『壹』 什麼是演算法演算法的概念演算法的特點都有哪些
1、演算法概念: 在數學上,現代意義上的「演算法」通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成. 2. 演算法的特點: (1)有限性:一個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的. (2)確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可. (3)順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都准確無誤,才能完成問題. (4)不唯一性:求解某一個問題的解法不一定是唯一的,對於一個問題可以有不同的演算法. (5)普遍性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.
『貳』 演算法及其特性有哪些
1.演算法的重要特性(1)有窮性:一個演算法必須在執行有窮步驟之後正常結束,而不能形成無窮循環。
(2)確定性:演算法中的每一條指令必須有確切的含義,不能產生多義性。
(2)可行性:演算法中的每一條指令必須是切實可執行的,即原則上可以通過已經實現的基本運算執行有限次來實現。
(4)輸入:一個演算法應該有零個或多個輸入。
(5)輸出:一個演算法應該有一個或多個輸出,這些輸出是同輸入有特定關系的量。
2.演算法描述的方法(1)框圖描述:該方法使用流程圖或N-S圖來描述演算法。
(2)自然語言描述:該方法採用自然語言,同時添加高級程序設計語言如while、for和if等基本控制語句來描述演算法。這類描述方法自然、簡潔,但缺乏嚴謹性和結構性。
(2)類語言描述:這是介於程序設計語言和自然語言之間演算法描述形式,其特徵是突出演算法設計的主體部分而有意忽略某些過於嚴格的語法細節,如類C或C++的偽語言。這種演算法不能直接在計算機上運行,但專業設計人員經常使用它來描述演算法,它具有容易編寫、閱讀和格式統一的特點。
(4)程序設計語言描述:採用某種高級程序設計語言(如C或C++)來描述。這是可以在計算機上運行並獲得結果的演算法描述。
本課程將採用偽C語言進行演算法描述。
2.演算法與程序的關系演算法的含義與程序十分相似,但二者是有區別的。演算法和程序都是用來表達解決問題的邏輯步驟;演算法是對解決問題方法的具體描述,程序是演算法在計算機中的具體實現;一個程序不一定滿足有窮性(死循環),而演算法一定滿足有窮性;程序中的指令必須是機器可執行的,而演算法中的指令則無此限制;一個演算法若用計算機語言來書寫,則它就可以是一個程序。因此,程序是演算法,但演算法不一定是程序。4.演算法設計要求在演算法設計中,對同一個問題可以設計出不同的求解演算法。如何評價這些演算法的優劣,從而為演算法設計和選擇提供可靠的依據?通常可從以下四個方面評價演算法的質量:
(1)正確性:演算法應該能夠正確地執行預先規定的功能,並達到所期望的性能要求。
(2)可讀性:演算法應該好讀,以有利於讀者對程序的理解,便於調試和修改。
(2)健壯性:演算法應具有容錯處理。當輸入非法數據時,演算法應對其作出反應,而不是產生莫名其妙的輸出結果。
(4)效率與低存儲量需求:效率指的是演算法執行的時間。對於同一個問題,如果有多種演算法可以求解,執行時間短的演算法效率高。演算法存儲量指的是演算法執行過程中所需要的最大存儲空間。高效率和低存儲量這兩者與問題的規模有關。
『叄』 演算法具有什麼特徵
一個演算法應該具有以下五個重要的特徵:
1,有窮性(Finiteness):演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
2,確切性(Definiteness):演算法的每一步驟必須有確切的定義;
3,輸入項(Input):一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
4,輸出項(Output):一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5,可行性(Effectiveness):演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。
(3)實際問題中的演算法設計特點擴展閱讀:
演算法要素:
一,數據對象的運算和操作:計算機可以執行的基本操作是以指令的形式描述的。一個計算機系統能執行的所有指令的集合,成為該計算機系統的指令系統。一個計算機的基本運算和操作有如下四類:
1,算術運算:加減乘除等運算
2,邏輯運算:或、且、非等運算
3,關系運算:大於、小於、等於、不等於等運算
4,數據傳輸:輸入、輸出、賦值等運算
二,演算法的控制結構:一個演算法的功能結構不僅取決於所選用的操作,而且還與各操作之間的執行順序有關。
『肆』 演算法的五大特性是什麼
演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。演算法的五大特性是:
有窮性;演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
確切性;演算法對於特定的輸入有特定的輸出,程序提供了確定演算法結果的平台
輸入項;一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
輸出項;演算法有一個或多個輸出,以反映對輸入數據加工後的結果
可行性;演算法需要考慮設計的可能,程序則具體是實現演算法上的設計
『伍』 舉例說明何謂演算法,特點是什麼評價一個演算法的優劣,主要從哪些因素分析
評價演算法優劣的四個分析因素:
1.正確性
