導航:首頁 > 源碼編譯 > 中國計演算法則

中國計演算法則

發布時間:2022-09-14 22:26:49

㈠ ★計演算法則★

、整數加、減計演算法則:
1)要把相同數位對齊,再把相同計數單位上的數相加或相減;
2)哪一位滿十就向前一位進。

2、小數加、減法的計演算法則:
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
(得數的小數部分末尾有0,一般要把0去掉。)

3、分數加、減計演算法則:
1)分母相同時,只把分子相加、減,分母不變;
2)分母不相同時,要先通分成同分母分數再相加、減。

4、整數乘法法則:
1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)

5、小數乘法法則:
1)按整數乘法的法則算出積;
2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。
3)得數的小數部分末尾有0,一般要把0去掉。

6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。

7、整數的除法法則
1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
2)除到被除數的哪一位,就在那一位上面寫上商;
3)每次除後餘下的數必須比除數小。

8、除數是整數的小數除法法則:
1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;
2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。

9、除數是小數的小數除法法則:
1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;
2)然後按照除數是整數的小數除法來除

10、分數的除法法則:
1)用被除數的分子與除數的分母相乘作為分子;
2)用被除數的分母與除數的分子相乘作為分母。

㈡ 乘除法四則運算的計算方法是什麼(小數,整數,分數的)

1、整數加、減計演算法則:

1)要把相同數位對齊,再把相同計數單位上的數相加或相減;

2)哪一位滿十就向前一位進。
2、小數加、減法的計演算法則:

1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),

2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。

(得數的小數部分末尾有0,一般要把0去掉。)
3、分數加、減計演算法則:

1)分母相同時,只把分子相加、減,分母不變;

2)分母不相同時,要先通分成同分母分數再相加、減。
4、整數乘法法則:

1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;

2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
5、小數乘法法則:

1)按整數乘法的法則算出積;

2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。

3)得數的小數部分末尾有0,一般要把0去掉。
6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
7、整數的除法法則

1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;

2)除到被除數的哪一位,就在那一位上面寫上商;

3)每次除後餘下的數必須比除數小。
8、除數是整數的小數除法法則:

1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;

2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。
9、除數是小數的小數除法法則:

1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;

2)然後按照除數是整數的小數除法來除
10、分數的除法法則:

1)用被除數的分子與除數的分母相乘作為分子;

2)用被除數的分母與除數的分子相乘作為分母。
數的范圍
運算名稱
整數
小數
分數
加法
把兩個數合並成一個數的運算。
與整數加法的意義相同。
與整數加法的意義相同。
減法
已知兩個數的和與其中的一個加數,求另一個加數的運算。
與整數減法的意義相同。
與整數減法的意義相同。
乘法
求幾個相同加數的和的簡便運算。
小數乘以整數與整數乘法的意義相同。
一個數乘以小數,就是求這個數的十分之幾、百分之幾……是多少。
分數乘以整數與整數乘法的意義相同。
一個數乘以分數,就是求這個數的幾分之幾是多少。
除法
已知兩個因數的積與其中一個因數,求另一個因數的運算。
與整數除法的意義相同。
與整數除法的意義相同。

㈢ 數學計演算法則

運演算法則
1. 整數加法計演算法則:
相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。
2. 整數減法計演算法則:
相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合並在一起,再減。
3. 整數乘法計演算法則:
先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然後把各次乘得的數加起來。
4. 整數除法計演算法則:
先從被除數的高位除起,除數是幾位數,就看被除數的前幾位; 如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補「0」佔位。每次除得的余數要小於除數。
5. 小數乘法法則:
先按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用「0」補足。
6. 除數是整數的小數除法計演算法則:
先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。
7. 除數是小數的除法計演算法則:
先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補「0」),然後按照除數是整數的除法法則進行計算。
8. 同分母分數加減法計算方法:
同分母分數相加減,只把分子相加減,分母不變。
9. 異分母分數加減法計算方法:
先通分,然後按照同分母分數加減法的的法則進行計算。
10. 帶分數加減法的計算方法:
整數部分和分數部分分別相加減,再把所得的數合並起來。
11. 分數乘法的計演算法則:
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。
12. 分數除法的計演算法則:
甲數除以乙數(0除外),等於甲數乘乙數的倒數。

