對稱密鑰加密
對稱密鑰加密 Symmetric Key Algorithm 又稱為對稱加密、私鑰加密、共享密鑰加密:這類演算法在加密和解密時使用相同的密鑰,或是使用兩個可以簡單的相互推算的密鑰,對稱加密的速度一般都很快。
分組密碼
分組密碼 Block Cipher 又稱為「分塊加密」或「塊加密」,將明文分成多個等長的模塊,使用確定的演算法和對稱密鑰對每組分別加密解密。這也就意味著分組密碼的一個優點在於可以實現同步加密,因為各分組間可以相對獨立。
與此相對應的是流密碼:利用密鑰由密鑰流發生器產生密鑰流,對明文串進行加密。與分組密碼的不同之處在於加密輸出的結果不僅與單獨明文相關,而是與一組明文相關。
DES、3DES
數據加密標准 DES Data Encryption Standard 是由IBM在美國國家安全局NSA授權下研製的一種使用56位密鑰的分組密碼演算法,並於1977年被美國國家標准局NBS公布成為美國商用加密標准。但是因為DES固定的密鑰長度,漸漸不再符合在開放式網路中的安全要求,已經於1998年被移出商用加密標准,被更安全的AES標准替代。
DES使用的Feistel Network網路屬於對稱的密碼結構,對信息的加密和解密的過程極為相似或趨同,使得相應的編碼量和線路傳輸的要求也減半。
DES是塊加密演算法,將消息分成64位,即16個十六進制數為一組進行加密,加密後返回相同大小的密碼塊,這樣,從數學上來說,64位0或1組合,就有2^64種可能排列。DES密鑰的長度同樣為64位,但在加密演算法中,每逢第8位,相應位會被用於奇偶校驗而被演算法丟棄,所以DES的密鑰強度實為56位。
3DES Triple DES,使用不同Key重復三次DES加密,加密強度更高,當然速度也就相應的降低。
AES
高級加密標准 AES Advanced Encryption Standard 為新一代數據加密標准,速度快,安全級別高。由美國國家標准技術研究所NIST選取Rijndael於2000年成為新一代的數據加密標准。
AES的區塊長度固定為128位,密鑰長度可以是128位、192位或256位。AES演算法基於Substitution Permutation Network代換置列網路,將明文塊和密鑰塊作為輸入,並通過交錯的若干輪代換"Substitution"和置換"Permutation"操作產生密文塊。
AES加密過程是在一個4*4的位元組矩陣(或稱為體State)上運作,初始值為一個明文區塊,其中一個元素大小就是明文區塊中的一個Byte,加密時,基本上各輪加密循環均包含這四個步驟:
ECC
ECC即 Elliptic Curve Cryptography 橢圓曲線密碼學,是基於橢圓曲線數學建立公開密鑰加密的演算法。ECC的主要優勢是在提供相當的安全等級情況下,密鑰長度更小。
ECC的原理是根據有限域上的橢圓曲線上的點群中的離散對數問題ECDLP,而ECDLP是比因式分解問題更難的問題,是指數級的難度。而ECDLP定義為:給定素數p和橢圓曲線E,對Q=kP,在已知P,Q 的情況下求出小於p的正整數k。可以證明由k和P計算Q比較容易,而由Q和P計算k則比較困難。
數字簽名
數字簽名 Digital Signature 又稱公鑰數字簽名是一種用來確保數字消息或文檔真實性的數學方案。一個有效的數字簽名需要給接收者充足的理由來信任消息的可靠來源,而發送者也無法否認這個簽名,並且這個消息在傳輸過程中確保沒有發生變動。
數字簽名的原理在於利用公鑰加密技術,簽名者將消息用私鑰加密,然後公布公鑰,驗證者就使用這個公鑰將加密信息解密並對比消息。一般而言,會使用消息的散列值來作為簽名對象。
2. 常見密碼技術簡介
##
密碼技術在網路傳輸安全上的應用
隨著互聯網電子商務和網路支付的飛速發展,互聯網安全已經是當前最重要的因素之一。作為一名合格的軟體開發工程師,有必要了解整個互聯網是如何來保證數據的安全傳輸的,本篇文章對網路傳輸安全體系以及涉及到的演算法知識做了一個簡要的介紹,希望大家能夠有一個初步的了解。
###密碼技術定義
簡單的理解,密碼技術就是編制密碼和破譯密碼的一門技術,也即是我們常說的加密和解密。常見的結構如圖:
其中涉及到的專業術語:
1.秘鑰:分為加密秘鑰和解密秘鑰,兩者相同的加密演算法稱為對稱加密,不同的稱為非對稱加密;
2.明文:未加密過的原文信息,不可以被泄露;
3.密文:經過加密處理後的信息,無法從中獲取有效的明文信息;
4.加密:明文轉成密文的過程,密文的長度根據不同的加密演算法也會有不同的增量;
5.解密:密文轉成明文的過程;
6.加密/解密演算法:密碼系統使用的加密方法和解密方法;
7.攻擊:通過截獲數據流、釣魚、木馬、窮舉等方式最終獲取秘鑰和明文的手段。
###密碼技術和我們的工作生活息息相關
在我們的日常生活和工作中,密碼技術的應用隨處可見,尤其是在互聯網系統上。下面列舉幾張比較有代表性的圖片,所涉及到的知識點後面都會一一講解到。
1.12306舊版網站每次訪問時,瀏覽器一般會提示一個警告,是什麼原因導致的? 這樣有什麼風險呢?
