A. 計算平均數的方法有哪些
1、平均數=(a1+a2+…+an)/n
2、算術平均數
算術平均數是指在一組數據中所有數據之和再除以數據的個數,它是反映數據集中趨勢的一項指標。公式為:平均數=(a1+a2+…+an)/n
3、加權平均數
若n個數x1,x2,……xn的權分別為w1,w2,……wn,則這n個數的加權平均數是(X1W1+X2W2+……+XnWn)/(W1+W2+……+Wn)
平均數非常明顯的優點之一是,它能夠利用所有數據的特徵,而且比較好算。另外,在數學上,平均數是使誤差平方和達到最小的統計量,也就是說利用平均數代表數據,可以使二次損失最小。
因此,平均數在數學中是一個常用的統計量。但是平均數也有不足之處,正是因為它利用了所有數據的信息,平均數容易受極端數據的影響。
B. 算術平均值怎麼算
把 n 個數相加,然後把它們的和除以 n 所得的數就是算術平均值。
例如:3、5、7這三個數,那麼它們的算術平均值=(3+5+7)÷3=5
C. 求平均數的簡便方法
拋磚引玉——求平均數的簡便方法
冀教版第八單元統計第一節課教學平均數。根據求平均數的一般方法得出公式為:總數量÷總份數=平均數。其中求總數量需要把統計的各部分數據加起來,然後再用所的得的和除以總份數就等於平均數。
舉例如下:2003年某市舉辦小學生籃球友誼賽,運動員的身高如下:153 、 138 、153 、 163、 165 、 158 、 166 、 168 、 158 。 (單位:厘米)運動員的平均身高是多少?
基本解法:(153 + 138 +153+ 163+ 165+ 158+ 166 + 168+ 158)÷9
=1422÷9
=158(厘米)
學生試算時,我巡視發現對於較復雜的數據之和的計算過程比較繁瑣,很容易出錯。針對這種情況,我提倡學生用簡便解法,學生有利用加法交換律湊整十整百的,還有的學生把眾多數據中相同的數提出來用乘法計算的,但畢竟不是所有的數據都具備簡算的特徵,所以學生感覺還是計算繁瑣枯燥。那麼有沒有更簡便的計算方法?對於這樣比較大的數據怎樣才能從根本上解決問題呢?首先讓學生觀察數據的特點:每個數都是大於大於100的數,都包含100,
能不能求出後兩位數的平均數,求出的這個平均數與原數的大小有什麼關系?這樣拋磚引玉,引導學生簡便計算如下:
(53 + 38 +53+ 63+ 65+ 58+ 66 + 68+ 58)÷9+100
=522÷9+100
=58+100
=158(厘米)
由此得出對於較復雜的數據求平均數的簡便方法為:求出後幾位數的平均數再加上各原始數據原有的整數部分。
為了加強對這種計算方法的鞏固,課堂上繼續讓學生計算本次期中考試的幾位學生的平均成績,這幾位學生的期中考試的成績分別是93 95 94 99 99 96,學生出現如下計算過程:
(3+5+9+9+6)÷6+90
=36÷6+90
=6+90
=96
對於已經變化了特徵的數字,學生能夠舉一反三,順利解答。同時這種求平均數簡便方法的探索,為學生接觸到負數和以後進一步的學習做了鋪墊。
數學沖浪
6名同學參加踢毽子比賽,王小波在計算平均成績時,忘掉了自己和自己踢的84下,計算結果為平均每人踢了72下。你能算出這6名同學平均每人踢了多少下嗎?
72下是5個人平均每人踢的,那5個同學一共踢72×5=360下,6名同學踢(360+84)下,則這6名同學平均每人踢(72×5+84)÷6=74下。
簡便演算法:84和72都含有整十數70,按前面的簡便方法可以先求出70以外的數的平均數,在加上70就是這6名同學的平均數:(2×5+14)÷6+70=(10+14)÷6+70=24÷6+70=4+70=74
D. 平均值是怎麼算的
計算平均值,一般常用的有兩種方法:一種是簡單平均法,一種是加權平均法。
例如,某企業生產a產品10台,單價100元;生產b產品5台,單價50元;生產c產品3台,單價30元,計算平均價格?
簡單平均法:平均價格=∑各類產品單價
/
產品種類
平均價格=(100+50+30)/
3
=
60(元)
加權平均法:平均價格=∑(產品單價×產品數量)/
∑(產品數量)
平均價格=(100×10+50×5+30×3)/(10+5+3)=
74.44(元)
可以看出,簡單平均與加權平均計算出來的平均值差距較大,而後者更貼近事實,屬於精確計算。
E. 平均值怎麼算
計算平均值,一般常用的有兩種方法:一種是簡單平均法,一種是加權平均法。
例如,某企業生產A產品10台,單價100元;生產B產品5台,單價50元;生產C產品3台,單價30元,計算平均價格?