㈣ 整理乘法計演算法則

  一箱飲料24瓶,9箱飲料一共多少瓶?這是三年級上冊的數學教材裡面的一道例題,目的在於探討多位數乘一位數的計演算法則。 

這節課裡面,同以往的課比較起來,最不同的地方在於有進位。而且進位是超過了10。換言之,教材是這樣安排多位數乘一位數的。

1.先是口算整十整百數乘一位數。比如:20×3=60,兩個十乘3等於6個十,也就是60,然後,根據這個算理,推導出計算技巧,也就是我們說的演算法——先用0前面的數去乘一位數,然後再補上0。乘數中有幾個0,就在積的末尾補上幾個0.(但是,部分孩子會產生這樣的錯誤,比如:200×5=100,他不知道二五一十已經有一個0啦。)

2.在口算整十整百數乘一位數後,安排了不進位的幾十幾乘一位數的口算,比如:12×3=36,就是把幾十幾乘一位數拆分成整十數乘一位數加一位數乘一位數;然後,進一步用豎式記錄這種口算的方法,就是筆算(列豎式計算。)

3.在孩子學會了列豎式計算不進位的兩位數乘一位數以後,再教學進位的兩位數乘一位數。比如:16×3,而這個時候的教學,與上節課最大的不同就是需要處理這個進位的1,依然是藉助小棒突破算理,然後,在追求簡潔的情況下,精簡了豎式的某些步驟,進而得到了豎式計算的標準式。然後,脫離算理,訓練計算的技能,這個時候,孩子更多的是在依據演算法在訓練;進而也能說明,為什麼有的孩子在不明白算理的情形下,依然能夠計算正確。因為,這個環節算理已經融入到演算法里頭,演算法處在了表層。而算理則在一定的程度上被忽視了。對於經歷了整個這個算理與演算法相容的探討過程的孩子,自然能夠明白算理,掌握演算法。(不過,計算的時候,依然需要認真仔細。就如同,在生活中,並不是說,你明白了很多道理,就能過的很舒適一樣。理與法要相融洽,才能發揮最大的作用。)當然,對於某些沒有經過算理理解的人,或者說老師講了這個算理,但是,由於各種原因,卻沒有主動經歷這個過程的孩子,在計算的時候,則只能靠演算法來完成,而且,只要認真、仔細則也能獲得很好的成績。就是某些人說的,我不明白其中的道理,但是,我的行為卻在一定的程度上吻合某些道理。

4.然後就是這節課了,兩位數乘一位數有進位,而且進位還不只是1,而是超過了一十,來到了幾十。比如這節課的24×9,當4×9=36的時候,在積的個位寫6,而那3個十需要向前十位進3,怎麼辦呢?無非就是原來是進1,現在寫成進3而已。

再在此基礎上,類推到多位數乘一位數,得到多位數乘一位數的乘法法則:從各位起,用一位數依次去乘多位數的每一位,哪位上乘得的積滿幾十,就要向前一位進幾……

到此,三年級上冊多位數乘一位數的乘法告一段落,來到三年級下冊,教學多位數乘兩位數的乘法教學。

兩位數乘兩位數的筆算乘法教學,分為兩個層次,一是不進位的兩位數乘法,比如:14×12,教學時根據一定的直觀原理,把12×14放在具體的情境中來教學,並且利用點子圖來輔助由直觀到抽象的轉變,點子圖在這里起到了半直觀半抽象的作用。

再就是來到這節課要講的兩位數乘兩位數的進位乘法。比如:48×37.