2.360瀏覽器瀏覽HTTPS網站時,點開地址欄的小鎖圖標會顯示加密的詳細信息,比如網路的話會顯示```AES_128_GCM、ECDHE_RSA```,這些是什麼意思?
3.在Mac系統的鑰匙串里有很多的系統根證書,展開後有非常多的信息,這些是做什麼用的?
4.去銀行開通網上支付都會附贈一個U盾,那U盾有什麼用呢?
##如何確保網路數據的傳輸安全
接下來我們從實際場景出發,以最常見的客戶端Client和服務端Server傳輸文件為例來一步步了解整個安全體系。
####1. 保密性
首先客戶端要把文件送到服務端,不能以明文形式發送,否則被黑客截獲了數據流很容易就獲取到了整個文件。也就是文件必須要確保保密性,這就需要用到對稱加密演算法。
** 對稱加密: **加密和解密所使用的秘鑰相同稱為對稱加密。其特點是速度快、效率高,適用於對較大量的數據進行加密。常見的對稱加密演算法有DES、3DES、AES、TDEA、RC5等,讓我們了解下最常見的3DES和AES演算法:
** DES(Data Encryption Standard): **1972年由美國IBM研製,數學原理是將明文以8位元組分組(不足8位可以有不同模式的填充補位),通過數學置換和逆置換得到加密結果,密文和明文長度基本相同。秘鑰長度為8個位元組,後有了更安全的一個變形,使用3條秘鑰進行三次加密,也就是3DES加密。
**3DES:**可以理解為對明文進行了三次DES加密,增強了安全程度。
** AES(Advanced Encryption Standard): **2001年由美國發布,2002年成為有效標准,2006年成為最流行的對稱加密演算法之一。由於安全程度更高,正在逐步替代3DES演算法。其明文分組長度為16位元組,秘鑰長度可以為16、24、32(128、192、256位)位元組,根據秘鑰長度,演算法被稱為AES-128、AES-192和AES-256。
對稱加密演算法的入參基本類似,都是明文、秘鑰和模式三個參數。可以通過網站進行模擬測試:[http://tool.chacuo.net/crypt3des]()。其中的模式我們主要了解下ECB和CBC兩種簡單模式,其它有興趣可自行查閱。
** ECB模式(Electronic Codebook Book): **這種模式是將明文分成若干小段,然後對每一段進行單獨的加密,每一段之間不受影響,可以單獨的對某幾段密文進行解密。
** CBC模式(Cipher Block Chaining): **這種模式是將明文分成若干小段,然後每一段都會和初始向量(上圖的iv偏移量)或者上一段的密文進行異或運算後再進行加密,不可以單獨解密某一斷密文。
** 填充補位: **常用為PKCS5Padding,規則為缺幾位就在後面補幾位的所缺位數。,比如明文數據為```/x01/x01/x01/x01/x01/x01```6個位元組,缺2位補```/x02```,補完位```/x01/x01/x01/x01/x01/x01/x02/x02```。解密後也會按照這個規則進行逆處理。需要注意的是:明文為8位時也需要在後面補充8個```/x08```。
####2. 真實性
客戶端有了對稱秘鑰,就需要考慮如何將秘鑰送到服務端,問題跟上面一樣:不能以明文形式直接傳輸,否則還是會被黑客截獲到。這里就需要用到非對稱加密演算法。
** 非對稱加密: **加密和解密秘鑰不同,分別稱為公開秘鑰(publicKey)和私有秘鑰(privateKey)。兩者成對出現,公鑰加密只能用私鑰解密,而私鑰加密也只能用公鑰加密。兩者不同的是:公鑰是公開的,可以隨意提供給任何人,而私鑰必須保密。特點是保密性好,但是加密速度慢。常見的非對稱加密演算法有RSA、ECC等;我們了解下常見的RSA演算法:
** RSA(Ron Rivest、Adi Shamir、Leonard Adleman): **1977年由麻省理工學院三人提出,RSA就是他們三個人的姓氏開頭字母拼在一起組成的。數學原理是基於大數分解。類似於```100=20x5```,如果只知道100的話,需要多次計算才可以試出20和5兩個因子。如果100改為極大的一個數,就非常難去試出真正的結果了。下面是隨機生成的一對公私鑰:
這是使用公鑰加密後結果:
RSA的這種特性就可以保證私鑰持有者的真實性,客戶端使用公鑰加密文件後,黑客就算截獲到數據因為沒有私鑰也是無法解密的。
** Tips: **
+** 不使用對稱加密,直接用RSA公私鑰進行加密和解密可以嗎? **
