以得到不同的譜聚類演算法形式。 但是,這些演算法的核心步驟都是相同的:
譜聚類是從圖論中演化過來的。主要思想是把所有的數據看做是空間中的點,這些點之間可以用邊鏈接起來。距離比較遠的兩個點之間的邊權重比較低,距離較近的兩點之間權重較高,通過對所有的數據點組成的圖進行切割,讓切圖後不同的子圖間權重和盡可能低,而子圖內的邊權重和盡可能高,從而達到聚類的目的。
對於有邊連接的兩個點v i 和v j ,w ij >0,若沒有邊連接,w ij =0,度d i 定義為和它相連的所有邊的權重之和,即
譜聚類中,通過樣本點距離度量的相似矩陣S來獲得鄰接矩陣W。
構造鄰接矩陣W的方法有 ϵ -鄰近法,K鄰近法和全連接法 。
ϵ -鄰近法 :設置距離閾值ϵ,然後用歐氏距離s ij 度量任意兩點x i 和x j 的距離,即s ij =||x i -x j || 2 2
鄰接矩陣W定義為:
L=D-W,D為度矩陣,是一個對角矩陣。W為鄰接矩陣。
其性質如下:
對於無向圖G的切圖,我們的目標是將圖G(V,E)切成相互沒有連接的k個子圖,每個子圖點的集合為:A 1 ,A 2 ,..A k ,它們滿足A i ∩A j =∅,且A 1 ∪A 2 ∪...∪A k =V
對於任意兩個子圖點的集合A,B⊂V, A∩B=∅, 我們定義A和B之間的切圖權重為:
RatioCut切圖為了避免最小切圖,對每個切圖,不光考慮最小化cut(A 1 ,A 2 ,..A k ),它同時還考慮最大化每個子圖點的個數,即:
Ncut切圖和RatioCut切圖很類似,但是把Ratiocut的分母|Ai|換成vol(Ai). 由於子圖樣本的個數多並不一定權重就大,我們切圖時基於權重也更合我們的目標,因此一般來說Ncut切圖優於RatioCut切圖。
這樣我們就可以繼續按照RatioCut的思想,求出D -1/2 LD -1/2 的最小的前k個特徵值,然後求出對應的特徵向量,並標准化,得到最後的特徵矩陣F,最後對F進行一次傳統的聚類(比如K-Means)即可。
D -1/2 LD -1/2 相當於對拉普拉斯矩陣L做了一次標准化,
譜聚類主要的注意點為相似矩陣的生成方式,切圖的方式以及最後的聚類方法。
最常用的相似矩陣的生成方式是基於高斯核距離的全連接方式,最常用的切圖方式是Ncut。而到最後常用的聚類方法為K-Means。下面以Ncut總結譜聚類演算法流程。
輸入:樣本集D=(x1,x2,...,xn),相似矩陣的生成方式, 降維後的維度k1, 聚類方法,聚類後的維度k2
輸出: 簇劃分C(c1,c2,...ck2)
譜聚類演算法的主要優點有:
1)譜聚類只需要數據之間的相似度矩陣,因此對於處理稀疏數據的聚類很有效。這點傳統聚類演算法比如K-Means很難做到
2)由於使用了降維,因此在處理高維數據聚類時的復雜度比傳統聚類演算法好。
譜聚類演算法的主要缺點有:
1)如果最終聚類的維度非常高,則由於降維的幅度不夠,譜聚類的運行速度和最後的聚類效果均不好。
轉自: https://www.cnblogs.com/pinard/p/6221564.html
『肆』 數據挖掘干貨總結(四)--聚類演算法
本文共計2680字,預計閱讀時長七分鍾
聚類演算法
一 、 本質
將數據劃分到不同的類里,使相似的數據在同一類里,不相似的數據在不同類里
二 、 分類演算法用來解決什麼問題
文本聚類、圖像聚類和商品聚類,便於發現規律,以解決數據稀疏問題
三 、 聚類演算法基礎知識
1. 層次聚類 vs 非層次聚類
– 不同類之間有無包含關系
2. 硬聚類 vs 軟聚類
– 硬聚類:每個對象只屬於一個類
– 軟聚類:每個對象以某個概率屬於每個類
3. 用向量表示對象
– 每個對象用一個向量表示,可以視為高維空間的一個點
– 所有對象形成數據空間(矩陣)
– 相似度計算:Cosine、點積、質心距離
4. 用矩陣列出對象之間的距離、相似度
5. 用字典保存上述矩陣(節省空間)
D={(1,1):0,(1,2):2,(1,3):6...(5,5):0}
6. 評價方法
– 內部評價法(Internal Evalution):
• 沒有外部標准,非監督式
• 同類是否相似,跨類是否相異
DB值越小聚類效果越好,反之,越不好
– 外部評價法(External Evalution):
• 准確度(accuracy): (C11+C22) / (C11 + C12 + C21 + C22)
• 精度(Precision): C11 / (C11 + C21 )
• 召回(Recall): C11 / (C11 + C12 )
• F值(F-measure):
β表示對精度P的重視程度,越大越重視,默認設置為1,即變成了F值,F較高時則能說明聚類效果較好。
四 、 有哪些聚類演算法
主要分為 層次化聚類演算法 , 劃分式聚類演算法 , 基於密度的聚類演算法 , 基於網格的聚類演算法 , 基於模型的聚類演算法等 。
4.1 層次化聚類演算法
