導航:首頁 > 源碼編譯 > 圖像感知哈希演算法

圖像感知哈希演算法

發布時間:2022-09-17 22:30:05

Ⅰ 相似圖片檢測:感知哈希演算法之dHash的python實現

某些情況下,我們需要檢測圖片之間的相似性,進行我們需要的處理:刪除同一張圖片、標記盜版等。
如何判斷是同一張圖片呢?最簡單的方法是使用加密哈希(例如MD5, SHA-1)判斷。但是局限性非常大。例如一個txt文檔,其MD5值是根據這個txt的二進制數據計算的,如果是這個txt文檔的完全復製版,那他們的MD5值是完全相同的。但是,一旦改變副本的內容,哪怕只是副本的縮進格式,其MD5也會天差地別。因此加密哈希只能用於判斷兩個完全一致、未經修改的文件,如果是一張經過調色或者縮放的圖片,根本無法判斷其與另一張圖片是否為同一張圖片。
那麼如何判斷一張被PS過的圖片是否與另一張圖片本質上相同呢?比較簡單、易用的解決方案是採用感知哈希演算法(Perceptual Hash Algorithm)。

感知哈希演算法是一類演算法的總稱,包括aHash、pHash、dHash。顧名思義,感知哈希不是以嚴格的方式計算Hash值,而是以更加相對的方式計算哈希值,因為「相似」與否,就是一種相對的判定。

如果我們要計算上圖的dHash值,第一步是把它 縮放到足夠小 。為什麼需要縮放呢?因為原圖的解析度一般都非常高。一張 200*200 的圖片,就有整整4萬個像素點,每一個像素點都保存著一個RGB值,4萬個RGB,是相當龐大的信息量,非常多的細節需要處理。因此,我們需要把圖片縮放到非常小,隱藏它的細節部分,只見森林,不見樹木。建議縮放為9*8,雖然可以縮放為任意大小,但是這個值是相對合理的。而且寬度為9,有利於我們轉換為hash值,往下面看,你就明白了。

(感謝評論區 隔壁萬能的小黑 同學,建議在 image.resize 中加上Image.ANTIALIAS參數,加上此參數將會對所有可以影響輸出像素的輸入像素進行高質量的重采樣濾波)

dHash全名為差異值hash,通過計算相鄰像素之間的顏色強度差異得出。我們縮放後的圖片,細節已經被隱藏,信息量已經變少。但是還不夠,因為它是彩色的,由RGB值組成。白色表示為(255,255,255),黑色表示為(0,0,0),值越大顏色越亮,越小則越暗。每種顏色都由3個數值組成,也就是紅、綠、藍的值 。如果直接使用RGB值對比顏色強度差異,相當復雜,因此我們轉化為灰度值——只由一個0到255的整數表示灰度。這樣的話就將三維的比較簡化為了一維比較。

差異值是通過計算每行相鄰像素的強度對比得出的。我們的圖片為9*8的解析度,那麼就有8行,每行9個像素。差異值是每行分別計算的,也就是第二行的第一個像素不會與第一行的任何像素比較。每一行有9個像素,那麼就會產生8個差異值,這也是為何我們選擇9作為寬度,因為8bit剛好可以組成一個byte,方便轉換為16進制值。
如果前一個像素的顏色強度大於第二個像素,那麼差異值就設置為True(也就是1),如果不大於第二個像素,就設置為False(也就是0)。

我們將差異值數組中每一個值看做一個bit,每8個bit組成為一個16進制值,將16進制值連接起來轉換為字元串,就得出了最後的dHash值。

漢明距離這個概念不止運用於圖片對比領域,也被使用於眾多領域,具體的介紹可以參見Wikipedia。
漢明距離表示將A修改成為B,需要多少個步驟。比如字元串「abc」與「ab3」,漢明距離為1,因為只需要修改「c」為「3」即可。
dHash中的漢明距離是通過計算差異值的修改位數。我們的差異值是用0、1表示的,可以看做二進制。二進制0110與1111的漢明距離為2。
我們將兩張圖片的dHash值轉換為二進制difference,並取異或。計算異或結果的「1」的位數,也就是不相同的位數,這就是漢明距離。

如果傳入的參數不是兩張圖的dHash值,而是直接比較兩張圖片,那麼不需要生成dHash值,直接用Step3中的difference數組,統計不相同的位數,就是漢明距離。