答案:不可以,第一是因為RSA加密速度比對稱加密要慢幾十倍甚至幾百倍以上,第二是因為RSA加密後的數據量會變大很多。
+** 由服務端生成對稱秘鑰,然後用私鑰加密,客戶端用公鑰解密這樣來保證對稱秘鑰安全可行嗎? **
答案:不可行,因為公鑰是公開的,任何一個人都可以拿到公鑰解密獲取對稱秘鑰。
####3. 完整性
當客戶端向服務端發送對稱秘鑰加密後的文件時,如果被黑客截獲,雖然無法解密得到對稱秘鑰。但是黑客可以用服務端公鑰加密一個假的對稱秘鑰,並用假的對稱秘鑰加密一份假文件發給服務端,這樣服務端會仍然認為是真的客戶端發送來的,而並不知道閱讀的文件都已經是掉包的了。
這個問題就需要用到散列演算法,也可以譯為Hash。常見的比如MD4、MD5、SHA-1、SHA-2等。
** 散列演算法(哈希演算法): **簡單的說就是一種將任意長度的消息壓縮到某一固定長度的消息摘要的函數。而且該過程是不可逆的,無法通過摘要獲得原文。
** SHA-1(Secure Hash Algorithm 1): **由美國提出,可以生成一個20位元組長度的消息摘要。05年被發現了針對SHA-1的有效攻擊方法,已經不再安全。2010年以後建議使用SHA-2和SHA-3替代SHA-1。
** SHA-2(Secure Hash Algorithm 2): **其下又分為六個不同演算法標准:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA512/256。其後面數字為摘要結果的長度,越長的話碰撞幾率越小。SHA-224的使用如下圖:
客戶端通過上面的散列演算法可以獲取文件的摘要消息,然後用客戶端私鑰加密後連同加密的文件發給服務端。黑客截獲到數據後,他沒有服務端私鑰無法獲取到對稱秘鑰,也沒有客戶端私鑰無法偽造摘要消息。如果再像上面一樣去掉包文件,服務端收到解密得到摘要消息一對比就可以知道文件已經被掉包篡改過了。
這種用私鑰對摘要消息進行加密的過程稱之為數字簽名,它就解決了文件是否被篡改問題,也同時可以確定發送者身份。通常這么定義:
** 加密: **用公鑰加密數據時稱為加密。
** 簽名: **用私鑰加密數據時稱為簽名。
####4. 信任性
我們通過對稱加密演算法加密文件,通過非對稱加密傳輸對稱秘鑰,再通過散列演算法保證文件沒被篡改過和發送者身份。這樣就安全了嗎?
答案是否定的,因為公鑰是要通過網路送到對方的。在這期間如果出現問題會導致客戶端收到的公鑰並不一定是服務端的真實公鑰。常見的** 中間人攻擊 **就是例子:
** 中間人攻擊MITM(Man-in-the-MiddleAttack): **攻擊者偽裝成代理伺服器,在服務端發送公鑰證書時,篡改成攻擊者的。然後收到客戶端數據後使用攻擊者私鑰解密,再篡改後使用攻擊者私鑰簽名並且將攻擊者的公鑰證書發送給伺服器。這樣攻擊者就可以同時欺騙雙方獲取到明文。
這個風險就需要通過CA機構對公鑰證書進行數字簽名綁定公鑰和公鑰所屬人,也就是PKI體系。
** PKI(Privilege Management Infrastructure): **支持公鑰管理並能支持認證、加密、完整性和可追究性的基礎設施。可以說整個互聯網數據傳輸都是通過PKI體系進行安全保證的。
** CA(Certificate Authority): **CA機構就是負責頒發證書的,是一個比較公認的權威的證書發布機構。CA有一個管理標准:WebTrust。只有通過WebTrust國際安全審計認證,根證書才能預裝到主流的瀏覽器而成為一個全球可信的認證機構。比如美國的GlobalSign、VeriSign、DigiCert,加拿大的Entrust。我國的CA金融方面由中國人民銀行管理CFCA,非金融CA方面最初由中國電信負責建設。
CA證書申請流程:公司提交相應材料後,CA機構會提供給公司一張證書和其私鑰。會把Issuer,Public key,Subject,Valid from,Valid to等信息以明文的形式寫到證書裡面,然後用一個指紋演算法計算出這些數字證書內容的一個指紋,並把指紋和指紋演算法用自己的私鑰進行加密。由於瀏覽器基本都內置了CA機構的根證書,所以可以正確的驗證公司證書指紋(驗簽),就不會有安全警告了。
但是:所有的公司其實都可以發布證書,甚至我們個人都可以隨意的去發布證書。但是由於瀏覽器沒有內置我們的根證書,當客戶端瀏覽器收到我們個人發布的證書後,找不到根證書進行驗簽,瀏覽器就會直接警告提示,這就是之前12306打開會有警告的原因。這種個人發布的證書,其實可以通過系統設置為受信任的證書去消除這個警告。但是由於這種證書機構的權威性和安全性難以信任,大家最好不要這么做。
