導航:首頁 > 源碼編譯 > 數據挖掘演算法腦圖

數據挖掘演算法腦圖

發布時間:2022-10-09 00:02:59

㈠ 數據挖掘常用演算法有哪些

1、 樸素貝葉斯


樸素貝葉斯(NB)屬於生成式模型(即需要計算特徵與類的聯合概率分布),計算過程非常簡單,只是做了一堆計數。NB有一個條件獨立性假設,即在類已知的條件下,各個特徵之間的分布是獨立的。這樣樸素貝葉斯分類器的收斂速度將快於判別模型,如邏輯回歸,所以只需要較少的訓練數據即可。即使NB條件獨立假設不成立,NB分類器在實踐中仍然表現的很出色。它的主要缺點是它不能學習特徵間的相互作用,用mRMR中的R來講,就是特徵冗餘。


2、邏輯回歸(logistic regression)


邏輯回歸是一個分類方法,屬於判別式模型,有很多正則化模型的方法(L0,L1,L2),而且不必像在用樸素貝葉斯那樣擔心特徵是否相關。與決策樹與SVM相比,還會得到一個不錯的概率解釋,甚至可以輕松地利用新數據來更新模型(使用在線梯度下降演算法online gradient descent)。如果需要一個概率架構(比如,簡單地調節分類閾值,指明不確定性,或者是要獲得置信區間),或者希望以後將更多的訓練數據快速整合到模型中去,那麼可以使用它。


3、 線性回歸


線性回歸是用於回歸的,而不像Logistic回歸是用於分類,其基本思想是用梯度下降法對最小二乘法形式的誤差函數進行優化。


4、最近鄰演算法——KNN


KNN即最近鄰演算法,其主要過程為:計算訓練樣本和測試樣本中每個樣本點的距離(常見的距離度量有歐式距離,馬氏距離等);對上面所有的距離值進行排序;選前k個最小距離的樣本;根據這k個樣本的標簽進行投票,得到最後的分類類別;如何選擇一個最佳的K值,這取決於數據。


5、決策樹


決策樹中很重要的一點就是選擇一個屬性進行分枝,因此要注意一下信息增益的計算公式,並深入理解它。


6、SVM支持向量機


高准確率,為避免過擬合提供了很好的理論保證,而且就算數據在原特徵空間線性不可分,只要給個合適的核函數,它就能運行得很好。在動輒超高維的文本分類問題中特別受歡迎。可惜內存消耗大,難以解釋,運行和調參也有些煩人,而隨機森林卻剛好避開了這些缺點,比較實用。

㈡ 數據挖掘十大經典演算法及各自優勢

數據挖掘十大經典演算法及各自優勢

不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;2) 在樹構造過程中進行剪枝;3) 能夠完成對連續屬性的離散化處理;4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。
4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。
6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

以上是小編為大家分享的關於數據挖掘十大經典演算法及各自優勢的相關內容,更多信息可以關注環球青藤分享更多干貨

㈢ 數據挖掘的主要步驟有哪些

(1)信息收集:根據確定的數據分析對象抽象出在數據分析中所需要的特徵信息,然後選擇合適的信息收集方法,將收集到的信息存入資料庫。對於海量數據,選擇一個合適的數據存儲和管理的數據倉庫是至關重要的。


(2)數據集成:把不同來源、格式、特點性質的數據在邏輯上或物理上有機地集中,從而為企業提供全面的數據共享。


(3)數據規約:執行多數的數據挖掘演算法即使在少量數據上也需要很長的時間,而做商


業運營數據挖掘時往往數據量非常大。數據規約技術可以用來得到數據集的規約表示,它小得多,但仍然接近於保持原數據的完整性,並且規約後執行數據挖掘結果與規約前執行結果相同或幾乎相同。


(4)數據清理:在資料庫中的數據有一些是不完整的(有些感興趣的屬性缺少屬性值),含雜訊的(包含錯誤的屬性值),並且是不一致的(同樣的信息不同的表示方式),因此需要進行數據清理,將完整、正確、一致的數據信息存入數據倉庫中。不然,挖掘的結果會差強人意。


