導航:首頁 > 源碼編譯 > 優化資料庫源碼

優化資料庫源碼

發布時間:2022-10-05 19:24:19

1. 誰知道資料庫優化設計方案有哪些

本文首先討論了基於第三範式的資料庫表的基本設計,著重論述了建立主鍵和索引的策略和方案,然後從資料庫表的擴展設計和庫表對象的放置等角度概述了資料庫管理系統的優化方案。
關鍵詞: 優化(Optimizing) 第三範式(3NF) 冗餘數據(Rendant Data) 索引(Index) 數據分割(Data Partitioning) 對象放置(Object Placement)
1 引言
資料庫優化的目標無非是避免磁碟I/O瓶頸、減少CPU利用率和減少資源競爭。為了便於讀者閱讀和理解,筆者參閱了Sybase、Informix和Oracle等大型資料庫系統參考資料,基於多年的工程實踐經驗,從基本表設計、擴展設計和資料庫表對象放置等角度進行討論,著重討論了如何避免磁碟I/O瓶頸和減少資源競爭,相信讀者會一目瞭然。
2 基於第三範式的基本表設計
在基於表驅動的信息管理系統(MIS)中,基本表的設計規范是第三範式(3NF)。第三範式的基本特徵是非主鍵屬性只依賴於主鍵屬性。基於第三範式的資料庫表設計具有很多優點:一是消除了冗餘數據,節省了磁碟存儲空間;二是有良好的數據完整性限制,即基於主外鍵的參照完整限制和基於主鍵的實體完整性限制,這使得數據容易維護,也容易移植和更新;三是數據的可逆性好,在做連接(Join)查詢或者合並表時不遺漏、也不重復;四是因消除了冗餘數據(冗餘列),在查詢(Select)時每個數據頁存的數據行就多,這樣就有效地減少了邏輯I/O,每個Cash存的頁面就多,也減少物理I/O;五是對大多數事務(Transaction)而言,運行性能好;六是物理設計(Physical Design)的機動性較大,能滿足日益增長的用戶需求。
在基本表設計中,表的主鍵、外鍵、索引設計佔有非常重要的地位,但系統設計人員往往只注重於滿足用戶要求,而沒有從系統優化的高度來認識和重視它們。實際上,它們與系統的運行性能密切相關。現在從系統資料庫優化角度討論這些基本概念及其重要意義:
(1)主鍵(Primary Key):主鍵被用於復雜的SQL語句時,頻繁地在數據訪問中被用到。一個表只有一個主鍵。主鍵應該有固定值(不能為Null或預設值,要有相對穩定性),不含代碼信息,易訪問。把常用(眾所周知)的列作為主鍵才有意義。短主鍵最佳(小於25bytes),主鍵的長短影響索引的大小,索引的大小影響索引頁的大小,從而影響磁碟I/O。主鍵分為自然主鍵和人為主鍵。自然主鍵由實體的屬性構成,自然主鍵可以是復合性的,在形成復合主鍵時,主鍵列不能太多,復合主鍵使得Join*作復雜化、也增加了外鍵表的大小。人為主鍵是,在沒有合適的自然屬性鍵、或自然屬性復雜或靈敏度高時,人為形成的。人為主鍵一般是整型值(滿足最小化要求),沒有實際意義,也略微增加了表的大小;但減少了把它作為外鍵的表的大小。
(2)外鍵(Foreign Key):外鍵的作用是建立關系型資料庫中表之間的關系(參照完整性),主鍵只能從獨立的實體遷移到非獨立的實體,成為後者的一個屬性,被稱為外鍵。
(3)索引(Index):利用索引優化系統性能是顯而易見的,對所有常用於查詢中的Where子句的列和所有用於排序的列創建索引,可以避免整表掃描或訪問,在不改變表的物理結構的情況下,直接訪問特定的數據列,這樣減少數據存取時間;利用索引可以優化或排除耗時的分類*作;把數據分散到不同的頁面上,就分散了插入的數據;主鍵自動建立了唯一索引,因此唯一索引也能確保數據的唯一性(即實體完整性);索引碼越小,定位就越直接;新建的索引效能最好,因此定期更新索引非常必要。索引也有代價:有空間開銷,建立它也要花費時間,在進行Insert、Delete和Update*作時,也有維護代價。索引有兩種:聚族索引和非聚族索引。一個表只能有一個聚族索引,可有多個非聚族索引。使用聚族索引查詢數據要比使用非聚族索引快。在建索引前,應利用資料庫系統函數估算索引的大小。