教學時,先利用估算的方法確定48×37的得數范圍是在最小值是1200與最大值2000之間,如果,計算出來的得數沒有在這段范圍裡面,則計算一定是錯誤的。在這裡面,不能保證正確。因為,還有可能,在筆算的時候,出現某些技能上的錯誤。

因此,自然來到討論筆算環節。這樣筆算呢?列豎式,相同數位對齊,先用37中的7去乘另一個乘數48,則是屬於以往多位數乘一位數的知識范疇,孩子自然會算,因此,教材就把這一步直接寫出來了,然後輪到37中的3去分別乘48中的每一個數字,這是學習的難點。這個時候,教材是這樣安排的——接下來怎樣算?

接下來,應該是用3去乘48中的4和8,就是兩位數乘一位數的計算技能,唯一讓孩子感到困惑的就是三八二十四,這個4應該寫在哪裡呢?是十位還是個位呢?理由呢?

因此,本節課重點要解決的就是這個問題。引導孩子明白37中的3其實表示的是30,30乘8應該是240,先寫4的話,這個4表示的40,應該寫在十位上。突破了這個難點後,其他就比較順利了……

此後,可以上升到純方法層面上,兩位數乘兩位數,先用一個乘數的個位分別去乘另一個乘數,得數要同個位對齊,(因為,這個時候表示的是幾個一,自然是寫在個位,或者說,這是以前的知識,孩子已經默會了。)再用乘數的十位去乘另一個乘數,得數要同十位對齊;哪一位上的乘積滿幾十,就要向那一位的前一位進幾,最後把兩部分的乘積相加。

數學知識是螺旋式慢慢上升的,每次,總是比前面的知識多了一點點而已,但是,就是這無數次的一點點,最終形成了浩瀚的數學知識。每一次教學時,就是要講解講透這一點點。當然,這還是默認孩子以前的知識全部會做的前提下。現實是,部分孩子以前的知識還完全不會,或者是一知半解。進而也就知道了數學教學的難度在哪裡。數學一旦出現斷層,則很難修復這個斷層。因為,數學的邏輯性很強很強。我們就是要通過數學學會邏輯思維以及理性精神……

㈤ 你還知道哪些中國古代計算方法一記算方法

在人類文明發展的歷史上中國曾經在早期計算工具的發明創造方面寫過光輝的一頁。遠在商代,中國就創造了十進制記數方法,領先於世界千餘年。

到了周代,發明了當時最先進的計算工具——算籌。這是一種用竹、木或骨製成的顏色不同的小棍。計算每一個數學問題時,通常編出一套歌訣形式的演算法,一邊計算,一邊不斷地重新布棍。中國古代數學家祖沖之,就是用算籌計算出圓周率在3.1415926和3.1415927之間。這一結果比西方早一千年。

珠算盤是中國的又一獨創,也是計算工具發展史上的第一項重大發明。這種輕巧靈活、攜帶方便、與人民生活關系密切的計算工具,最初大約出現於漢朝,到元朝時漸趨成熟。珠算盤不僅對中國經濟的發展起過有益的作用,而且傳到日本、朝鮮、東南亞等地區,經受了歷史的考驗,至今仍在使用。

中國發明創造指南車、水運渾象儀、記里鼓車、提花機等,不僅對自動控制機械的發展有卓越的貢獻,而且對計算工具的演進產生了直接或間接的影響。例如,張衡製作的水運渾象儀,可以自動地與地球運轉同步,後經唐、宋兩代的改進,遂成為世界上最早的天文鍾

記里鼓車則是世界上最早的自動計數裝置。提花機原理對計算機程序控制的發展有過間接的影響。中國古代用陽、陰兩爻構成八卦,也對計算技術的發展有過直接的影響。萊布尼茲寫過研究八卦的論文,系統地提出了二進制算術運演算法則。他認為,世界上最早的二進製表示法就是中國的八卦。

㈥ 小學數學所有計演算法則。

四則運算:加法、減法、乘法、除法
乘法引申運算:冪運算、對數運算
除法引申運算:正弦、餘弦、正切、餘切、正割、餘割
圓的定義:弧度制運算
所有一元一次方程、多元多次方程、平面幾何、立體幾何、解析幾何都不會離開以上基本運演算法則及其引申運算。

㈦ 分數的加減乘除運演算法則是什麼

分數加、減計演算法則:

1、分母相同時,只把分子相加、減,分母不變;

2、分母不相同時,要先通分成同分母分數再相加、減。

分數乘法法則:

把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。

分數的除法法則:

1、用被除數的分子與除數的分母相乘作為分子;

2、用被除數的分母與除數的分子相乘作為分母。

(7)中國計演算法則擴展閱讀

分數的意義

一個物體,一個圖形,一個計量單位,都可看作單位「1」。把單位「1」平均分成幾份,表示這樣一份或幾份的數叫做分數。

在分數里,表示把單位「1」平均分成多少份的叫做分母,表示有這樣多少份的叫做分子;其中的一份叫做分數單位。

百分數與分數的區別:

1、意義不同,百分數只表示兩個數的倍比關系,不能帶單位名稱;分數既可以表示具體的數,又可以表示兩個數的關系,表示具體數時可帶單位名稱。

2、百分數不可以約分,而分數一般通過約分化成最簡分數。

3、任何一個百分數都可以寫成分母是100的分數,而分母是100的分數並不都具有百分數的意義。

4、應用范圍的不同,百分數在生產和生活中,常用於調查、統計、分析和比較,而分數常常在計算、測量中得不到整數結果時使用。

㈧ 古代的人如何運算數學的加減乘除

算籌

根據史書的記載和考古材料的發現,古代的算籌實際上是一根根同樣長短和粗細的小棍子,一般長為13--14cm,徑粗0.2~0.3cm,多用竹子製成,也有用木頭、獸骨、象牙、金屬等材料製成的,大約二百七十幾枚為一束,放在一個布袋裡,系在腰部隨身攜帶。需要記數和計算的時候,就把它們取出來,放在桌上、炕上或地上都能擺弄。別看這些都是一根根不起眼的小棍子,在中國數學史上它們卻是立有大功的。而它們的發明,也同樣經歷了一個漫長的歷史發展過程。

在算籌計數法中,以縱橫兩種排列方式來表示單位數目的,其中1-5均分別以縱橫方式排列相應數目的算籌來表示,6-9則以上面的算籌再加下面相應的算籌來表示。表示多位數時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空。這種計數法遵循十進位制。

算籌的出現年代已經不可考,但據史料推測,算籌最晚出現在春秋晚期戰國初年(公元前722年~公元前221年),一直到算盤發明推廣之前都是中國最重要的計算工具。

算籌的發明就是在以上這些記數方法的歷史發展中逐漸產生的。它最早出現在何時,現在已經不可查考了,但至遲到春秋戰國;算籌的使用已經非常普遍了。前面說過,算籌是一根根同樣長短和粗細的小棍子,那麼怎樣用這些小棍子來表示各種各樣的數目呢?

那麼為什麼又要有縱式和橫式兩種不同的擺法呢?這就是因為十進位制的需要了。所謂十進位制,又稱十進位值制,包含有兩方面的含義。其一是"十進制",即每滿十數進一個單位,十個一進為十,十個十進為百,十個百進為千……其二是"位值制,即每個數碼所表示的數值,不僅取決於這個數碼本身,而且取決於它在記數中所處的位置。如同樣是一個數碼"2",放在個位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我國商代的文字記數系統中,就已經有了十進位值制的蔭芽,到了算籌記數和運算時,就更是標準的十進位值制了。

按照中國古代的籌算規則,算籌記數的表示方法為:個位用縱式,十位用橫式,百位再用縱式,千位再用橫式,萬位再用縱式……這樣從右到左,縱橫相間,以此類推,就可以用算籌表示出任意大的自然數了。由於它位與位之間的縱橫變換,且每一位都有固定的擺法,所以既不會混淆,也不會錯位。毫無疑問,這樣一種算籌記數法和現代通行的十進位制記數法是完全一致的。