一般來說,漢明距離小於5,基本就是同一張圖片。大家可以根據自己的實際情況,判斷漢明距離臨界值為多少。

https://github.com/hjaurum/DHash

Ⅱ 感知哈希演算法為什麼縮小到8*8

將圖片尺寸縮小,以達到拋棄細節、亮度、色差、尺寸變化等帶來的差異(水印、裁剪、圖片質量導致的細節變化,在8*8px小圖下完全消失,留下大概的圖像輪廓),增減少計算量

Ⅲ 百度圖片搜索引擎原理是如何實現的

圖片搜索的原理有三個步驟
1. 將目標圖片進行特徵提取,描述圖像的演算法很多,用的比較多的是:SIFT描述子,指紋演算法函數,bundling features演算法,hash function(散列函數)等。也可以根據不同的圖像,設計不同的演算法,比如圖像局部N階矩的方法提取圖像特徵。
2. 將圖像特徵信息進行編碼,並將海量圖像編碼做查找表。對於目標圖像,可以對解析度較大的圖像進行降采樣,減少運算量後在進行圖像特徵提取和編碼處理。
3. 相似度匹配運算:利用目標圖像的編碼值,在圖像搜索引擎中的圖像資料庫進行全局或是局部的相似度計算;根據所需要的魯棒性,設定閾值,然後將相似度高的圖片預保留下來;最後應該還有一步篩選最佳匹配圖片,這個應該還是用到特徵檢測演算法。
其中每個步驟都有很多演算法研究,圍繞數學,統計學,圖像編碼,信號處理等理論進行研究。

根據Neal Krawetz博士的解釋,原理非常簡單易懂。我們可以用一個快速演算法,就達到基本的效果。
這里的關鍵技術叫做"感知哈希演算法"(Perceptual hash algorithm),它的作用是對每張圖片生成一個"指紋"(fingerprint)字元串,然後比較不同圖片的指紋。結果越接近,就說明圖片越相似。下面是一個最簡單的實現:
第一步,縮小尺寸。
將圖片縮小到8x8的尺寸,總共64個像素。這一步的作用是去除圖片的細節,只保留結構、明暗等基本信息,摒棄不同尺寸、比例帶來的圖片差異。
第二步,簡化色彩。
將縮小後的圖片,轉為64級灰度。也就是說,所有像素點總共只有64種顏色。
第三步,計算平均值。
計算所有64個像素的灰度平均值。
第四步,比較像素的灰度。
將每個像素的灰度,與平均值進行比較。大於或等於平均值,記為1;小於平均值,記為0。
第五步,計算哈希值。
將上一步的比較結果,組合在一起,就構成了一個64位的整數,這就是這張圖片的指紋。組合的次序並不重要,只要保證所有圖片都採用同樣次序就行了。
得到指紋以後,就可以對比不同的圖片,看看64位中有多少位是不一樣的。在理論上,這等同於計算"漢明距離"(Hammingdistance)。如果不相同的數據位不超過5,就說明兩張圖片很相似;如果大於10,就說明這是兩張不同的圖片。
具體的代碼實現,可以參見Wote用python語言寫的imgHash.py。代碼很短,只有53行。使用的時候,第一個參數是基準圖片,第二個參數是用來比較的其他圖片所在的目錄,返回結果是兩張圖片之間不相同的數據位數量(漢明距離)。
這種演算法的優點是簡單快速,不受圖片大小縮放的影響,缺點是圖片的內容不能變更。如果在圖片上加幾個文字,它就認不出來了。所以,它的最佳用途是根據縮略圖,找出原圖。
實際應用中,往往採用更強大的pHash演算法和SIFT演算法,它們能夠識別圖片的變形。只要變形程度不超過25%,它們就能匹配原圖。這些演算法雖然更復雜,但是原理與上面的簡便演算法是一樣的,就是先將圖片轉化成Hash字元串,然後再進行比較。

Ⅳ 感知哈希演算法的介紹

感知哈希演算法(以下簡稱PHA)是哈希演算法的一類,主要用來做相似圖片的搜索工作。

Ⅳ 用圖片識別搜索引擎(如百度識圖、騰訊優圖)識別個人照片,會不會泄露個人隱私也就是說圖片會不會上傳

會在一定范圍內泄露個人隱私。圖片也會上傳。

原因:圖片識別的基本原理是"感知哈希演算法"(Perceptual hash algorithm),它需要先抓取你的圖片信息,然後根據圖片信息生成一個獨一無二的字元串,然後再去匹配類似接近的字元串。在抓取和匹配的過程中,你的個人信息其實已經上傳。