① 聚族索引(Clustered Index):聚族索引的數據頁按物理有序儲存,佔用空間小。選擇策略是,被用於Where子句的列:包括范圍查詢、模糊查詢或高度重復的列(連續磁碟掃描);被用於連接Join*作的列;被用於Order by和Group by子句的列。聚族索引不利於插入*作,另外沒有必要用主鍵建聚族索引。
② 非聚族索引(Nonclustered Index):與聚族索引相比,佔用空間大,而且效率低。選擇策略是,被用於Where子句的列:包括范圍查詢、模糊查詢(在沒有聚族索引時)、主鍵或外鍵列、點(指針類)或小范圍(返回的結果域小於整表數據的20%)查詢;被用於連接Join*作的列、主鍵列(范圍查詢);被用於Order by和Group by子句的列;需要被覆蓋的列。對只讀表建多個非聚族索引有利。索引也有其弊端,一是創建索引要耗費時間,二是索引要佔有大量磁碟空間,三是增加了維護代價(在修改帶索引的數據列時索引會減緩修改速度)。那麼,在哪種情況下不建索引呢?對於小表(數據小於5頁)、小到中表(不直接訪問單行數據或結果集不用排序)、單值域(返回值密集)、索引列值太長(大於20bitys)、容易變化的列、高度重復的列、Null值列,對沒有被用於Where子語句和Join查詢的列都不能建索引。另外,對主要用於數據錄入的,盡可能少建索引。當然,也要防止建立無效索引,當Where語句中多於5個條件時,維護索引的開銷大於索引的效益,這時,建立臨時表存儲有關數據更有效。
批量導入數據時的注意事項:在實際應用中,大批量的計算(如電信話單計費)用C語言程序做,這種基於主外鍵關系數據計算而得的批量數據(文本文件),可利用系統的自身功能函數(如Sybase的BCP命令)快速批量導入,在導入資料庫表時,可先刪除相應庫表的索引,這有利於加快導入速度,減少導入時間。在導入後再重建索引以便優化查詢。
(4)鎖:鎖是並行處理的重要機制,能保持數據並發的一致性,即按事務進行處理;系統利用鎖,保證數據完整性。因此,我們避免不了死鎖,但在設計時可以充分考慮如何避免長事務,減少排它鎖時間,減少在事務中與用戶的交互,杜絕讓用戶控制事務的長短;要避免批量數據同時執行,尤其是耗時並用到相同的數據表。鎖的徵用:一個表同時只能有一個排它鎖,一個用戶用時,其它用戶在等待。若用戶數增加,則Server的性能下降,出現「假死」現象。如何避免死鎖呢?從頁級鎖到行級鎖,減少了鎖徵用;給小表增加無效記錄,從頁級鎖到行級鎖沒有影響,若在同一頁內競爭有影響,可選擇合適的聚族索引把數據分配到不同的頁面;創建冗餘表;保持事務簡短;同一批處理應該沒有網路交互。
(5)查詢優化規則:在訪問資料庫表的數據(Access Data)時,要盡可能避免排序(Sort)、連接(Join)和相關子查詢*作。經驗告訴我們,在優化查詢時,必須做到:
① 盡可能少的行;
② 避免排序或為盡可能少的行排序,若要做大量數據排序,最好將相關數據放在臨時表中*作;用簡單的鍵(列)排序,如整型或短字元串排序;
③ 避免表內的相關子查詢;
④ 避免在Where子句中使用復雜的表達式或非起始的子字元串、用長字元串連接;
⑤ 在Where子句中多使用「與」(And)連接,少使用「或」(Or)連接;
⑥ 利用臨時資料庫。在查詢多表、有多個連接、查詢復雜、數據要過濾時,可以建臨時表(索引)以減少I/O。但缺點是增加了空間開銷。
除非每個列都有索引支持,否則在有連接的查詢時分別找出兩個動態索引,放在工作表中重新排序。
3 基本表擴展設計
基於第三範式設計的庫表雖然有其優越性(見本文第一部分),然而在實際應用中有時不利於系統運行性能的優化:如需要部分數據時而要掃描整表,許多過程同時競爭同一數據,反復用相同行計算相同的結果,過程從多表獲取數據時引發大量的連接*作,當數據來源於多表時的連接*作;這都消耗了磁碟I/O和CPU時間。
尤其在遇到下列情形時,我們要對基本表進行擴展設計:許多過程要頻繁訪問一個表、子集數據訪問、重復計算和冗餘數據,有時用戶要求一些過程優先或低的響應時間。
如何避免這些不利因素呢?根據訪問的頻繁程度對相關表進行分割處理、存儲冗餘數據、存儲衍生列、合並相關表處理,這些都是克服這些不利因素和優化系統運行的有效途徑。