又稱樹聚類演算法,透過一種層次架構方式,反復將數據進行分裂或聚合。典型的有BIRCH演算法,CURE演算法,CHAMELEON演算法,Sequence data rough clustering演算法,Between groups average演算法,Furthest neighbor演算法,Neares neighbor演算法等。
凝聚型層次聚類 :
先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。
演算法流程:
1. 將每個對象看作一類,計算兩兩之間的最小距離;
2. 將距離最小的兩個類合並成一個新類;
3. 重新計算新類與所有類之間的距離;
4. 重復2、3,直到所有類最後合並成一類。
特點:
1. 演算法簡單
2. 層次用於概念聚類(生成概念、文檔層次樹)
3. 聚類對象的兩種表示法都適用
4. 處理大小不同的簇
5. 簇選取步驟在樹狀圖生成之後
4.2 劃分式聚類演算法
預先指定聚類數目或聚類中心,反復迭代逐步降低目標函數誤差值直至收斂,得到最終結果。K-means,K-modes-Huang,K-means-CP,MDS_CLUSTER, Feature weighted fuzzy clustering,CLARANS等
經典K-means:
演算法流程:
1. 隨機地選擇k個對象,每個對象初始地代表了一個簇的中心;
2. 對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;
3. 重新計算每個簇的平均值,更新為新的簇中心;
4. 不斷重復2、3,直到准則函數收斂。
特點:
1.K的選擇
2.中心點的選擇
– 隨機
– 多輪隨機:選擇最小的WCSS
3.優點
– 演算法簡單、有效
– 時間復雜度:O(nkt)
4.缺點
– 不適於處理球面數據
– 密度、大小不同的聚類,受K的限制,難於發現自然的聚類
4.3 基於模型的聚類演算法
為每簇假定了一個模型,尋找數據對給定模型的最佳擬合,同一」類「的數據屬於同一種概率分布,即假設數據是根據潛在的概率分布生成的。主要有基於統計學模型的方法和基於神經網路模型的方法,尤其以基於概率模型的方法居多。一個基於模型的演算法可能通過構建反應數據點空間分布的密度函數來定位聚類。基於模型的聚類試圖優化給定的數據和某些數據模型之間的適應性。
SOM 神經網路演算法 :
該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。
SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。
演算法流程:
1. 網路初始化,對輸出層每個節點權重賦初值;
2. 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量;
3. 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏;
4. 提供新樣本、進行訓練;
5. 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。
4.4 基於密度聚類演算法
只要鄰近區域的密度(對象或數據點的數目)超過某個閾值,就繼續聚類,擅於解決不規則形狀的聚類問題,廣泛應用於空間信息處理,SGC,GCHL,DBSCAN演算法、OPTICS演算法、DENCLUE演算法。
DBSCAN:
對於集中區域效果較好,為了發現任意形狀的簇,這類方法將簇看做是數據空間中被低密度區域分割開的稠密對象區域;一種基於高密度連通區域的基於密度的聚類方法,該演算法將具有足夠高密度的區域劃分為簇,並在具有雜訊的空間數據中發現任意形狀的簇。
4.5 基於網格的聚類演算法
基於網格的方法把對象空間量化為有限數目的單元,形成一個網格結構。所有的聚類操作都在這個網格結構(即量化空間)上進行。這種方法的主要優點是它的處理 速度很快,其處理速度獨立於數據對象的數目,只與量化空間中每一維的單元數目有關。但這種演算法效率的提高是以聚類結果的精確性為代價的。經常與基於密度的演算法結合使用。代表演算法有STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法等。
『伍』 有哪些常用的聚類演算法
【聚類】聚類分析是直接比較各對象之間的性質,根據在對象屬性中發現的描述對象及其關系的信息,將數據對象分組。其目標是,組內的對象相互之間是相似的(相關的),而不同組中的對象是不同的(不相關的)。組內的相似性(同質性)越大,組間差別越大,聚類就越好。
聚類的目標是通過對無標記訓練樣本的學習來揭示數據的內在性質及規律,是無監督學習過程。在無監督學習中,訓練樣本標記信息是未知的。聚類試圖將數據集中的樣本劃分為若干個通常不相交的子集,每個子集稱為一個「簇」,每個簇可能對應於一些潛在的類別,這些類別概念對聚類演算法而言事先是未知的,聚類過程僅能自動形成簇結構,簇所對應的概念語義需要由使用者來把握和命名。