能正確地實現預定的功能,滿足具體問題的需要。處理數據使用的演算法是否得當,能不能得到預想的結果。
2.易讀性
易於閱讀、理解和交流,便於調試、修改和擴充。寫出的演算法,能不能讓別人看明白,能不能讓別人明白演算法的邏輯?如果通俗易懂,在系統調試和修改或者功能擴充的時候,使系統維護更為便捷。
3.健壯性
輸入非法數據,演算法也能適當地做出反應後進行處理,不會產生預料不到的運行結果。數據的形式多種多樣,演算法可能面臨著接受各種各樣的數據,當演算法接收到不適合演算法處理的數據,演算法本身該如何處理呢?如果演算法能夠處理異常數據,處理能力越強,健壯性越好。
4.時空性
演算法的時空性是該演算法的時間性能和空間性能。主要是說演算法在執行過程中的時間長短和空間佔用多少問題。
演算法處理數據過程中,不同的演算法耗費的時間和內存空間是不同的。
(5)實際問題中的演算法設計特點擴展閱讀:
演算法是對特定問題求解步驟的一種描述,它是指令的有限序列,其中每一條指令表示一個或多個操作。此外,一個演算法還具有下列5個重要的特性。
(1)、有窮性
一個演算法必須總是(對任何合法的輸入值)在執行有窮步之後結束,且每一步都可在有窮時間內完成。
(2)、確定性
演算法中每一條指令必須有明確的含義,讀者理解時不會產生二義性。即對於相同的輸入只能得到相同的輸出。
(3)、可行性
一個演算法是可行的,即演算法中描述的操作都是可以通過已經實現的基本運算執行有限次來實現的。
(4)、輸入
一個演算法有零個或多個的輸入,這些輸入取自於某個特定的對象的集合。
(5)、輸出
一個演算法有一個或多個的輸出,這些輸出是同輸入有著某種特定關系的量。
『陸』 計算機的演算法具有哪些特性
計算機的演算法具有可行性,有窮性、輸入輸出、確定性。
計算機演算法特點
1.有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他視為有效演算法。
2. 確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。
3. 有零個或多個輸入、所謂輸入是指在執行演算法是需要從外界取得必要的信息。
4. 有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。
5.有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。
重要演算法
A*搜尋演算法
俗稱A星演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。該演算法像Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。
Beam Search
束搜索(beam search)方法是解決優化問題的一種啟發式方法,它是在分枝定界方法基礎上發展起來的,它使用啟發式方法估計k個最好的路徑,僅從這k個路徑出發向下搜索,即每一層只有滿意的結點會被保留,其它的結點則被永久拋棄,從而比分枝定界法能大大節省運行時間。束搜索於20 世紀70年代中期首先被應用於人工智慧領域,1976 年Lowerre在其稱為HARPY的語音識別系統中第一次使用了束搜索方法。他的目標是並行地搜索幾個潛在的最優決策路徑以減少回溯,並快速地獲得一個解。
二分取中查找演算法
一種在有序數組中查找某一特定元素的搜索演算法。搜索過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜索過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。這種搜索演算法每一次比較都使搜索范圍縮小一半。
Branch and bound
分支定界(branch and bound)演算法是一種在問題的解空間樹上搜索問題的解的方法。但與回溯演算法不同,分支定界演算法採用廣度優先或最小耗費優先的方法搜索解空間樹,並且,在分支定界演算法中,每一個活結點只有一次機會成為擴展結點。
數據壓縮
數據壓縮是通過減少計算機中所存儲數據或者通信傳播中數據的冗餘度,達到增大數據密度,最終使數據的存儲空間減少的技術。數據壓縮在文件存儲和分布式系統領域有著十分廣泛的應用。數據壓縮也代表著尺寸媒介容量的增大和網路帶寬的擴展。
Diffie–Hellman密鑰協商
Diffie–Hellman key exchange,簡稱「D–H」,是一種安全協議。它可以讓雙方在完全沒有對方任何預先信息的條件下通過不安全信道建立起一個密鑰。這個密鑰可以在後續的通訊中作為對稱密鑰來加密通訊內容。
Dijkstra』s 演算法
迪科斯徹演算法(Dijkstra)是由荷蘭計算機科學家艾茲格·迪科斯徹(Edsger Wybe Dijkstra)發明的。演算法解決的是有向圖中單個源點到其他頂點的最短路徑問題。舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離,迪科斯徹演算法可以用來找到兩個城市之間的最短路徑。
動態規劃
動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。比較著名的應用實例有:求解最短路徑問題,背包問題,項目管理,網路流優化等。這里也有一篇文章說得比較詳細。
歐幾里得演算法
在數學中,輾轉相除法,又稱歐幾里得演算法,是求最大公約數的演算法。輾轉相除法首次出現於歐幾里得的《幾何原本》(第VII卷,命題i和ii)中,而在中國則可以追溯至東漢出現的《九章算術》。
最大期望(EM)演算法