3.1 分割表或儲存冗餘數據
分割表分為水平分割表和垂直分割表兩種。分割表增加了維護數據完整性的代價。
水平分割表:一種是當多個過程頻繁訪問數據表的不同行時,水平分割表,並消除新表中的冗餘數據列;若個別過程要訪問整個數據,則要用連接*作,這也無妨分割表;典型案例是電信話單按月分割存放。另一種是當主要過程要重復訪問部分行時,最好將被重復訪問的這些行單獨形成子集表(冗餘儲存),這在不考慮磁碟空間開銷時顯得十分重要;但在分割表以後,增加了維護難度,要用觸發器立即更新、或存儲過程或應用代碼批量更新,這也會增加額外的磁碟I/O開銷。
垂直分割表(不破壞第三範式),一種是當多個過程頻繁訪問表的不同列時,可將表垂直分成幾個表,減少磁碟I/O(每行的數據列少,每頁存的數據行就多,相應佔用的頁就少),更新時不必考慮鎖,沒有冗餘數據。缺點是要在插入或刪除數據時要考慮數據的完整性,用存儲過程維護。另一種是當主要過程反復訪問部分列時,最好將這部分被頻繁訪問的列數據單獨存為一個子集表(冗餘儲存),這在不考慮磁碟空間開銷時顯得十分重要;但這增加了重疊列的維護難度,要用觸發器立即更新、或存儲過程或應用代碼批量更新,這也會增加額外的磁碟I/O開銷。垂直分割表可以達到最大化利用Cache的目的。
總之,為主要過程分割表的方法適用於:各個過程需要表的不聯結的子集,各個過程需要表的子集,訪問頻率高的主要過程不需要整表。在主要的、頻繁訪問的主表需要表的子集而其它主要頻繁訪問的過程需要整表時則產生冗餘子集表。
注意,在分割表以後,要考慮重新建立索引。
3.2 存儲衍生數據
對一些要做大量重復性計算的過程而言,若重復計算過程得到的結果相同(源列數據穩定,因此計算結果也不變),或計算牽扯多行數據需額外的磁碟I/O開銷,或計算復雜需要大量的CPU時間,就考慮存儲計算結果(冗餘儲存)。現予以分類說明:
若在一行內重復計算,就在表內增加列存儲結果。但若參與計算的列被更新時,必須要用觸發器更新這個新列。
若對表按類進行重復計算,就增加新表(一般而言,存放類和結果兩列就可以了)存儲相關結果。但若參與計算的列被更新時,就必須要用觸發器立即更新、或存儲過程或應用代碼批量更新這個新表。
若對多行進行重復性計算(如排名次),就在表內增加列存儲結果。但若參與計算的列被更新時,必須要用觸發器或存儲過程更新這個新列。
總之,存儲冗餘數據有利於加快訪問速度;但違反了第三範式,這會增加維護數據完整性的代價,必須用觸發器立即更新、或存儲過程或應用代碼批量更新,以維護數據的完整性。
3.3 消除昂貴結合
對於頻繁同時訪問多表的一些主要過程,考慮在主表內存儲冗餘數據,即存儲冗餘列或衍生列(它不依賴於主鍵),但破壞了第三範式,也增加了維護難度。在源表的相關列發生變化時,必須要用觸發器或存儲過程更新這個冗餘列。當主要過程總同時訪問兩個表時可以合並表,這樣可以減少磁碟I/O*作,但破壞了第三範式,也增加了維護難度。對父子表和1:1關系表合並方法不同:合並父子表後,產生冗餘表;合並1:1關系表後,在表內產生冗餘數據。
4 資料庫對象的放置策略
資料庫對象的放置策略是均勻地把數據分布在系統的磁碟中,平衡I/O訪問,避免I/O瓶頸。
⑴ 訪問分散到不同的磁碟,即使用戶數據盡可能跨越多個設備,多個I/O運轉,避免I/O競爭,克服訪問瓶頸;分別放置隨機訪問和連續訪問數據。
⑵ 分離系統資料庫I/O和應用資料庫I/O。把系統審計表和臨時庫表放在不忙的磁碟上。
⑶ 把事務日誌放在單獨的磁碟上,減少磁碟I/O開銷,這還有利於在障礙後恢復,提高了系統的安全性。
⑷ 把頻繁訪問的「活性」表放在不同的磁碟上;把頻繁用的表、頻繁做Join*作的表分別放在單獨的磁碟上,甚至把把頻繁訪問的表的欄位放在不同的磁碟上,把訪問分散到不同的磁碟上,避免I/O爭奪;
⑸ 利用段分離頻繁訪問的表及其索引(非聚族的)、分離文本和圖像數據。段的目的是平衡I/O,避免瓶頸,增加吞吐量,實現並行掃描,提高並發度,最大化磁碟的吞吐量。利用邏輯段功能,分別放置「活性」表及其非聚族索引以平衡I/O。當然最好利用系統的默認段。另外,利用段可以使備份和恢復數據更加靈活,使系統授權更加靈活。