(5)數據變換:通過平滑聚集,數據概化,規范化等方式將數據轉換成適用於數據挖掘的形式。對於有些實數型數據,通過概念分層和數據的離散化來轉換數據也是重要的。


(6)數據挖掘過程:根據數據倉庫中的數據信息,選擇合適的分析工具,應用統計方法、事例推理、決策樹、規則推理、模糊集、甚至神經網路、遺傳演算法的方法處理信息,得出有用的分析信息。


(7)模式評估:從商業角度,由行業專家來驗證數據挖掘結果的正確性。


(8)知識表示:將數據挖掘所得到的分析信息以可視化的方式呈現給用戶,或作為新的知識存放在知識庫中,供其他應用程序使用。

㈣ 常見的數據挖掘方法有哪些

數據挖掘的常用方法有:

㈤ 大數據挖掘的演算法有哪些

大數據挖掘的演算法:
1.樸素貝葉斯,超級簡單,就像做一些數數的工作。如果條件獨立假設成立的話,NB將比鑒別模型收斂的更快,所以你只需要少量的訓練數據。即使條件獨立假設不成立,NB在實際中仍然表現出驚人的好。
2. Logistic回歸,LR有很多方法來對模型正則化。比起NB的條件獨立性假設,LR不需要考慮樣本是否是相關的。與決策樹與支持向量機不同,NB有很好的概率解釋,且很容易利用新的訓練數據來更新模型。如果你想要一些概率信息或者希望將來有更多數據時能方便的更新改進模型,LR是值得使用的。
3.決策樹,DT容易理解與解釋。DT是非參數的,所以你不需要擔心野點(或離群點)和數據是否線性可分的問題,DT的主要缺點是容易過擬合,這也正是隨機森林等集成學習演算法被提出來的原因。
4.支持向量機,很高的分類正確率,對過擬合有很好的理論保證,選取合適的核函數,面對特徵線性不可分的問題也可以表現得很好。SVM在維數通常很高的文本分類中非常的流行。

如果想要或許更多更詳細的訊息,建議您去參加CDA數據分析課程。大數據分析師現在有專業的國際認證證書了,CDA,即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證, 旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。點擊預約免費試聽課。

㈥ 什麼是數據挖掘數據挖掘怎麼做啊

數據挖掘(Data Mining)是指通過大量數據集進行分類的自動化過程,以通過數據分析來識別趨勢和模式,建立關系來解決業務問題。換句話說,數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。

原則上講,數據挖掘可以應用於任何類型的信息存儲庫及瞬態數據(如數據流),如資料庫、數據倉庫、數據集市、事務資料庫、空間資料庫(如地圖等)、工程設計數據(如建築設計等)、多媒體數據(文本、圖像、視頻、音頻)、網路、數據流、時間序列資料庫等。也正因如此,數據挖掘存在以下特點:

(1)數據集大且不完整
數據挖掘所需要的數據集是很大的,只有數據集越大,得到的規律才能越貼近於正確的實際的規律,結果也才越准確。除此以外,數據往往都是不完整的。

(2)不準確性
數據挖掘存在不準確性,主要是由雜訊數據造成的。比如在商業中用戶可能會提供假數據;在工廠環境中,正常的數據往往會收到電磁或者是輻射干擾,而出現超出正常值的情況。這些不正常的絕對不可能出現的數據,就叫做雜訊,它們會導致數據挖掘存在不準確性。

(3)模糊的和隨機的
數據挖掘是模糊的和隨機的。這里的模糊可以和不準確性相關聯。由於數據不準確導致只能在大體上對數據進行一個整體的觀察,或者由於涉及到隱私信息無法獲知到具體的一些內容,這個時候如果想要做相關的分析操作,就只能在大體上做一些分析,無法精確進行判斷。
而數據的隨機性有兩個解釋,一個是獲取的數據隨機;我們無法得知用戶填寫的到底是什麼內容。第二個是分析結果隨機。數據交給機器進行判斷和學習,那麼一切的操作都屬於是灰箱操作。