簡單平均法:平均價格=∑各類產品單價 / 產品種類
平均價格=(100+50+30)/ 3 = 60(元)
加權平均法:平均價格=∑(產品單價×產品數量)/ ∑(產品數量)
平均價格=(100×10+50×5+30×3)/(10+5+3)= 74.44(元)
可以看出,簡單平均與加權平均計算出來的平均值差距較大,而後者更貼近事實,屬於精確計算。
(5)演算法求平均數擴展閱讀:
平均值有算術平均值,幾何平均值,平方平均值(均方根平均值,rms),調和平均值,加權平均值等。其中以算術平均值最為常見。
算術平均數,又稱均值,是統計學中最基本、最常用的一種平均指標,分為簡單算術平均數、加權算術平均數。它主要適用於數值型數據,不適用於品質數據。根據表現形式的不同,算術平均數有不同的計算形式和計算公式。
算術平均數是加權平均數的一種特殊形式(特殊在各項的權重相等)。在實際問題中,當各項權重不相等時,計算平均數時就要採用加權平均數;當各項權相等時,計算平均數就要採用算術平均數。
1. 加權算術平均數同時受到兩個因素的影響,一個是各組數值的大小,另一個是各組分布頻數的多少。在數值不變的情況下,一組的頻數越多,該組的數值對平均數的作用就大,反之,越小。
頻數在加權算術平均數中起著權衡輕重的作用,這也是加權算術平均數「加權」的含義。
2. 算術平均數易受極端值的影響。例如有下列資料:5、7、5、4、6、7、8、5、4、7、8、6、20,全部資料的平均值是7.1,實際上大部分數據(有10個)不超過7,如果去掉20,則剩下的12個數的平均數為6。
由此可見,極端值的出現,會使平均數的真實性受到干擾。
幾何平均數是對各變數值的連乘積開項數次方根。求幾何平均數的方法叫做幾何平均法。如果總水平、總成果等於所有階段、所有環節水平、成果的連乘積總和時,求各階段、各環節的一般水平、一般成果,要使用幾何平均法計算幾何平均數,而不能使用算術平均法計算算術平均數。
根據所拿握資料的形式不同,其分為簡單幾何平均數和加權幾何平均數兩種形式。
F. 平均值怎麼算簡單演算法
(a1+a2+……an)/n為a1,a2,……,an的算術平均值.
簡單算術平均數.有這么一組數字10、20、30、40、50那麼它們的算術平均值是(10+20+30+40+50)/5=30
平均值有算術平均值,幾何平均值,平方平均值(均方根平均值,rms),調和平均值,加權平均值等,其中以算術平均值最為常見。
算術平均數( arithmetic mean),又稱均值,是統計學中最基本、最常用的一種平均指標,分為簡單算術平均數、加權算術平均數。它主要適用於數值型數據,不適用於品質數據。根據表現形式的不同,算術平均數有不同的計算形式和計算公式。 算術平均數是加權平均數的一種特殊形式(特殊在各項的權重相等)。在實際問題中,當各項權重不相等時,計算平均數時就要採用加權平均數;當各項權相等時,計算平均數就要採用算術平均數。
G. 平均數怎麼算
平均數演算法如下:
工具/原料:演示電腦:LAPTOP-PCSAQDF9 Windows 10家庭中文版64位(10.0,版本17763)、演示軟體:Word 2010。
1、首先我們直接將各數據相加,得到總數,然後將得到的總數除以數據的個數,即可得到我們需要的平均數。
H. 用三種方法求平均數
1、平均數=(a1+a2+…+an)/n
2、算術平均數
算術平均數是指在一組數據中所有數據之和再除以數據的個數,它是反映數據集中趨勢的一項指標。公式為:平均數=(a1+a2+…+an)/n
3、加權平均數
若n個數x1,x2,……xn的權分別為w1,w2,……wn,則這n個數的加權平均數是(X1W1+X2W2+……+XnWn)/(W1+W2+……+Wn)
平均數非常明顯的優點之一是,它能夠利用所有數據的特徵,而且比較好算。另外,在數學上,平均數是使誤差平方和達到最小的統計量,也就是說利用平均數代表數據,可以使二次損失最小。
因此,平均數在數學中是一個常用的統計量。但是平均數也有不足之處,正是因為它利用了所有數據的信息,平均數容易受極端數據的影響。
(8)演算法求平均數擴展閱讀
一、很多題目中都不止存在一組平均數關系,而是有多組平均數關系,各組之間的數量切不可混淆。例如涉及男生女生平均分數的題目,全班總分數、全班人數、全班平均分是一組數量。
而男生總分數、男生人數、男生平均分是另外一組數量,女生總分數、女生人數、女生平均分則是第三組數量,這三組數量之間要注意不能混淆來計算。
二、不能簡單地用兩個平均數的平均來求第三個平均數。例如不能用「男生平均分」加上「女生平均分」除以2來求全班平均分,而是要嚴格按照平均數的定義,用「總數量÷總份數」來求平均數。這是一個常見錯誤,要特別注意。
三、涉及多組平均數的題目,往往各組的數量之間是有聯系的,利用各組之間的數量關系是解題的往往是解題的關鍵。例如在上面提到的全班、男生、女生這三組平均分關系中,還存在「全班人數=男生人數+女生人數」、「全班總分=男生總分+女生總分」這些數量關系,要善於利用。