2. 資料庫如何優化

body{
line-height:200%;
}
如何優化MySQL資料庫
當MySQL資料庫邂逅優化,它有好幾個意思,今天我們所指的是性能優化。
我們究竟該如何對MySQL資料庫進行優化呢?下面我就從MySQL對硬體的選擇、Mysql的安裝、my.cnf的優化、MySQL如何進行架構設計及數據切分等方面來說明這個問題。
1.伺服器物理硬體的優化
1)磁碟(I/O),MySQL每一秒鍾都在進行大量、復雜的查詢操作,對磁碟的讀寫量可想而知,所以推薦使用RAID1+0磁碟陣列,如果資金允許,可以選擇固態硬碟做RAID1+0;
2)cpu對Mysql的影響也是不容忽視的,建議選擇運算能力強悍的CPU。
2.MySQL應該採用編譯安裝的方式
MySQL資料庫的線上環境安裝,我建議採取編譯安裝,這樣性能會較大的提升。
3.MySQL配置文件的優化
1)skip
-name
-resolve,禁止MySQL對外部連接進行DNS解析,使用這一選項可以消除MySQL進行DNS解析的時間;
2)back_log
=
384,back_log指出在MySQL暫時停止響應新請求之前,短時間內的多少個請求可以被存在堆棧中,對於Linux系統而言,推薦設置小於512的整數。
3)如果key_reads太大,則應該把my.cnf中key_buffer_size變大,保持key_reads/key_read_requests至少在1/100以上,越小越好。
4.MySQL上線後根據status狀態進行適當優化
1)打開慢查詢日誌可能會對系統性能有一點點影響,如果你的MySQL是主-從結構,可以考慮打開其中一台從伺服器的慢查詢日誌,這樣既可以監控慢查詢,對系統性能影響也會很小。
2)MySQL伺服器過去的最大連接數是245,沒有達到伺服器連接數的上限256,應該不會出現1040錯誤。比較理想的設置是:Max_used_connections/max_connections
*
100%
=85%
5.MySQL資料庫的可擴展架構方案
1)MySQL
cluster,其特點為可用性非常高,性能非常好,但它的維護非常復雜,存在部分Bug;
2)DRBD磁碟網路鏡像方案,其特點為軟體功能強大,數據可在底層塊設備級別跨物理主機鏡像,且可根據性能和可靠性要求配置不同級別的同步。