『陸』 聚類演算法有哪些分類
聚類演算法的分類有:
1、劃分法
劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K小於N。而且這K個分組滿足下列條件:
(1) 每一個分組至少包含一個數據紀錄;
(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);
2、層次法
層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。
例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。
3、密度演算法
基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
4、圖論聚類法
圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。
5、網格演算法
基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。
代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;
6、模型演算法
基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。
通常有兩種嘗試方向:統計的方案和神經網路的方案。
(6)聚類演算法總結哪些聚類擴展閱讀:
聚類演算法的要求:
1、可伸縮性
許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。
我們需要具有高度可伸縮性的聚類演算法。
2、不同屬性
許多演算法被設計用來聚類數值類型的數據。但是,應用可能要求聚類其他類型的數據,如二元類型(binary),分類/標稱類型(categorical/nominal),序數型(ordinal)數據,或者這些數據類型的混合。
3、任意形狀
許多聚類演算法基於歐幾里得或者曼哈頓距離度量來決定聚類。基於這樣的距離度量的演算法趨向於發現具有相近尺度和密度的球狀簇。但是,一個簇可能是任意形狀的。提出能發現任意形狀簇的演算法是很重要的。
4、領域最小化
許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。
5、處理「雜訊」
絕大多數現實中的資料庫都包含了孤立點,缺失,或者錯誤的數據。一些聚類演算法對於這樣的數據敏感,可能導致低質量的聚類結果。
6、記錄順序
一些聚類演算法對於輸入數據的順序是敏感的。例如,同一個數據集合,當以不同的順序交給同一個演算法時,可能生成差別很大的聚類結果。開發對數據輸入順序不敏感的演算法具有重要的意義。
『柒』 常用的聚類方法有哪幾種
聚類分析的演算法可以分為劃分法、層次法、基於密度的方法、基於網格的方法、基於模型的方法。
1、劃分法,給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。
2、層次法,這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。
3、基於密度的方法,基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
4、圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。
5、基於網格的方法,這種方法首先將數據空間劃分成為有限個單元的網格結構,所有的處理都是以單個的單元為對象的。
6、基於模型的方法,基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。
(7)聚類演算法總結哪些聚類擴展閱讀:
在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。
它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。
許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。
許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。
『捌』 常見的幾種聚類方法
作為無監督學習的一個重要方法,聚類的思想就是把屬性相似的樣本歸到一類。對於每一個數據點,我們可以把它歸到一個特定的類,同時每個類之間的所有數據點在某種程度上有著共性,比如空間位置接近等特性。多用於數據挖掘、數據分析等一些領域。
下面簡單介紹一下幾種比較常見的聚類演算法。
K-means聚類方法大家應該都聽說過,在各種機器學習書籍教程中也是無監督學習部分非常經典的例子。其核心主要為兩個部分:其一是K,K在這里代表著類的數目,我們要把數據聚為多少類。其二是means,表示在每一次計算聚類中心的時候採取的是計算平均值。