中國古代十進位制的算籌記數法在世界數學史上是一個偉大的創造。把它與世界其他古老民族的記數法作一比較,其優越性是顯而易見的。古羅馬的數字系統沒有位值制,只有七個基本符號,如要記稍大一點的數目就相當繁難。古美洲瑪雅人雖然懂得位值制,但用的是20進位;古巴比倫人也知道位值制,但用的是60進位。20進位至少需要19個數碼,60進位則需要59個數碼,這就使記數和運算變得十分繁復,遠不如只用9個數碼便可表示任意自然數的十進位制來得簡捷方便。中國古代數學之所以在計算方面取得許多卓越的成就,在一定程度上應該歸功於這一符合十進位制的算籌記數法。馬克思在他的《數學手稿》一書中稱十進位記數法為"最妙的發明之一",確實是一點也不過分的。

二進制思想的開創國

著名的哲學家數學家萊布尼茨(1646-1716)發明了對現代計算機系統有著重要意義的二進制,不過他認為在此之前,中國的《易經》中已經提到了有關二進制的初步思想。當代的許多科學家認為易經中並不含有復雜的二進制思想,可是這本中國古籍中的一些基本思想和二進制在很大程度上仍然有著千絲萬縷的聯系。

元始的《靈寶經》裡面把陰陽定義為陽是自冬至到夏至的上升的氣,陰為從夏至到冬至下降的氣,這是對地球周期運動的最簡練認識。陰陽是一種物質認識,後來轉化為思想方式,反者道之動等等,都是這種思想的表現。從而開創了對立統一的思想方式,實際上計算機的電子脈沖的思想是與之一致的,采樣定律也是與之一致的。

《易經》是我國伏羲、周文王等當政者積累觀天測算經驗而成的關於天象氣象和人變易的經典,從八卦到六十四卦,就是二進制三位到六位表達,上世紀八十年代還有四位計算機,可以說,周文王的六十四卦在表達能力上已經高於四位計算機。

十進制的使用

《卜辭》中記載說,商代的人們已經學會用一、二、三、四、五、六、七、八、九、十、百、千、萬這13個單字記十萬以內的任何數字,但是現在能夠證實的當時最大的數字是三萬。甲骨卜辭中還有奇數、偶數和倍數的概念。

十進位位值制記數法包括十進位和位值制兩條原則,"十進"即滿十進一;"位值"則是同一個數位在不同的位置上所表示的數值也就不同,如三位數"111",右邊的"1"在個位上表示1個一,中間的"1"在十位上就表示1個十,左邊的"1"在百位上則表示1個百。這樣,就使極為困難的整數表示和演算變得如此簡便易行,以至於人們往往忽略它對數學發展所起的關鍵作用。

我們有個成語叫"屈指可數",說明古代人數數確實是離不開手指的,而一般人的手指恰好有十個。因此十進制的使用似乎應該是極其自然的事。但實際情況並不盡然。在文明古國巴比倫使用的是60進位制(這一進位制到現在仍留有痕跡,如一分=60秒等)另外還有採用二十進位制的。古代埃及倒是很早就用10進位制,但他們卻不知道位值制。所謂位值制就是一個數碼表示什麼數,要看它所在的位置而定。位值制是千百年來人類智慧的結晶。零是位值制記數法的精要所在。但它的出現卻並非易事。我國是最早使用十進制記數法,且認識到進位制的國家。我們的口語或文字表達的數字也遵守這一原則,比如一百二十七。同時我們對0的認識最早。

十進制是中國人民的一項傑出創造,在世界數學史上有重要意義。著名的英國科學史學家李約瑟教授曾對中國商代記數法予以很高的評價,"如果沒有這種十進制,就幾乎不可能出現我們現在這個統一化的世界了",李約瑟說"總的說來,商代的數字系統比同一時代的古巴比倫和古埃及更為先進更為科學。"

分數和小數的最早運用

分數的應用

最初分數的出現,並非由除法而來。分數被看作一個整體的一部分。"分"在漢語中有"分開""分割"之意。後來運算過程中也出現了分數,它表示兩整數比。分數的加減乘除運算我們小學就已完全掌握了。很簡單,是不是?不過在七、八百年以前的歐洲,如果你有這種水平那麼就可以說相當了不起了。那時精通自然數的四則運算就已達到了學者水平。至於分數,對當時人來說簡直難於上青天。德國有句諺語形容一個人陷入絕境,就說:"掉到分數里去了"。為什麼會如此呢?這都是笨拙的記數法導致的。在我國古代,《九章算術》中就有了系統的分數運算方法,這比歐洲大約早1400年。