3. 武漢北大青鳥分享SQL資料庫優化的方法有哪些

在進行軟體開發過程中,資料庫的使用是非常重要的,但是資料庫有很多種,不同資料庫的使用方法是不同的。
進行軟體開發過程中,至少需要掌握一種資料庫的使用方法。
SQL資料庫語法簡單、操作方便和高效,是很多人最優的選擇,但是SQL語句會受到不同資料庫功能的影響,在計算時間和語言的效率上面需要進行優化,根據實際情況進行調整。
下面電腦培訓為大家介紹SQL資料庫的優化方法。
一、適當的索引索引基本上是一種數據結構,有助於加速整個數據檢索過程。
唯一索引是創建不重疊的數據列的索引。
正確的索引可以更快地訪問資料庫,但是索引太多或沒有索引會導致錯誤的結果。
IT培訓認為如果沒有索引,處理速度會變得非常慢。
二、僅索引相關數據指定需要檢索數據的精度。
使用命令*和LIMIT代替SELECT*。
調整資料庫時,必須使用所需的數據集而不是整個數據集,尤其是當數據源非常大時,指定所需的數據集,能夠節省大部分時間。
三、根據需求使用或避免臨時表如果代碼可以用簡單的方式編寫,那麼永遠不要使臨時表變得復雜。
當然,如果數據具有需要多個查詢的特定程序,北大青鳥建議在這種情況下,使用臨時表。
臨時表通常由子查詢交替。
四、避免編碼循環避免編碼循環是非常重要的,因為它會減慢整個序列的速度。
通過使用具有單行的唯一UPDATE或INSERT命令來避免編碼循環,並且武漢北大青鳥發現WHERE命令能夠確保存儲的數據不被更新,這樣能夠方便在找到匹配和預先存在的數據時被找到。

4. 曲靖電腦培訓學校告訴你大規模資料庫的性能和伸縮性的優化

在需要支持移動/平板電腦應用及普通桌面瀏覽器訪問的時代,網站的普及率和有效性很大程度上取決於其可用性和性能。一個訪問緩慢的網站會使得訪問者或潛在的客戶流失,並導致商業的失敗。IT培訓http://www.kmbdqn.cn/認為一個訪問速度相當快的網站將會決定訪客是否會使用網站提供的產品或服務。


擁有大規模資料庫的網站始終需要適當的關注、配置、優化、調整和維護,以確保網站的快速載入。這篇文章將討論如何優化有海量數據的MySQL資料庫。


選擇InnoDB作為存儲引擎


大型產品的資料庫對於可靠性和並發性的要求較高,InnoDB作為默認的MySQL存儲引擎,相對於MyISAM來說是個更佳的選擇。


優化資料庫結構


組織資料庫的schema、表和欄位以降低I/O的開銷,將相關項保存在一起,並提前規劃,以便隨著數據量的增長,性能可以保持較高的水平。


設計數據表應盡量使其佔用的空間最小化,表的主鍵應盡可能短。


對於InnoDB表,主鍵所在的列在每個輔助索引條目中都是可復制的,因此如果有很多輔助索引,那麼一個短的主鍵可以節省大量空間。


僅創建你需要改進查詢性能的索引。索引有助於檢索,但是會增加插入和更新操作的執行時間。


InnoDB的ChangeBuffering特性


InnoDB提供了changebuffering的配置,可減少維護輔助索引所需的磁碟I/O。大規模的資料庫可能會遇到大量的表操作和大量的I/O,以保證輔助索引保持最新。當相關頁面不在緩沖池裡面時,InnoDB的changebuffer將會更改緩存到輔助索引條目,從而避免因不能立即從磁碟讀取頁面而導致耗時的I/O操作。當頁面被載入到緩沖池時,緩沖的更改將被合並,更新的頁面之後會刷新到磁碟。這樣做可提高性能,適用於MySQL5.5及更高版本。

5. 怎樣進行sql資料庫的優化

在資料庫應用系統中編寫可執行的SQL語句可以有多種方式實現,但哪一條是最佳方案卻難以確定。為了解決這一問題,有必要對SQL實施優化。簡單地說,SQL語句的優化就是將性能低下的SQL語句轉換成達到同樣目的的性能更好的SQL語句。

優化SQL語句的原因

資料庫系統的生命周期可以分成: 設計、開發和成品三個階段。在設計階段進行優化的成本最低,收益最大。在成品階段進行優化的成本最高,收益最小。如果將一個資料庫系統比喻成一座樓房,在樓房建好後進行矯正往往成本很高而收效很小(甚至可能根本無法矯正),而在樓房設計、生產階段控制好每塊磚瓦的質量就能達到花費小而見效高的目的。