㈦ 數據挖掘的經典演算法有哪些

1. C4.5


C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:


1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;


2) 在樹構造過程中進行剪枝;


3) 能夠完成對連續屬性的離散化處理;


4) 能夠對不完整數據進行處理。


2. The k-means algorithm 即K-Means演算法


k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。


3. Support vector machines


支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。


4. The Apriori algorithm


Apriori演算法,它是一種最具影響力的挖掘布爾關聯規則頻繁項集的演算法。它的演算法核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。


關於數據挖掘的經典演算法有哪些,該如何下手的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

㈧ 帶你了解數據挖掘中的經典演算法

數據挖掘的演算法有很多,而不同的演算法有著不同的優點,同時也發揮著不同的作用。可以這么說,演算法在數據挖掘中做出了極大的貢獻,如果我們要了解數據挖掘的話就不得不了解這些演算法,下面我們就繼續給大家介紹一下有關數據挖掘的演算法知識。
1.The Apriori algorithm,
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。這個演算法是比較復雜的,但也是十分實用的。
2.最大期望演算法
在統計計算中,最大期望演算法是在概率模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數。最大期望經常用在機器學習和計算機視覺的數據集聚領域。而最大期望演算法在數據挖掘以及統計中都是十分常見的。
3.PageRank演算法
PageRank是Google演算法的重要內容。PageRank里的page不是指網頁,而是創始人的名字,即這個等級方法是以佩奇來命名的。PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票,被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」,這個標准就是衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
3.AdaBoost演算法
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器,然後把這些弱分類器集合起來,構成一個更強的最終分類器。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。這種演算法給數據挖掘工作解決了不少的問題。
數據挖掘演算法有很多,這篇文章中我們給大家介紹的演算法都是十分經典的演算法,相信大家一定可以從中得到有價值的信息。需要告訴大家的是,我們在進行數據挖掘工作之前一定要事先掌握好數據挖掘需呀掌握的各類演算法,這樣我們才能在工總中得心應手,如果基礎不牢固,那麼我們遲早是會被淘汰的。職場如戰場,我們一定要全力以赴。

㈨ 如何成為一名優秀的數據挖掘師

數據挖掘師是一個十分重要的崗位,這個崗位專門為數據分析以及大數據服務。很多人都想進入數據分析這個行業,但有不少人雖然通過努力學習數據挖掘知識進入到了數據分析行業,但還是對數據挖掘工作有很多的不自信,不知道如何成為一名優秀的數據挖掘師。下面我們就給大家講講如何成為一名優秀的數據挖掘師。
如果想成為一名優秀的數據挖掘師,就需要學習三個級別的課程,第一就是執行能力,第二就是專業能力,第三就是結構能力,掌握了這三個能力以後,就能夠成為一名優秀的數據挖掘師。而數據挖掘師一定要掌握很多的基礎內容,這些基礎的內容表面跟數據挖掘沒有太大的聯系,其實也是非常重要的,那就是時間管理、商務禮儀、溝通交流、EXCEL、PPT、思維腦圖等等,學習這些內容是比較簡單的。
而專業能力就需要我們意識到數據挖掘師這個職業不是指僅限於挖掘這個詞,而是指能夠端到端用數據解決一個決策問題的所有能力之和,這就需要我們能夠跨學科地思考、解決問題,一個人就是一支隊伍。而這種系統解決問題的知識往往是隱藏的,需要我們在不斷實踐、思考的過程中,靈活地把多個學科之間的知識隨時調用,打贏一場戰役,除了傳統的數據、平台和演算法知識外,還包括數學知識、營銷知識、行業知識、分析方法等等。
在數據挖掘中,我們還是需要學習更好認知層面的知識,諸如復利效應、概率論、黃金思維圈、進化論、系統思考、二八法則等等。這就需要我們知道系統思考強調「關系」,而非「人和事物」,數據建模這個事物雖然很重要,但更重要的是關系,即需要打通效果數據和原始模型這個反饋優化流程,而二八原則中,數據挖掘花了太多的代價在數據處理、變數准備和模型發布上,這部分耗時長,價值小,顯然不符合二八原則,需要盡可能降低這部分時長,這樣不但的提高的數據挖掘的效率,也能夠獲得極大的成就感。
有的人很納悶,明明有些人對於相關的數據分析工具以及演算法並不了解,但還是能夠分析出很多的數據。其實對於數據挖掘師來講,能夠獨當一面是綜合素質的體現,其水平絕對不是掌握了幾個演算法、幾個工具所能代表的。所以說,我們一定要重視這方面能力的培養。

