導航:首頁 > 源碼編譯 > 改進狼群演算法任務分配

改進狼群演算法任務分配

發布時間:2023-06-06 10:00:43

① 優化演算法筆記(十八)灰狼演算法

(以下描述,均不是學術用語,僅供大家快樂的閱讀)
灰狼演算法(Grey Wolf Algorithm)是受灰狼群體捕獵行為啟發而提出的演算法。演算法提出於2013年,仍是一個較新的演算法。目前為止(2020)與之相關的論文也比較多,但多為演算法的應用,應該仍有研究和改進的餘地。
灰狼演算法中,每隻灰狼的位置代表了解空間中的一個可行解。群體中,占據最好位置的三隻灰狼為狼王及其左右護法(衛)。在捕獵過程中這三隻狼將帶領著狼群蛇皮走位,抓捕獵物,直至找到獵物(最優解)。當然狼王不會一直是狼王,左右護法也是一樣,每一輪走位後,會根據位置的優劣重新選出新的狼王和左右護法。狼群中的每一隻灰狼會向著(也可能背向)這三隻位置最優的灰狼移動一定的距離,來決定這一步自己將如何走位。簡單來說, 灰狼個體會向則群體中最優的三個個體移動

很明顯該演算法的主角就是灰狼了。

設定目標灰狼為
,當前灰狼的為 ,則該灰狼向著目標灰狼移動後的位置 可以由一下公式計算得出:

灰狼群體中位置最好的三隻灰狼編號為1,2,3,那麼當前的灰狼i通過觀察灰狼1、灰狼2和灰狼3,根據公式(1)得出的三個位置為Xi1,Xi2,Xi3。那麼灰狼i將要移動到的位置可以根據以下供述計算得出:

可以看出該灰狼的目標位置是通過觀察三隻頭狼得到的三個目標位置的所圍成的區域的質心。(質心超出邊界時,取值為邊界值)。

灰狼演算法的論文描述很多,但是其公式和流程都非常簡單,主要對其參數A和C的作用效果進行了詳細描述。
C主要決定了新位置相對於目標灰狼的方位,而A則決定新位置向目標靠近還是遠離目標灰狼。當|A|>=1時,為遠離目標,表現出更強的全局搜索能力,|A|<1時靠近目標,表現出更強的局部搜索能力。

適應度函數 。
實驗一:

看看這圖像和結果,效果好極了。每當我這么認為時,總會出現意想不到的轉折。
修改一下最優解位置試一試, 。
實驗二 : 。

其結果比上面的實驗差了不少,但我覺得這才是一個優化演算法應有的搜索圖像。其結果看上去較差只是因為迭代次數較少,收斂不夠迅速,這既是優點也是缺點,收斂慢但是搜索更細致。
仔細分析灰狼演算法的流程,它並沒有向原點靠近的趨勢,那隻能理解為演算法群體總體上向著群體的中心移動。 猜想 :當初始化群體的中心恰好是正解時,演算法的結果將會非常的好。
下面使用 ,並將灰狼的初始位置限定在(50,100)的范圍內,看看實驗圖像是否和實驗二的圖像一致。

實驗三 . ,初始種群取值范圍為(50,100)

這圖像和結果跟實驗一的不是一樣的嗎?這說明從實驗二中得出的猜想是錯誤的。

從圖像和結果上看,都和實驗二非常相似,當解在解空間的中心時但不在原點時,演算法的結果將差一些。
為什麼會這樣呢?從演算法的流程上看,灰狼演算法的各個行為都是關於頭狼對稱的,當最優解在原點且頭狼在附近時,公式(1)將變為如下:

實驗五 . ,三隻頭狼添加貪心演算法。

從圖像可以看出中心的三個點移動的頻率要比其他點的移動頻率低。從結果上可以看出其結果相對穩定了不少,不過差距非常的小,幾乎可以認為是運氣好所導致。如果所有的個體都添加貪心演算法呢?顯然,演算法的全局搜索能力將進一步減弱,並且更容易向群體中心收斂,這並不是一個好的操作。

實驗六 . ,
在實驗五的基礎上為狼群添加一個統一的步長,即每隻狼每次向著目標狼移動的距離不能大於其步長,將其最大步長設為1,看看效果。

從圖像可以看出,受到步長的約束每隻狼的移動距離較小,在結束時還沒有收斂,其搜索能力較強但收斂速度過慢且極易陷入局部最優。現在將最大步長設置為10(1/10解空間范圍)使其搜索能力和收斂速度相對平衡,在看看效果。

從圖像可以看出,演算法的收斂速度快了不少,但從結果可知,相較於實驗五,演算法的提升並不太大。
不過這個圖像有一種似曾相識的感覺,與螢火蟲演算法(FireFly Algorithm)差不多,仔細對比這兩個演算法可以發現, 灰狼演算法相當於螢火蟲演算法的一個簡化 。實驗六種對灰狼演算法添加步長的修改,讓其離螢火蟲演算法更近了一步。