為了獲得最大效益,人們常需要對資料庫進行優化。資料庫的優化通常可以通過對網路、硬體、操作系統、資料庫參數和應用程序的優化來進行。根據統計,對網路、硬體、操作系統、資料庫參數進行優化所獲得的性能提升全部加起來只佔資料庫應用系統性能提升的40%左右,其餘60%的系統性能提升全部來自對應用程序的優化。許多優化專家甚至認為對應用程序的優化可以得到80%的系統性能提升。因此可以肯定,通過優化應用程序來對資料庫系統進行優化能獲得更大的收益。

對應用程序的優化通常可分為兩個方面: 源代碼的優化和SQL語句的優化。由於涉及到對程序邏輯的改變,源代碼的優化在時間成本和風險上代價很高(尤其是對正在使用中的系統進行優化) 。另一方面,源代碼的優化對資料庫系統性能的提升收效有限,因為應用程序對資料庫的操作最終要表現為SQL語句對資料庫的操作。

對SQL語句進行優化有以下一些直接原因:

1. SQL語句是對資料庫(數據) 進行操作的惟一途徑,應用程序的執行最終要歸結為SQL語句的執行,SQL語句的效率對資料庫系統的性能起到了決定性的作用。

2. SQL語句消耗了70%~90%的資料庫資源。

3. SQL語句獨立於程序設計邏輯,對SQL語句進行優化不會影響程序邏輯,相對於對程序源代碼的優化,對SQL語句的優化在時間成本和風險上的代價都很低。

4. SQL語句可以有不同的寫法,不同的寫法在性能上的差異可能很大。

5. SQL語句易學,難精通。SQL語句的性能往往同實際運行系統的資料庫結構、記錄數量等有關,不存在普遍適用的規律來提升性能。

傳統的優化方法

SQL程序人員在傳統上採用手工重寫來對SQL語句進行優化。這主要依靠DBA或資深程序員對SQL語句執行計劃的分析,依靠經驗,嘗試重寫SQL語句,然後對結果和性能進行比較以試圖找到性能較佳的SQL語句。這種做法存在著以下不足:

1. 無法找出SQL語句的所有可能寫法。很可能花費了大量的時間也無法找到性能較佳的SQL語句。即便找到了某個性能較佳的SQL語句也無法知道是否存在性能更好的寫法。

2. 非常依賴於人的經驗,經驗的多寡往往決定了優化後SQL語句的性能。

3. 非常耗時間。重寫-->校驗正確性-->比較性能,這一循環過程需要大量的時間。

根據傳統的SQL優化工具的功能,人們一般將優化工具分為以下三代產品:

第一代的SQL優化工具是執行計劃分析工具。這類工具對輸入的SQL語句從資料庫提取執行計劃,並解釋執行計劃中關鍵字的含義。

第二代的SQL優化工具只能提供增加索引的建議,它通過對輸入的SQL語句的執行計劃的分析來產生是否要增加索引的建議。這類工具存在著致命的缺點——只分析了一條SQL語句就得出增加某個索引的結論,根本不理會(實際上也無法評估到)增加的索引對整體資料庫系統性能的影響。

第三代工具是利用人工智慧實現自動SQL優化。

人工智慧自動SQL優化

隨著人工智慧技術的發展和在資料庫優化領域應用的深入,在20世紀90年代末優化技術取得了突破性的進展,出現了人工智慧自動SQL優化。人工智慧自動SQL優化的本質就是藉助人工智慧技術,自動對SQL語句進行重寫,找到性能最好的等效SQL語句。LECCO SQL Expert就採用了這種人工智慧技術,其SQL Expert支持Oracle、Sybase、MS SQL Server和IBM DB2資料庫平台。其突出特點是自動優化SQL語句。除此以外,還可以以人工智慧知識庫「反饋式搜索引擎」來重寫SQL語句,並找出所有等效的SQL語句及可能的執行計劃,通過測試運行為應用程序和資料庫自動找到性能最好的SQL語句,提供微秒級的計時; 能夠優化Web應用程序和有大量用戶的在線事務處理中運行時間很短的SQL語句; 能通過比較源SQL和待選SQL的不同之處,為開發人員提供「邊做邊學式訓練」,迅速提高開發人員的SQL編程技能等等。