我們看一下網路HTTPS的證書信息:
其中比較重要的信息:
簽發機構:GlobalSign Root CA;
有效日期:2018-04-03到2019-05-26之間可用;
公鑰信息:RSA加密,2048位;
數字簽名:帶 RSA 加密的 SHA-256 ( 1.2.840.113549.1.1.11 )
綁定域名:再進行HTTPS驗證時,如果當前域名和證書綁定域名不一致,也會出現警告;
URI:在線管理地址。如果當前私鑰出現了風險,CA機構可以在線吊銷該證書。
####5. 不可抵賴性
看起來整個過程都很安全了,但是仍存在一種風險:服務端簽名後拒不承認,歸咎於故障不履行合同怎麼辦。
解決方法是採用數字時間戳服務:DTS。
** DTS(digital time-stamp): **作用就是對於成功的電子商務應用,要求參與交易各方不能否認其行為。一般來說,數字時間戳產生的過程為:用戶首先將需要加時間戳的文件用Hash演算法運算形成摘要,然後將該摘要發送到DTS。DTS在加入了收到文件摘要的日期和事件信息後再對該文件進行數字簽名,然後送達用戶。
####6. 再次認證
我們有了數字證書保證了身份的真實性,又有了DTS提供的不可抵賴性。但是還是不能百分百確定使用私鑰的就是合法持有者。有可能出現被別人盜用私鑰進行交易的風險。
解決這個就需要用到強口令、認證令牌OTP、智能卡、U盾或生物特徵等技術對使用私鑰的當前用戶進行認證,已確定其合法性。我們簡單了解下很常見的U盾。
** USB Key(U盾): **剛出現時外形比較像U盤,安全性能像一面盾牌,取名U盾。其內部有一個只可寫不可讀的區域存儲著用戶的私鑰(也有公鑰證書),銀行同樣也擁有一份。當進行交易時,所有涉及到私鑰的運算都在U盾內部進行,私鑰不會泄露。當交易確認時,交易的詳細數據會顯示到U盾屏幕上,確認無誤後通過物理按鍵確認就可以成功交易了。就算出現問題黑客也是無法控制U盾的物理按鍵的,用戶可以及時取消避免損失。有的U盾裡面還有多份證書,來支持國密演算法。
** 國密演算法: **國家密碼局針對各種演算法制定了一些列國產密碼演算法。具體包括:SM1對稱加密演算法、SM2公鑰演算法、SM3摘要演算法、SM4對稱加密演算法、ZUC祖沖之演算法等。這樣可以對國產固件安全和數據安全進行進一步的安全控制。
## HTTPS分析
有了上面的知識,我們可以嘗試去分析下HTTPS的整個過程,用Wireshark截取一次HTTPS報文:
Client Hello: 客戶端發送Hello到服務端443埠,裡麵包含了隨機數、客戶端支持的加密演算法、客戶端的TLS版本號等;
Server Hello: 服務端回應Hello到客戶端,裡麵包含了服務端選擇的加密套件、隨機數等;
Certificate: 服務端向客戶端發送證書
服務端計算對稱秘鑰:通過ECDH演算法得到對稱秘鑰
客戶端計算對稱秘鑰:通過ECDH演算法得到對稱秘鑰
開始用對稱秘鑰進行加密傳輸數據
其中我們又遇到了新的演算法:DH演算法
** DH(Diffie-Hellman): **1976年由Whitefield與Martin Hellman提出的一個奇妙的秘鑰交換協議。這個機制的巧妙在於可以通過安全的方式使雙方獲得一個相同的秘鑰。數學原理是基於原根的性質,如圖:
*** DH演算法的用處不是為了加密或解密消息,而是用於通信雙方安全的交換一個相同的秘鑰。 ***
** ECDH: **基於ECC(橢圓曲線密碼體制)的DH秘鑰交換演算法,數學原理是基於橢圓曲線上的離散對數問題。
** ECDHE: **字面少了一個E,E代表了臨時。在握手流程中,作為伺服器端,ECDH使用證書公鑰代替Pb,使用自身私鑰代替Xb。這個演算法時伺服器不發送server key exchange報文,因為發送certificate報文時,證書本身就包含了Pb信息。
##總結
| 演算法名稱 | 特點 | 用處 | 常用演算法名 |
| --- | :--- | :---: | ---: |
| 對稱加密 | 速度快,效率高| 用於直接加密文件 | 3DES、AES、RC4 |
| 非對稱加密 | 速度相對慢,但是確保安全 | 構建CA體系 | RSA、ECC |
| 散列演算法 | 算出的摘要長度固定,不可逆 | 防止文件篡改 | SHA-1、SHA-2 |
| DH演算法 | 安全的推導出對稱秘鑰 | 交換對稱秘鑰 | ECDH |