(5)圖像感知哈希演算法擴展閱讀

圖像識別,是指利用計算機對圖像進行處理、分析和理解,以識別各種不同模式的目標和對象的技術,是應用深度學習演算法的一種實踐應用。

現階段圖像識別技術一般分為人臉識別與商品識別,人臉識別主要運用在安全檢查、身份核驗與移動支付中;商品識別主要運用在商品流通過程中,特別是無人貨架、智能零售櫃等無人零售領域

圖像的傳統識別流程分為四個步驟:圖像採集→圖像預處理→特徵提取→圖像識別。圖像識別軟體國外代表的有康耐視等,國內代表的有圖智能、海深科技等。另外在地理學中指將遙感圖像進行分類的技術。


Ⅵ 相似圖片搜索的原理是怎樣的

2011年,Google把「相似圖片搜索」正式放上了首頁。你可以用一張圖片,搜索互聯網上所有與它相似的圖片。點擊搜索框中照相機的圖標。

有了50×50像素的黑白縮略圖,就等於有了一個50×50的0-1矩陣。矩陣的每個值對應原圖的一個像素,0表示黑色,1表示白色。這個矩陣就是一張圖片的特徵矩陣。

兩個特徵矩陣的不同之處越少,就代表兩張圖片越相似。這可以用」異或運算」實現(即兩個值之中只有一個為1,則運算結果為1,否則運算結果為0)。對不同圖片的特徵矩陣進行」異或運算」,結果中的1越少,就是越相似的圖片。

Ⅶ C#灰度圖像通過相似度演算法找出相似度最高的圖片

這種以圖搜圖可以用感知哈希演算法,


第一步 縮小圖片尺寸

將圖片縮小到8x8的尺寸, 總共64個像素. 這一步的作用是去除各種圖片尺寸和圖片比例的差異, 只保留結構、明暗等基本信息.

第二步 轉為灰度圖片

將縮小後的圖片, 轉為64級灰度圖片.

第三步 計算灰度平均值

計算圖片中所有像素的灰度平均值

第四步 比較像素的灰度

將每個像素的灰度與平均值進行比較, 如果大於或等於平均值記為1, 小於平均值記為0.

第五步 計算哈希值

將上一步的比較結果, 組合在一起, 就構成了一個64位的二進制整數, 這就是這張圖片的指紋.

第六步 對比圖片指紋

得到圖片的指紋後, 就可以對比不同的圖片的指紋, 計算出64位中有多少位是不一樣的. 如果不相同的數據位數不超過5, 就說明兩張圖片很相似, 如果大於10, 說明它們是兩張不同的圖片.

具體的c#代碼可以看

usingSystem;
usingSystem.IO;
usingSystem.Drawing;

namespaceSimilarPhoto
{
classSimilarPhoto
{
ImageSourceImg;

publicSimilarPhoto(stringfilePath)
{
SourceImg=Image.FromFile(filePath);
}

publicSimilarPhoto(Streamstream)
{
SourceImg=Image.FromStream(stream);
}

publicStringGetHash()
{
Imageimage=ReceSize();
Byte[]grayValues=ReceColor(image);
Byteaverage=CalcAverage(grayValues);
Stringreslut=ComputeBits(grayValues,average);
returnreslut;
}

//Step1:Recesizeto8*8
privateImageReceSize(intwidth=8,intheight=8)
{
Imageimage=SourceImg.GetThumbnailImage(width,height,()=>{returnfalse;},IntPtr.Zero);
returnimage;
}

//Step2:ReceColor
privateByte[]ReceColor(Imageimage)
{
BitmapbitMap=newBitmap(image);
Byte[]grayValues=newByte[image.Width*image.Height];

for(intx=0;x<image.Width;x++)
for(inty=0;y<image.Height;y++)
{
Colorcolor=bitMap.GetPixel(x,y);
bytegrayValue=(byte)((color.R*30+color.G*59+color.B*11)/100);
grayValues[x*image.Width+y]=grayValue;
}
returngrayValues;
}

//Step3:Averagethecolors
privateByteCalcAverage(byte[]values)
{
intsum=0;
for(inti=0;i<values.Length;i++)
sum+=(int)values[i];
returnConvert.ToByte(sum/values.Length);
}

//Step4:Computethebits
privateStringComputeBits(byte[]values,byteaverageValue)
{
char[]result=newchar[values.Length];
for(inti=0;i<values.Length;i++)
{
if(values[i]<averageValue)
result[i]='0';
else
result[i]='1';
}
returnnewString(result);
}