該工具針對資料庫應用的開發和維護階段提供了數個特別的模塊:SQL語法優化器、PL/SQL集成化開發調試環境(IDE)、掃描器、資料庫監視器等。其核心模塊之一「SQL 語法優化器」的工作原理大致如下:輸入一條源SQL語句,「人工智慧反饋式搜索引擎」對輸入的SQL語句結合檢測到的資料庫結構和索引進行重寫,產生N條等效的SQL語句輸出,產生的N條等效SQL語句再送入「人工智慧反饋式搜索引擎」進行重寫,直至無法產生新的輸出或搜索限額滿,接下來對輸出的SQL語句進行過濾,選出具有不同執行計劃的SQL語句(不同的執行計劃意味著不同的執行效率),最後,對得到的SQL語句進行批量測試,找出性能最好的SQL語句(參見下圖)。

圖 人工智慧自動SQL優化示意圖

LECCO SQL Expert不僅能夠找到最佳的SQL語句,它所提供的「邊做邊學式訓練」還能夠教會開發人員和資料庫管理員如何寫出性能最好的SQL語句。LECCO SQL Expert的SQL語句自動優化功能使SQL的優化變得極其簡單,只要能夠寫出SQL語句,它就能幫開發人員找到最好性能的寫法。

小 結

SQL語句是資料庫應用中一個非常關鍵的部分,它執行性能的高低直接影響著應用程序的運行效率。正因為如此,人們在SQL語句的優化上投入了很大的精力,出現了許多SQL語句優化工具。隨著人工智慧等相關技術的日益成熟, 肯定還會有更多更好的工具出現,這將會給開發人員提供更多的幫助。

6. 如何優化sql資料庫

在資料庫應用系統中編寫可執行的SQL語句可以有多種方式實現,但哪一條是最佳方案卻難以確定。為了解決這一問題,有必要對SQL實施優化。簡單地說,SQL語句的優化就是將性能低下的SQL語句轉換成達到同樣目的的性能更好的SQL語句。

優化SQL語句的原因

資料庫系統的生命周期可以分成: 設計、開發和成品三個階段。在設計階段進行優化的成本最低,收益最大。在成品階段進行優化的成本最高,收益最小。如果將一個資料庫系統比喻成一座樓房,在樓房建好後進行矯正往往成本很高而收效很小(甚至可能根本無法矯正),而在樓房設計、生產階段控制好每塊磚瓦的質量就能達到花費小而見效高的目的。

為了獲得最大效益,人們常需要對資料庫進行優化。資料庫的優化通常可以通過對網路、硬體、操作系統、資料庫參數和應用程序的優化來進行。根據統計,對網路、硬體、操作系統、資料庫參數進行優化所獲得的性能提升全部加起來只佔資料庫應用系統性能提升的40%左右,其餘60%的系統性能提升全部來自對應用程序的優化。許多優化專家甚至認為對應用程序的優化可以得到80%的系統性能提升。因此可以肯定,通過優化應用程序來對資料庫系統進行優化能獲得更大的收益。

對應用程序的優化通常可分為兩個方面: 源代碼的優化和SQL語句的優化。由於涉及到對程序邏輯的改變,源代碼的優化在時間成本和風險上代價很高(尤其是對正在使用中的系統進行優化) 。另一方面,源代碼的優化對資料庫系統性能的提升收效有限,因為應用程序對資料庫的操作最終要表現為SQL語句對資料庫的操作。

對SQL語句進行優化有以下一些直接原因:

1. SQL語句是對資料庫(數據) 進行操作的惟一途徑,應用程序的執行最終要歸結為SQL語句的執行,SQL語句的效率對資料庫系統的性能起到了決定性的作用。

2. SQL語句消耗了70%~90%的資料庫資源。

3. SQL語句獨立於程序設計邏輯,對SQL語句進行優化不會影響程序邏輯,相對於對程序源代碼的優化,對SQL語句的優化在時間成本和風險上的代價都很低。

7. 《資料庫查詢優化器的藝術原理解析與SQL性能優化》epub下載在線閱讀全文,求百度網盤雲資源

《資料庫查詢優化器的藝術原理解析與SQL性能優化》(李海翔)電子書網盤下載免費在線閱讀

鏈接: https://pan..com/s/1mCvCWSKcLyMlwqj2QPPmEg

提取碼: 1gnh

書名:資料庫查詢優化器的藝術原理解析與SQL性能優化

豆瓣評分:8.4

作者:李海翔

出版社:機械工業出版社

副標題:原理解析與SQL性能優化

出版年:2014-1-1

頁數:532

內容簡介:

《資料庫技術叢書·資料庫查詢優化器的藝術:原理解析與SQL性能優化》是資料庫查詢優化領域的里程碑之作,由Oracle公司MySQL全球開發團隊、資深專家撰寫,作者有10餘年資料庫內核和查詢優化器研究經驗。資料庫領域泰斗王珊教授親自作序推薦,PostgreSQL中國社區和中國用戶會發起人以及來自Oracle、新浪、網易、華為等企業的數位資深資料庫專家聯袂推薦。從原理角度深度解讀和展示資料庫查詢優化器的技術細節和全貌;從源碼實現角度全方位深入分析MySQL和PostgreSQL兩大主流開源資料庫查詢優化器的實現原理;從工程實踐的角度對比了兩大資料庫的查詢優化器的功能異同和實現異同。它是所有數據開發工程師、內核工程師、DBA以及其他資料庫相關工作人員值得反復研讀的一本書。

《資料庫技術叢書·資料庫查詢優化器的藝術:原理解析與SQL性能優化》共19章,分為四個部分:第一篇(第1~4章)對資料庫查詢優化技術的范圍、邏輯查詢優化、物理查詢優化,以及查詢優化器與其他模塊的關系做了非常細致、深入的講解;第二篇(第5~10章)首先從源碼角度對PostgreSQL查詢優化器的架構、層次、設計思想、相關數據結構和實現原理進行了深入、系統的分析,然後從功能角度對PostgreSQL的邏輯查詢優化、物理查詢優化、查詢優化器的關鍵演算法,以及PostgreSQL查詢優化器與其他模塊的關系做了深入的講解;第三篇(第11~16章)首先從源碼角度對MySQL查詢優化器的架構、層次、設計思想、相關數據結構和實現原理進行了深入、系統的分析,然後從功能角度對MySQL的邏輯查詢優化、物理查詢優化、查詢優化器的關鍵演算法,以及MySQL查詢優化器與其他模塊的關系做了深入的講解;第四篇(第17~19章)對PostgreSQL與MySQL的邏輯查詢優化技術、物理查詢優化技術、設計思想和編碼規范等各方面進行了深度的比較。

作者簡介:

李海翔,網名「那海藍藍」,資深資料庫專家,從事資料庫研發、資料庫測試與技術管理等工作10餘年,對資料庫的內核有深入的研究,長於PostgreSQL和MySQL等開源資料庫的內核與架構。現任職於Oracle公司MySQL全球開發團隊,從事查詢優化技術的研究和MySQL查詢優化器的開發工作。曾參與了863、核高基、工信部、科技部、發改委、北京市科委等多個重大科技項目。2005年獲得北京市科學技術進步獎一等獎,2006年獲高級工程師(系統分析師)。

閱讀全文

與優化資料庫源碼相關的資料

熱點內容
app裝機數量不足怎麼解決 瀏覽:205
爬蟲用什麼編譯器寫 瀏覽:593
勇者傳說火鳥解壓碼 瀏覽:359
解壓刮顏料 瀏覽:874
oracle執行linux命令行 瀏覽:81
程序員可以花錢學嗎 瀏覽:13
人工智慧必須python么 瀏覽:473
androidwebservice庫 瀏覽:349
沒有進行解壓的軟體能安裝嗎 瀏覽:797
linux關閉系統 瀏覽:633
安卓怎麼收納app 瀏覽:214
window壓縮命令 瀏覽:996
免費時間伺服器地址 瀏覽:61
蘋果怎麼清理數據不刪除app 瀏覽:443
linux硬解碼 瀏覽:123
賽文命令 瀏覽:412
java軟體編程教程 瀏覽:856
android判斷gps 瀏覽:480
安卓如何打開高清通話 瀏覽:336
炒股編程的書 瀏覽:67