----
3. 密碼分為哪三種
密碼大體上分為三類,涉及的知識點主要是資訊理論和數論
第一類:公開密鑰演算法:RSA
第二類:對稱演算法:AES,DES。Hitag2
第三類:單項序列演算法:MD5
而對稱演算法又可以分為分組加密和序列加密兩種
分組加密:AES,DES
序列加密:Hitag2,Keeloq
序列加密通常是硬體實現,因為每次加密1bit,對於硬體來說用移位寄存器來實現是很容易的,但對於最小存儲單位是1Byte(8bit)的上位機來說,頻繁的位操作並不方便。
加密演算法的理論基礎基本上來自於數論,數論主要是討論整形,基本上就是關於素數的研究,RSA的加密難度依據就是,兩個大素數的因式分解,但目前無法證明是否有方法能快速的因式分解兩個超大素數,所以也無法證明此演算法絕對安全,但同理無法證明它不安全。目前2048位的RSA公認是安全的。
資訊理論在本質上基本和密碼學等價,信息熵也影響一組加密數據其安全性,和其被攻破的難度。所以如何降低冗餘,隱藏明文也是密碼學必須考慮的問題。
4. 數據在網路上傳輸為什麼要加密現在常用的數據加密演算法主要有哪些
數據傳輸加密技術的目的是對傳輸中的數據流加密,通常有線路加密與端—端加密兩種。線路加密側重在線路上而不考慮信源與信宿,是對保密信息通過各線路採用不同的加密密鑰提供安全保護。
端—端加密指信息由發送端自動加密,並且由TCP/IP進行數據包封裝,然後作為不可閱讀和不可識別的數據穿過互聯網,當這些信息到達目的地,將被自動重組、解密,而成為可讀的數據。
數據存儲加密技術的目的是防止在存儲環節上的數據失密,數據存儲加密技術可分為密文存儲和存取控制兩種。前者一般是通過加密演算法轉換、附加密碼、加密模塊等方法實現;後者則是對用戶資格、許可權加以審查和限制,防止非法用戶存取數據或合法用戶越權存取數據。
常見加密演算法
1、DES(Data Encryption Standard):對稱演算法,數據加密標准,速度較快,適用於加密大量數據的場合;
2、3DES(Triple DES):是基於DES的對稱演算法,對一塊數據用三個不同的密鑰進行三次加密,強度更高;
3、RC2和RC4:對稱演算法,用變長密鑰對大量數據進行加密,比 DES 快;
4、IDEA(International Data Encryption Algorithm)國際數據加密演算法,使用 128 位密鑰提供非常強的安全性;
5、RSA:由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的,非對稱演算法; 演算法如下:
首先, 找出三個數,p,q,r,其中 p,q 是兩個不相同的質數,r 是與 (p-1)(q-1) 互為質數的數。
p,q,r這三個數便是 private key。接著,找出 m,使得 rm == 1 mod (p-1)(q-1).....這個 m 一定存在,因為 r 與 (p-1)(q-1) 互質,用輾轉相除法就可以得到了。再來,計算 n = pq.......m,n 這兩個數便是 public key。
6、DSA(Digital Signature Algorithm):數字簽名演算法,是一種標準的 DSS(數字簽名標准),嚴格來說不算加密演算法;
7、AES(Advanced Encryption Standard):高級加密標准,對稱演算法,是下一代的加密演算法標准,速度快,安全級別高,在21世紀AES 標準的一個實現是 Rijndael 演算法。
8、BLOWFISH,它使用變長的密鑰,長度可達448位,運行速度很快;
9、MD5:嚴格來說不算加密演算法,只能說是摘要演算法;
對MD5演算法簡要的敘述可以為:MD5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。
(4)常見的流密碼演算法有幾種擴展閱讀
數據加密標准
傳統加密方法有兩種,替換和置換。上面的例子採用的就是替換的方法:使用密鑰將明文中的每一個字元轉換為密文中的一個字元。而置換僅將明文的字元按不同的順序重新排列。單獨使用這兩種方法的任意一種都是不夠安全的,但是將這兩種方法結合起來就能提供相當高的安全程度。
數據加密標准(Data Encryption Standard,簡稱DES)就採用了這種結合演算法,它由IBM制定,並在1977年成為美國官方加密標准。
DES的工作原理為:將明文分割成許多64位大小的塊,每個塊用64位密鑰進行加密,實際上,密鑰由56位數據位和8位奇偶校驗位組成,因此只有56個可能的密碼而不是64個。