//Comparehash
(stringa,stringb)
{
if(a.Length!=b.Length)
thrownewArgumentException();
intcount=0;
for(inti=0;i<a.Length;i++)
{
if(a[i]!=b[i])
count++;
}
returncount;
}
}
}

Ⅷ 哈希的演算法是什麼

哈希演算法是一個廣義的演算法,也可以認為是一種思想,使用Hash演算法可以提高存儲空間的利用率,可以提高數據的查詢效率,也可以做數字簽名來保障數據傳遞的安全性。所以Hash演算法被廣泛地應用在互聯網應用中。

哈希演算法也被稱為散列演算法,Hash演算法雖然被稱為演算法,但實際上它更像是一種思想。Hash演算法沒有一個固定的公式,只要符合散列思想的演算法都可以被稱為是Hash演算法。

特點:

加密哈希跟普通哈希的區別就是安全性,一般原則是只要一種哈希演算法出現過碰撞,就會不被推薦成為加密哈希了,只有安全度高的哈希演算法才能用作加密哈希。

同時加密哈希其實也能當普通哈希來用,Git 版本控制工具就是用 SHA-1 這個加密哈希演算法來做完整性校驗的。一般來講越安全的哈希演算法,處理速度也就越慢,所以並不是所有的場合都適合用加密哈希來替代普通哈希。



Ⅸ 如何使用opencv中的NCC演算法實現兩幅圖像的相似性判斷

感知哈希演算法(perceptual hash algorithm),它的作用是對每張圖像生成一個「指紋」(fingerprint)字元串,然後比較不同圖像的指紋。結果越接近,就說明圖像越相似。
實現步驟:
1. 縮小尺寸:將圖像縮小到8*8的尺寸,總共64個像素。這一步的作用是去除圖像的細節,只保留結構/明暗等基本信息,摒棄不同尺寸/比例帶來的圖像差異;
2. 簡化色彩:將縮小後的圖像,轉為64級灰度,即所有像素點總共只有64種顏色;
3. 計算平均值:計算所有64個像素的灰度平均值;
4. 比較像素的灰度:將每個像素的灰度,與平均值進行比較,大於或等於平均值記為1,小於平均值記為0;
5. 計算哈希值:將上一步的比較結果,組合在一起,就構成了一個64位的整數,這就是這張圖像的指紋。組合的次序並不重要,只要保證所有圖像都採用同樣次序就行了;
6. 得到指紋以後,就可以對比不同的圖像,看看64位中有多少位是不一樣的。在理論上,這等同於」漢明距離」(Hamming distance,在資訊理論中,兩個等長字元串之間的漢明距離是兩個字元串對應位置的不同字元的個數)。如果不相同的數據位數不超過5,就說明兩張圖像很相似;如果大於10,就說明這是兩張不同的圖像。
以上內容摘自:http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html
下面是用OpenCV實現的測試代碼:
[cpp] view plainprint?
string strSrcImageName = "src.jpg";
cv::Mat matSrc, matSrc1, matSrc2;
matSrc = cv::imread(strSrcImageName, CV_LOAD_IMAGE_COLOR);
CV_Assert(matSrc.channels() == 3);
cv::resize(matSrc, matSrc1, cv::Size(357, 419), 0, 0, cv::INTER_NEAREST);
//cv::flip(matSrc1, matSrc1, 1);
cv::resize(matSrc, matSrc2, cv::Size(2177, 3233), 0, 0, cv::INTER_LANCZOS4);
cv::Mat matDst1, matDst2;
cv::resize(matSrc1, matDst1, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
cv::resize(matSrc2, matDst2, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
cv::cvtColor(matDst1, matDst1, CV_BGR2GRAY);
cv::cvtColor(matDst2, matDst2, CV_BGR2GRAY);
int iAvg1 = 0, iAvg2 = 0;
int arr1[64], arr2[64];
for (int i = 0; i < 8; i++) {
uchar* data1 = matDst1.ptr<uchar>(i);
uchar* data2 = matDst2.ptr<uchar>(i);
int tmp = i * 8;
for (int j = 0; j < 8; j++) {
int tmp1 = tmp + j;
arr1[tmp1] = data1[j] / 4 * 4;
arr2[tmp1] = data2[j] / 4 * 4;
iAvg1 += arr1[tmp1];
iAvg2 += arr2[tmp1];
}
}
iAvg1 /= 64;
iAvg2 /= 64;
for (int i = 0; i < 64; i++) {
arr1[i] = (arr1[i] >= iAvg1) ? 1 : 0;
arr2[i] = (arr2[i] >= iAvg2) ? 1 : 0;
}
int iDiffNum = 0;
for (int i = 0; i < 64; i++)
if (arr1[i] != arr2[i])
++iDiffNum;
cout<<"iDiffNum = "<<iDiffNum<<endl;
if (iDiffNum <= 5)
cout<<"two images are very similar!"<<endl;
else if (iDiffNum > 10)
cout<<"they are two different images!"<<endl;
else
cout<<"two image are somewhat similar!"<<endl;
string strSrcImageName = "src.jpg";
cv::Mat matSrc, matSrc1, matSrc2;
matSrc = cv::imread(strSrcImageName, CV_LOAD_IMAGE_COLOR);
CV_Assert(matSrc.channels() == 3);
cv::resize(matSrc, matSrc1, cv::Size(357, 419), 0, 0, cv::INTER_NEAREST);
//cv::flip(matSrc1, matSrc1, 1);
cv::resize(matSrc, matSrc2, cv::Size(2177, 3233), 0, 0, cv::INTER_LANCZOS4);
cv::Mat matDst1, matDst2;
cv::resize(matSrc1, matDst1, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
cv::resize(matSrc2, matDst2, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
cv::cvtColor(matDst1, matDst1, CV_BGR2GRAY);
cv::cvtColor(matDst2, matDst2, CV_BGR2GRAY);
int iAvg1 = 0, iAvg2 = 0;
int arr1[64], arr2[64];
for (int i = 0; i < 8; i++) {
uchar* data1 = matDst1.ptr<uchar>(i);
uchar* data2 = matDst2.ptr<uchar>(i);
int tmp = i * 8;
for (int j = 0; j < 8; j++) {
int tmp1 = tmp + j;
arr1[tmp1] = data1[j] / 4 * 4;
arr2[tmp1] = data2[j] / 4 * 4;
iAvg1 += arr1[tmp1];
iAvg2 += arr2[tmp1];
}
}
iAvg1 /= 64;
iAvg2 /= 64;
for (int i = 0; i < 64; i++) {
arr1[i] = (arr1[i] >= iAvg1) ? 1 : 0;
arr2[i] = (arr2[i] >= iAvg2) ? 1 : 0;
}
int iDiffNum = 0;
for (int i = 0; i < 64; i++)
if (arr1[i] != arr2[i])
++iDiffNum;
cout<<"iDiffNum = "<<iDiffNum<<endl;
if (iDiffNum <= 5)
cout<<"two images are very similar!"<<endl;
else if (iDiffNum > 10)
cout<<"they are two different images!"<<endl;
else
cout<<"two image are somewhat similar!"<<endl;