西漢時期,張蒼、耿壽昌等學者整理、刪補自秦代以來的數學知識,編成了《九章算術》。在這本數學經典的《方田》章中,提出了完整的分數運演算法則。

從後來劉徽所作的《九章算術注》可以知道,在《九章算術》中,講到約分、合分(分數加法)、減分(分數減法)、乘分(分數乘法)、除分(分數除法)的法則,與我們現在的分數運演算法則完全相同。另外,還記載了課分(比較分數大小)、平分(求分數的平均值)等關於分數的知識,是世界上最早的系統敘述分數的著作。

分數運算,大約在15世紀才在歐洲流行。歐洲人普遍認為,這種演算法起源於印度。實際上,印度在七世紀婆羅門笈多的著作中才開始有分數運演算法則,這些法則都與《九章算術》中介紹的法則相同。而劉徽的《九章算術注》成書於魏景元四年(263年),所以,即使與劉徽的時代相比,我們也要比印度早400年左右。

小數的最早使用

劉徽在《九章算術注》中介紹,開方不盡時用十進分數(徽數,即小數)去逼近,首先提出了關於十進小數的概念。到公元 1300年前後,元代劉瑾所著《律呂成書》中,已將106368.6312寫成

把小數部分降低一行寫在整數部分的後邊。而西方的斯台汶直到1585年才有十進小數的概念,且他的表示方法遠不如中國先進,如上述的小數,他記成或106368。

九九表的使用

作為啟蒙教材,我們都背過九九乘法表:一一得一、一二得二……九九八十一。而古代是從"九九八十一"開始,因此稱"九九表"。九九表的使用,對於完成乘法是大有幫助的。齊恆公納賢的故事說明,到公元前7世紀時,九九歌訣已不希罕。也許有人認為這種成績不值一提。但在古代埃及作乘法卻要用倍乘的方式呢。舉個例子。如算23×13,就需要從23開始,加倍得到23×2,23×4,23×8,然後注意到13=1+4+8,於是23+23×4+23×8加起來的結果就是23×13。從比較中不難看出使用九九表的優越性了。

根據考古專家在湖南張家界古人堤漢代遺址出土的簡牘上發現的漢代"九九乘法表",竟與現今生活中使用的乘法口訣表有著驚人的一致。這枚記載有"九九乘法表"的簡牘是木質的,大約有22厘米長,殘損比較嚴重。此前在湘西里耶古城出土的一枚秦簡上也發現了距今2200多年的乘法口訣表,並被考證為中國現今發現的最早的乘法口訣表實物。

除了里耶秦簡外,與張家界古人堤遺址發現的這枚簡牘樣式基本一致的"九九乘法表"還曾在樓蘭文書中見到過,那是寫在兩張殘紙上的九九乘法表,為瑞典探險家斯文赫定在上個世紀初期發掘。

乘法表在古代並非中國一家獨有,古巴比倫的泥版書上也有乘法表。但漢字(包括數目字)單音節發聲的特點,使之讀起來朗朗上口;後來發展起來的珠算口訣也承繼了這一特點,對於運算速度的提高和演算法的改進起到一定作用。

負數的使用

人們在解方程或其它數的運算過程中,往往要碰到從較小數減去較大數的情形,另外,還遇到了增加與減小,盈餘與虧損等互為相反意義的量,這樣,人們自然地引進了負數。

負數的引進,是中國古代數學家對數學的一個巨大貢獻。在我國古代秦、漢時期的算經《九章算術》的第八章"方程"中,就自由地引入了負數,如負數出現在方程的系數和常數項中,把"賣(收入錢)"作為正,則"買(付出錢)"作為負,把"余錢"作為正,則"不足錢"作為負。在關於糧谷計算的問題中,是以益實(增加糧谷)為正,損實(減少糧谷)為負等,並且該書還指出:"兩算得失相反,要以正負以名之"。當時是用算籌來進行計算的,所以在算籌中,相應地規定以紅籌為正,黑籌為負;或將算籌直列作正,斜置作負。這樣,遇到具有相反意義的量,就能用正負數明確地區別了。