每塊先用初始置換方法進行加密,再連續進行16次復雜的替換,最後再對其施用初始置換的逆。第i步的替換並不是直接利用原始的密鑰K,而是由K與i計算出的密鑰Ki。
DES具有這樣的特性,其解密演算法與加密演算法相同,除了密鑰Ki的施加順序相反以外。
參考資料來源:網路-加密演算法
參考資料來源:網路-數據加密
5. 密碼技術的流密碼
流密碼,相對於區塊加密,製造一段任意長的鑰匙原料,與明文依位元或字元結合,有點類似一次墊(one-time pad)。輸出的串流根據加密時的內部狀態而定。在一些流密碼上由鑰匙控制狀態的變化。RC4是相當有名的流密碼。
密碼雜湊函數(有時稱作消息摘要函數,雜湊函數又稱散列函數或哈希函數)不一定使用到鑰匙,但和許多重要的密碼演算法相關。它將輸入資料(通常是一整份文件)輸出成較短的固定長度雜湊值,這個過程是單向的,逆向操作難以完成,而且碰撞(兩個不同的輸入產生相同的雜湊值)發生的機率非常小。
信息認證碼或押碼(Message authentication codes, MACs)很類似密碼雜湊函數,除了接收方額外使用秘密鑰匙來認證雜湊值。
6. 什麼是對稱密碼和非對密碼,分析這兩種密碼體系的特點和應用領域
一、對稱密碼
1、定義:採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密,也稱為單密鑰加密。
2、特點:演算法公開、計算量小、加密速度快、加密效率高。
3、應用領域:由於其速度快,對稱性加密通常在消息發送方需要加密大量數據時使用。
二、非對密碼
1、定義:非對稱密碼指的是非對稱密碼體制中使用的密碼。
2、特點:
(1)是加密密鑰和解密密鑰不同 ,並且難以互推 。
(2)是有一個密鑰是公開的 ,即公鑰 ,而另一個密鑰是保密的 ,即私鑰。
3、應用領域:很好的解決了密鑰的分發和管理的問題 ,並且它還能夠實現數字簽名。
(6)常見的流密碼演算法有幾種擴展閱讀
對稱加密演算法特徵
1、加密方和解密方使用同一個密鑰;
2、加密解密的速度比較快,適合數據比較長時的使用;
3、密鑰傳輸的過程不安全,且容易被破解,密鑰管理也比較麻煩
7. 什麼是流加密
現代的文本加密主要還是對稱加密。非對稱加密太慢,而且也不適合對全文本加密,所以一般只是用在小數據加密上,比如加密文本對稱加密密鑰再傳給對方。然後文本本身還是用對稱加密。非對稱加密還有一個用處就是核實發件人身份。
現代主要有兩種對稱加密,數據流加密和數據塊加密。數據流加密就是用演算法和密鑰一起產生一個隨機碼流,再和數據流XOR一起產生加密後的數據流。解密方只要產生同樣的隨機碼流就可以了。數據塊加密把原數據分成固定大小的數據塊(比如64位),加密器使用密鑰對數據塊進行處理。一般來說數據流加密更快,但塊加密更安全一些。常見的加密法里,des和3des是使用最多的數據塊加密,aes是更新一些的塊加密法,rc4是數據流加密,等等。
二戰以後,大家一般都放棄了保護加密演算法的做法,因為太難了。而且數學上很強的演算法就這么幾種。所以現在都是公開演算法。這些演算法特性都不錯,如果一個密鑰長度不夠強了,只要加長密鑰長度就可以了。當然這種改變涉及改變加密硬軟體,在使用中有些不便,不過一般認為演算法本身還是夠強不必改變。
8. 十大常見密碼加密方式
一、密鑰散列
採用MD5或者SHA1等散列演算法,對明文進行加密。嚴格來說,MD5不算一種加密演算法,而是一種摘要演算法。無論多長的輸入,MD5都會輸出一個128位(16位元組)的散列值。而SHA1也是流行的消息摘要演算法,它可以生成一個被稱為消息摘要的160位(20位元組)散列值。MD5相對SHA1來說,安全性較低,但是速度快;SHA1和MD5相比安全性高,但是速度慢。
二、對稱加密
採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密。對稱加密演算法中常用的演算法有:DES、3DES、TDEA、Blowfish、RC2、RC4、RC5、IDEA、SKIPJACK等。
三、非對稱加密
非對稱加密演算法是一種密鑰的保密方法,它需要兩個密鑰來進行加密和解密,這兩個密鑰是公開密鑰和私有密鑰。公鑰與私鑰是一對,如果用公鑰對數據進行加密,只有用對應的私鑰才能解密。非對稱加密演算法有:RSA、Elgamal、背包演算法、Rabin、D-H、ECC(橢圓曲線加密演算法)。
四、數字簽名