㈩ 數據挖掘的常用方法都有哪些

在數據分析中,數據挖掘工作是一個十分重要的工作,可以說,數據挖掘工作占據數據分析工作的時間將近一半,由此可見數據挖掘的重要性,要想做好數據挖掘工作需要掌握一些方法,那麼數據挖掘的常用方法都有哪些呢?下面就由小編為大家解答一下這個問題。
首先給大家說一下神經網路方法。神經網路是模擬人類的形象直覺思維,在生物神經網路研究的基礎上,根據生物神經元和神經網路的特點,通過簡化、歸納、提煉總結出來的一類並行處理網路,利用其非線性映射的思想和並行處理的方法,用神經網路本身結構來表達輸入和輸出的關聯知識。神經網路方法在數據挖掘中十分常見。
然後給大家說一下粗糙集方法。粗糙集理論是一種研究不精確、不確定知識的數學工具。粗糙集處理的對象是類似二維關系表的信息表。目前成熟的關系資料庫管理系統和新發展起來的數據倉庫管理系統,為粗糙集的數據挖掘奠定了堅實的基礎。粗糙集理論能夠在缺少先驗知識的情況下,對數據進行分類處理。在該方法中知識是以信息系統的形式表示的,先對信息系統進行歸約,再從經過歸約後的知識庫抽取得到更有價值、更准確的一系列規則。因此,基於粗糙集的數據挖掘演算法實際上就是對大量數據構成的信息系統進行約簡,得到一種屬性歸約集的過程,最後抽取規則。
而決策樹方法也是數據挖掘的常用方法之一。決策樹是一種常用於預測模型的演算法,它通過一系列規則將大量數據有目的分類,從中找到一些有價值的、潛在的信息。它的主要優點是描述簡單,分類速度快,易於理解、精度較高,特別適合大規模的數據處理,在知識發現系統中應用較廣。它的主要缺點是很難基於多個變數組合發現規則。在數據挖掘中,決策樹常用於分類。
最後給大家說的是遺傳演算法。遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法。數據挖掘是從大量數據中提取人們感興趣的知識,這些知識是隱含的、事先未知的、潛在有用的信息。因此,許多數據挖掘問題可以看成是搜索問題,資料庫或者數據倉庫為搜索空間,挖掘演算法是搜索策略。
上述的內容就是我們為大家講解的數據挖掘工作中常用的方法了,數據挖掘工作常用的方法就是神經網路方法、粗糙集方法、決策樹方法、遺傳演算法,掌握了這些方法才能夠做好數據挖掘工作。

閱讀全文

與數據挖掘演算法腦圖相關的資料

熱點內容
沒有滴滴app怎麼打車 瀏覽:98
大數乘法java 瀏覽:997
如何登錄伺服器看源碼 瀏覽:522
如何做伺服器端 瀏覽:154
注冊伺服器地址指什麼 瀏覽:433
文本命令行 瀏覽:97
撲克牌睡眠解壓 瀏覽:193
rc4演算法流程圖 瀏覽:159
胡蘿卜解壓方法 瀏覽:35
掃描pdf格式軟體 瀏覽:877
程序員在銀行開賬戶 瀏覽:516
android資料庫下載 瀏覽:750
中午伺服器崩潰怎麼辦 瀏覽:425
產品經理和程序員待遇 瀏覽:442
解憂程序員免費閱讀 瀏覽:109
錄像免壓縮 瀏覽:508
總結所學過的簡便演算法 瀏覽:362
南昌哪些地方需要程序員 瀏覽:761
三台伺服器配置IP地址 瀏覽:175
如何用命令方塊連續對話 瀏覽:280