在《九章算術》中,除了引進正負數的概念外,還完整地記載了正負數的運演算法則,實際上是正負數加減法的運演算法則,也就是書中解方程時用到的"正負術"即"同名相除,異名相益,正無入正之,負無入負之;其異名相除,同名相益,正無入正之,負無入負之。"這段話的前四句說的是正負數減法法則,後四句說的是正負數加法法則。它的意思是:同號兩數相減,等於其絕對值相減;異號兩數相減,等於其絕對值相加;零減正數得負數,零減負數得正數。異號兩數相加,等於其絕對值相減;同號兩數相加,等於其絕對值相加;零加正數得正數,零加負數得負數,當然,從現代數學觀點看,古書中的文字敘述還不夠嚴謹,但直到公元17世紀以前,這還是正負數加減運算最完整的敘述。

在國外,負數出現得很晚,直至公元1150年(比《九章算術》成書晚l千多年),印度人巴土卡洛首先提到了負數,而且在公元17世紀以前,許多數學家一直採取不承認的態度。如法國大數學家韋達,盡管在代數方面作出了巨大貢獻,但他在解方程時卻極力迴避負數,並把負根統統捨去。有許多數學家由於把零看作"沒有",他們不能理解比"沒有"還要"少"的現象,因而認為負數是"荒謬的"。直到17世紀,笛卡兒創立了坐標系,負數獲得了幾何解釋和實際意義,才逐漸得到了公認。

從上面可以看出,負數的引進,是我國古代數學家貢獻給世界數學的一份寶貴財富。負數概念引進後,整數集和有理數集就完整地形成了。

圓周率的計算

圓周率是數學中最重要的常數之一。對它的計算,可以作為顯示出一個國家古代數學發展的水平的尺度之一。而我國古代數學在這方面取得了令世人矚目的成績。

我國古代最初把圓周率取作3,這雖應用起來簡便,但太不準確。在求准確圓周率值的征途中,首先邁出關鍵一步的是劉徽。他創立割圓術,用圓內接正多邊形無限逼近圓而求取圓周率值。用這種方法他求得圓周率的近似值為3.14,也有人認為他得到了更好的結果:3.1416。青出於藍,而勝於藍。後繼者祖沖之利用割圓術得出了正確的小數點後七位。而且他還給出了約率與密率。密率的發現是數學史上卓越的成就,保持了一千多年的世界紀錄,是一項空前傑作。

㈨ 加減乘除的計演算法則

你好

加減乘除的計演算法則就是先乘除,後加減。有括弧的先算括弧里的。括弧里也是先乘除,後加減。

閱讀全文

與中國計演算法則相關的資料

熱點內容
上海女程序員上班被偷 瀏覽:377
如何添加後台app 瀏覽:350
中國移動機頂盒時鍾伺服器地址 瀏覽:943
如何開發app流程 瀏覽:427
哈爾濱編程培訓課程 瀏覽:722
編程語言執行速度排行 瀏覽:174
啟辰原廠導航如何裝app 瀏覽:840
jsp項目優秀源碼 瀏覽:757
如何查看電腦web伺服器埠號 瀏覽:901
小區物業管理系統編程源碼 瀏覽:95
王城戰爭為什麼無法獲取伺服器列表 瀏覽:804
劍橋商務英語pdf 瀏覽:480
伺服器如何不休眠 瀏覽:800
微機原理及介面技術編程 瀏覽:204
解壓迷你游戲機手柄 瀏覽:553
androidrtsp框架 瀏覽:545
阿里女程序員內網徵婚 瀏覽:78
比例閥放大器接plc編程 瀏覽:852
java表示二進制 瀏覽:394
數控銑床外輪廓編程 瀏覽:91