在統計計算中,最大期望(EM)演算法是在概率(probabilistic)模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variable)。最大期望經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在 E 步上求得的最大似然值來計算參數的值。M 步上找到的參數估計值被用於下一個 E 步計算中,這個過程不斷交替進行。
快速傅里葉變換(FFT)
快速傅里葉變換(Fast Fourier Transform,FFT),是離散傅里葉變換的快速演算法,也可用於計算離散傅里葉變換的逆變換。快速傅里葉變換有廣泛的應用,如數字信號處理、計算大整數乘法、求解偏微分方程等等。
哈希函數
HashFunction是一種從任何一種數據中創建小的數字「指紋」的方法。該函數將數據打亂混合,重新創建一個叫做散列值的指紋。散列值通常用來代表一個短的隨機字母和數字組成的字元串。好的散列函數在輸入域中很少出現散列沖突。在散列表和數據處理中,不抑制沖突來區別數據,會使得資料庫記錄更難找到。
堆排序
Heapsort是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法。堆積樹是一個近似完全二叉樹的結構,並同時滿足堆積屬性:即子結點的鍵值或索引總是小於(或者大於)它的父結點。
歸並排序
Merge sort是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
RANSAC 演算法
RANSAC 是」RANdom SAmpleConsensus」的縮寫。該演算法是用於從一組觀測數據中估計數學模型參數的迭代方法,由Fischler and Bolles在1981提出,它是一種非確定性演算法,因為它只能以一定的概率得到合理的結果,隨著迭代次數的增加,這種概率是增加的。該演算法的基本假設是觀測數據集中存在」inliers」(那些對模型參數估計起到支持作用的點)和」outliers」(不符合模型的點),並且這組觀測數據受到雜訊影響。RANSAC 假設給定一組」inliers」數據就能夠得到最優的符合這組點的模型。
RSA加密演演算法
這是一個公鑰加密演算法,也是世界上第一個適合用來做簽名的演算法。今天的RSA已經專利失效,其被廣泛地用於電子商務加密,大家都相信,只要密鑰足夠長,這個演算法就會是安全的。
並查集Union-find
並查集是一種樹型的數據結構,用於處理一些不相交集合(Disjoint Sets)的合並及查詢問題。常常在使用中以森林來表示。
Viterbi algorithm
尋找最可能的隱藏狀態序列(Finding most probable sequence of hidden states)。
『柒』 演算法的五大特性是什麼
輸入:在演算法中可以有零個或者多個輸入。
輸出:在演算法中至少有一個或者多個輸出。
有窮行:在執行有限的步驟之後,自動結束不會出現無限循環並且每一個步驟在可接受的時間內完成。
確定性:演算法的每一個步驟都具有確定的含義,不會出現二義性。
可行性:演算法的每一步都必須是可行的,也就是說,每一步都能夠通過執行有限的次數完成。
『捌』 一般來說好的演算法具有哪些特點
1、演算法概念:
在數學上,現代意義上的「演算法」通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.
2. 演算法的特點:
(1)有限性:一個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的.
(2)確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可.
(3)順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都准確無誤,才能完成問題.
(4)不唯一性:求解某一個問題的解法不一定是唯一的,對於一個問題可以有不同的演算法.
(5)普遍性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.
『玖』 什麼是演算法演算法的概念演算法的特點都有哪些
1、演算法概念:
在數學上,現代意義上的「演算法」通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.
2. 演算法的特點:
(1)有限性:一個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的.
(2)確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可.
(3)順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都准確無誤,才能完成問題.
(4)不唯一性:求解某一個問題的解法不一定是唯一的,對於一個問題可以有不同的演算法.
(5)普遍性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.
『拾』 演算法設計的本書特點
以各種演算法設計技術(如貪心法、分治策略、動態規劃、網路流、近似演算法、隨機演算法等)為主線來組織素材,突出了演算法設計的思想和分析的基本原則,為從事實際問題的演算法設計與分析工作提供了清晰的、整體的思路和方法。
本教材內容非常豐富,不但深入系統地闡述了演算法設計與分析的理論,而且給出了大量的典型範例和參考文獻。
本教材以演算法為主線來處理演算法與數據結構的關系。這種安排突出了演算法設計的中心思想,避免了與數據結構課程在內容上的重復,更加適合於國內的教學計劃。
本教材的敘述和選材非常適合教學。內容由淺入深,由具體到抽象,從演算法設計技術與分析方法自然過渡到計算復雜性理論,選配了大量難度適當的練習,並給出求解範例。