Ⅹ 什麼是哈希演算法,公式是什麼

哈希是 hash的音譯,就是 散列, 散列演算法是把一系列的值轉換為地址(位置,數字)的一類演算法, 沒有公式. 實際上這不是一種而是一類演算法, 好的散列演算法和不好的散列演算法差別很大. 散列一般是難以反向運算的.原因是輸入和輸出理論上是多對一的操作. (把無限的問題空間映射到有限的地址位置,肯定必須多對一)

加密本質上是換了一種編碼方式,使得不可閱讀. 實際上把英文翻譯成中文,對一個不懂中文的老外來說,這也是一種不嚴密的加密. 加密和散列不同,加密是存在一個解密的演算法的,所以加密運算一般是可逆的, 一般是一對一的.

閱讀全文

與圖像感知哈希演算法相關的資料

熱點內容
上海女程序員上班被偷 瀏覽:377
如何添加後台app 瀏覽:350
中國移動機頂盒時鍾伺服器地址 瀏覽:943
如何開發app流程 瀏覽:427
哈爾濱編程培訓課程 瀏覽:722
編程語言執行速度排行 瀏覽:174
啟辰原廠導航如何裝app 瀏覽:840
jsp項目優秀源碼 瀏覽:757
如何查看電腦web伺服器埠號 瀏覽:901
小區物業管理系統編程源碼 瀏覽:95
王城戰爭為什麼無法獲取伺服器列表 瀏覽:804
劍橋商務英語pdf 瀏覽:480
伺服器如何不休眠 瀏覽:800
微機原理及介面技術編程 瀏覽:204
解壓迷你游戲機手柄 瀏覽:553
androidrtsp框架 瀏覽:545
阿里女程序員內網徵婚 瀏覽:78
比例閥放大器接plc編程 瀏覽:852
java表示二進制 瀏覽:394
數控銑床外輪廓編程 瀏覽:91