數字簽名(又稱公鑰數字簽名)是只有信息的發送者才能產生的別人無法偽造的一段數字串,這段數字串同時也是對信息的發送者發送信息真實性的一個有效證明。它是一種類似寫在紙上的普通的物理簽名,但是在使用了公鑰加密領域的技術來實現的,用於鑒別數字信息的方法。
五、直接明文保存
早期很多這樣的做法,比如用戶設置的密碼是「123」,直接就將「123」保存到資料庫中,這種是最簡單的保存方式,也是最不安全的方式。但實際上不少互聯網公司,都可能採取的是這種方式。
六、使用MD5、SHA1等單向HASH演算法保護密碼
使用這些演算法後,無法通過計算還原出原始密碼,而且實現比較簡單,因此很多互聯網公司都採用這種方式保存用戶密碼,曾經這種方式也是比較安全的方式,但隨著彩虹表技術的興起,可以建立彩虹表進行查表破解,目前這種方式已經很不安全了。
七、特殊的單向HASH演算法
由於單向HASH演算法在保護密碼方面不再安全,於是有些公司在單向HASH演算法基礎上進行了加鹽、多次HASH等擴展,這些方式可以在一定程度上增加破解難度,對於加了「固定鹽」的HASH演算法,需要保護「鹽」不能泄露,這就會遇到「保護對稱密鑰」一樣的問題,一旦「鹽」泄露,根據「鹽」重新建立彩虹表可以進行破解,對於多次HASH,也只是增加了破解的時間,並沒有本質上的提升。
八、PBKDF2
該演算法原理大致相當於在HASH演算法基礎上增加隨機鹽,並進行多次HASH運算,隨機鹽使得彩虹表的建表難度大幅增加,而多次HASH也使得建表和破解的難度都大幅增加。
九、BCrypt
BCrypt 在1999年就產生了,並且在對抗 GPU/ASIC 方面要優於 PBKDF2,但是我還是不建議你在新系統中使用它,因為它在離線破解的威脅模型分析中表現並不突出。
十、SCrypt
SCrypt 在如今是一個更好的選擇:比 BCrypt設計得更好(尤其是關於內存方面)並且已經在該領域工作了 10 年。另一方面,它也被用於許多加密貨幣,並且我們有一些硬體(包括 FPGA 和 ASIC)能實現它。 盡管它們專門用於采礦,也可以將其重新用於破解。
9. 目前常用的加密解密演算法有哪些
加密演算法
加密技術是對信息進行編碼和解碼的技術,編碼是把原來可讀信息(又稱明文)譯成代碼形式(又稱密文),其逆過程就是解碼(解密)。加密技術的要點是加密演算法,加密演算法可以分為對稱加密、不對稱加密和不可逆加密三類演算法。
對稱加密演算法 對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES和IDEA等。美國國家標准局倡導的AES即將作為新標准取代DES。
不對稱加密演算法不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。
不可逆加密演算法 不可逆加密演算法的特徵是加密過程中不需要使用密鑰,輸入明文後由系統直接經過加密演算法處理成密文,這種加密後的數據是無法被解密的,只有重新輸入明文,並再次經過同樣不可逆的加密演算法處理,得到相同的加密密文並被系統重新識別後,才能真正解密。顯然,在這類加密過程中,加密是自己,解密還得是自己,而所謂解密,實際上就是重新加一次密,所應用的「密碼」也就是輸入的明文。不可逆加密演算法不存在密鑰保管和分發問題,非常適合在分布式網路系統上使用,但因加密計算復雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛應用在計算機系統中的口令加密,利用的就是不可逆加密演算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的應用領域正在逐漸增大。在計算機網路中應用較多不可逆加密演算法的有RSA公司發明的MD5演算法和由美國國家標准局建議的不可逆加密標准SHS(Secure Hash Standard:安全雜亂信息標准)等。
加密技術
加密演算法是加密技術的基礎,任何一種成熟的加密技術都是建立多種加密演算法組合,或者加密演算法和其他應用軟體有機結合的基礎之上的。下面我們介紹幾種在計算機網路應用領域廣泛應用的加密技術。
非否認(Non-repudiation)技術 該技術的核心是不對稱加密演算法的公鑰技術,通過產生一個與用戶認證數據有關的數字簽名來完成。當用戶執行某一交易時,這種簽名能夠保證用戶今後無法否認該交易發生的事實。由於非否認技術的操作過程簡單,而且直接包含在用戶的某類正常的電子交易中,因而成為當前用戶進行電子商務、取得商務信任的重要保證。