我們假設樣本總數為n,K-means聚類法可以簡單表示為一下幾個步驟:
1. 在樣本中隨機選取K個點,作為每一類的中心點。
2. 計算剩下 n-K 個樣本點到每個聚類中心的距離(距離有很多種,假設這里採用歐式距離)。對於每一個樣本點,將它歸到和他距離最近的聚類中心所屬的類。
3. 重新計算每個聚類中心的位置:步驟 2 中得到的結果是 n 個點都有自己所屬的類,將每一個類內的所有點取平均值(這里假設是二維空間,即對 x 和 y 坐標分別取平均),計算出新的聚類中心。
4. 重復步驟 2 和 3 的操作,直到所有的聚類中心不再改變。
分析一下,演算法本身的思想並不難。但是K值如何選擇就見仁見智了,這里可以引入類內距離 J,每一類都會對應一個 J 值,其計算就是把類內所有點之間的距離累加起來。我們肯定希望 J 越小越好,因為小的類內間距代表這一類樣本的相似程度更高(離得更近)。
如果 K 很小,則聚類可能不徹底,即隔著很遠的兩波點也被聚為一類,會使 J 變得很大;相反的,過大的 K 雖然會降低類內間距 J ,但有時候分得過細會對數據的泛化性造成損害,沒有必要弄這么多類。因此 K 的選擇應該是具體問題具體分析。
還有一個問題就是初始聚類中心的選擇。不當的初始化會給演算法的收斂帶來更多的計算開銷。試想一下,如果一開始把離得很近的 K 個點都設為聚類中心,那麼演算法的迭代次數會更多一些。
HAC也是一種比較經典的聚類方法,其主要思想是先把每一個樣本點歸為一類,再通過計算類間的距離,來對最相似或者距離最近的類進行歸並,合成位一個新的類。反復循環,直到滿足特定的迭代條件即可。
HAC的核心思想主要分為如下幾個步驟:
1. 將每個樣本點都視作一類,一共有n個類。
2. 計算所有類之間兩兩的類間距離(類間距離計算方式多種多樣,可以取最近、最遠、找重心等等,這里不做詳述),然後把距離最近的兩個類進行合並,組成一個新的更大的類。
3. 重復步驟 2 中的操作,直到達到特定的迭代條件(例如當前類的數目是初始時的 10% ,即 90% 的類都得到了合並;最小的類間距離大於預先設定的閾值等等),演算法結束。
和K-means演算法中的 K 值選取一樣,HAC中如何選擇迭代的終止條件也是一個比較復雜的問題,需要根據一定的經驗,並且具體問題具體分析。
這種方法的核心思想是先計算出聚類中心,再把所有的樣本點按照就近原則,歸到離自身最近的聚類中心所對應的類。最大最小是指在所有的最小距離中選取最大的。其主要的演算法步驟如下:
1. 隨機選擇一個點,作為第一個類的聚類中心 Z1。
2. 選擇與步驟 1 中距離最遠的樣本點,作為第二個類的聚類中心 Z2。
3. 逐個計算每個點到所有聚類中心的距離,並把所有的最短的距離記錄下來。
4. 在這些最短距離中挑選最大的值,如果這個最大值大於 ,其中 ,那麼將這個最大距離所對應的另一個樣本點作為新的聚類中心;否則整個演算法結束。
5. 重復步驟 3 和 4 的操作,直到 4 中不再出現新的聚類中心。
6. 將所有的樣本歸到與他自身最近的聚類中心。
參考:
https://www.jianshu.com/p/4f032dccdcef
https://www.jianshu.com/p/bbac132b15a5
https://blog.csdn.net/u011511601/article/details/81951939
『玖』 聚類演算法有哪幾種
聚類分析計算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基於密度的方法(density-based method)、基於網格的方法(grid-based method)、基於模型的方法(model-based method)等。其中,前兩種演算法是利用統計學定義的距離進行度量。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。
其流程如下:
(1)從 n個數據對象任意選擇 k 個對象作為初始聚類中心;
(2)根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;並根據最小距離重新對相應對象進行劃分;
(3)重新計算每個(有變化)聚類的均值(中心對象);
(4)循環(2)、(3)直到每個聚類不再發生變化為止(標准測量函數收斂)。
優點: 本演算法確定的K個劃分到達平方誤差最小。當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,計算的復雜度為 O(NKt),其中N是數據對象的數目,t是迭代的次數。
缺點:
1. K 是事先給定的,但非常難以選定;
2. 初始聚類中心的選擇對聚類結果有較大的影響。
『拾』 聚類演算法有哪些
聚類方法分為以下幾類:
分割方法:K-means
分層次方法:ROCK 、 Chemeleon
基於密度的方法:DBSCAN
基於網格的方法:STING 、 WaveCluster
等等