PGP(Pretty Good Privacy)技術 PGP技術是一個基於不對稱加密演算法RSA公鑰體系的郵件加密技術,也是一種操作簡單、使用方便、普及程度較高的加密軟體。PGP技術不但可以對電子郵件加密,防止非授權者閱讀信件;還能對電子郵件附加數字簽名,使收信人能明確了解發信人的真實身份;也可以在不需要通過任何保密渠道傳遞密鑰的情況下,使人們安全地進行保密通信。PGP技術創造性地把RSA不對稱加密演算法的方便性和傳統加密體系結合起來,在數字簽名和密鑰認證管理機制方面採用了無縫結合的巧妙設計,使其幾乎成為最為流行的公鑰加密軟體包。
數字簽名(Digital Signature)技術 數字簽名技術是不對稱加密演算法的典型應用。數字簽名的應用過程是,數據源發送方使用自己的私鑰對數據校驗和或其他與數據內容有關的變數進行加密處理,完成對數據的合法「簽名」,數據接收方則利用對方的公鑰來解讀收到的「數字簽名」,並將解讀結果用於對數據完整性的檢驗,以確認簽名的合法性。數字簽名技術是在網路系統虛擬環境中確認身份的重要技術,完全可以代替現實過程中的「親筆簽字」,在技術和法律上有保證。在公鑰與私鑰管理方面,數字簽名應用與加密郵件PGP技術正好相反。在數字簽名應用中,發送者的公鑰可以很方便地得到,但他的私鑰則需要嚴格保密。
PKI(Public Key Infrastructure)技術 PKI技術是一種以不對稱加密技術為核心、可以為網路提供安全服務的公鑰基礎設施。PKI技術最初主要應用在Internet環境中,為復雜的互聯網系統提供統一的身份認證、數據加密和完整性保障機制。由於PKI技術在網路安全領域所表現出的巨大優勢,因而受到銀行、證券、政府等核心應用系統的青睞。PKI技術既是信息安全技術的核心,也是電子商務的關鍵和基礎技術。由於通過網路進行的電子商務、電子政務等活動缺少物理接觸,因而使得利用電子方式驗證信任關系變得至關重要,PKI技術恰好能夠有效解決電子商務應用中的機密性、真實性、完整性、不可否認性和存取控制等安全問題。一個實用的PKI體系還必須充分考慮互操作性和可擴展性。PKI體系所包含的認證中心(CA)、注冊中心(RA)、策略管理、密鑰與證書管理、密鑰備份與恢復、撤銷系統等功能模塊應該有機地結合在一起。
加密的未來趨勢
盡管雙鑰密碼體制比單鑰密碼體制更為可靠,但由於計算過於復雜,雙鑰密碼體制在進行大信息量通信時,加密速率僅為單鑰體制的1/100,甚至是 1/1000。正是由於不同體制的加密演算法各有所長,所以在今後相當長的一段時期內,各類加密體制將會共同發展。而在由IBM等公司於1996年聯合推出的用於電子商務的協議標准SET(Secure Electronic Transaction)中和1992年由多國聯合開發的PGP技術中,均採用了包含單鑰密碼、雙鑰密碼、單向雜湊演算法和隨機數生成演算法在內的混合密碼系統的動向來看,這似乎從一個側面展示了今後密碼技術應用的未來。
在單鑰密碼領域,一次一密被認為是最為可靠的機制,但是由於流密碼體制中的密鑰流生成器在演算法上未能突破有限循環,故一直未被廣泛應用。如果找到一個在演算法上接近無限循環的密鑰流生成器,該體制將會有一個質的飛躍。近年來,混沌學理論的研究給在這一方向產生突破帶來了曙光。此外,充滿生氣的量子密碼被認為是一個潛在的發展方向,因為它是基於光學和量子力學理論的。該理論對於在光纖通信中加強信息安全、對付擁有量子計算能力的破譯無疑是一種理想的解決方法。
由於電子商務等民用系統的應用需求,認證加密演算法也將有較大發展。此外,在傳統密碼體制中,還將會產生類似於IDEA這樣的新成員,新成員的一個主要特徵就是在演算法上有創新和突破,而不僅僅是對傳統演算法進行修正或改進。密碼學是一個正在不斷發展的年輕學科,任何未被認識的加/解密機制都有可能在其中佔有一席之地。
目前,對信息系統或電子郵件的安全問題,還沒有一個非常有效的解決方案,其主要原因是由於互聯網固有的異構性,沒有一個單一的信任機構可以滿足互聯網全程異構性的所有需要,也沒有一個單一的協議能夠適用於互聯網全程異構性的所有情況。解決的辦法只有依靠軟體代理了,即採用軟體代理來自動管理用戶所持有的證書(即用戶所屬的信任結構)以及用戶所有的行為。每當用戶要發送一則消息或一封電子郵件時,代理就會自動與對方的代理協商,找出一個共同信任的機構或一個通用協議來進行通信。在互聯網環境中,下一代的安全信息系統會自動為用戶發送加密郵件,同樣當用戶要向某人發送電子郵件時,用戶的本地代理首先將與對方的代理交互,協商一個適合雙方的認證機構。當然,電子郵件也需要不同的技術支持,因為電子郵件不是端到端的通信,而是通過多個中間機構把電子郵件分程傳遞到各自的通信機器上,最後到達目的地。