實驗七 . ,
在實驗六的基礎上讓最大步長隨著迭代次數增加遞減。

從實驗七的圖像可以看出,種群的收斂速度好像快了那麼一點,結果也變好了不少。但是和改進後的螢火蟲演算法相比仍然有一定的差距。
灰狼演算法在全局搜索和局部搜索上的平衡已經比較好了,嘗試過對其進行改進,但是修改使搜索能力更強時,對於局部最優的函數求解效果很差,反之結果的精度較低,總體而言修改後的演算法與原演算法相差無幾。

灰狼演算法是根據灰狼群體的捕獵行動而提出的優化演算法,其演算法流程和步驟非常簡單,數學模型也非常的優美。灰狼演算法由於沒有貪心演算法,使得其有著較強的全局搜索能力同時參數A也控制了演算法的局部搜索范圍,演算法的全局搜索能力和局部搜索能力比較平衡。
從演算法的優化圖像可以看出,灰狼演算法和螢火蟲演算法非常的相似。可以認為,灰狼演算法是對螢火蟲演算法的一種改進。螢火蟲演算法向著由於自己的個體飛行,而灰狼演算法則的條件更為苛刻,向著群體前三強前進,螢火蟲演算法通過步長控制搜索范圍,而灰狼演算法則直接定義搜索范圍參數A,並令A線性遞減。
灰狼演算法的結構簡單,但也不容易改進,數次改進後只是改變了全局搜索能力和局部搜索能力的比例,綜合能力並沒有太大變化。
由於原點對於灰狼演算法有著隱隱的吸引力,當測試函數目標值在原點時,其結果會異常的好。因此,灰狼演算法的實際效果沒有論文中的那麼好,但也不差,算是一個中規中矩的優化演算法。
參考文獻
Mirjalili S , Mirjalili S M , Lewis A . Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69:46-61. 提取碼:wpff

以下指標純屬個人yy,僅供參考

目錄
上一篇 優化演算法筆記(十七)萬有引力演算法
下一篇 優化演算法筆記(十九)頭腦風暴演算法

優化演算法matlab實現(十八)灰狼演算法matlab實現

② 智能優化演算法:灰狼優化演算法

@[toc]
摘要:受 灰 狼 群 體 捕 食 行 為 的 啟 發,Mirjalili等[1]於 2014年提出了一種新型群體智能優化演算法:灰狼優化演算法。GWO通過模擬灰狼群體捕食行為,基於狼群群體協作的機制來達到優化的目的。 GWO演算法具有結構簡單、需要調節的參數少,容易實現等特點,其中存在能夠自適應調整的收斂因子以及信息反饋機制,能夠在局部尋優與全局搜索之間實現平衡,因此在對問題的求解精度和收斂速度方面都有良好的性能。

灰狼屬於犬科動物,被認為是頂級的掠食者,它們處於生物圈食物鏈的頂端。灰狼大多喜歡群居,每個群體中平均有5-12隻狼。特別令人感興趣的是,它們具有非常嚴格的社會等級層次制度,如圖1所示。金字塔第一層為種群中的領導者,稱為 α 。在狼群中 α 是具有管理能力的個體,主要負責關於狩獵、睡覺的時間和地方、食物分配等群體中各項決策的事務。金字塔第二層是 α 的智囊團隊,稱為 β 。 β 主要負責協助α 進行決策。當整個狼群的 α 出現空缺時,β 將接替 α 的位置。 β 在狼群中的支配權僅次於 α,它將 α 的命令下達給其他成員,並將其他成員的執行情況反饋給 α 起著橋梁的作用。金字塔第三層是 δ ,δ 聽從 α 和 β 的決策命令,主要負責偵查、放哨、看護等事務。適應度不好的 α 和 β 也會降為 δ 。金字塔最底層是 ω ,主要負責種群內部關系的平衡。

<center>圖1.灰狼的社會等級制度

此外,集體狩獵是灰狼的另一個迷人的社會行為。灰狼的社會等級在群體狩獵過程中發揮著重要的作用,捕食的過程在 α 的帶領下完成。灰狼的狩獵包括以下 3個主要部分:
1)跟蹤、追逐和接近獵物;
2)追捕、包圍和騷擾獵物,直到它停止移動;
3)攻擊獵物

在狩獵過程中,將灰狼圍捕獵物的行為定義如下:

式(1)表示個體與獵物間的距離,式(2)是灰狼的位置更新公式。其中, 是目前的迭代代數, 和 是系數向量, 和 分別是獵物的位置向量和灰狼的位置向量。 和 的計算公式如下:

其中, 是收斂因子,隨著迭代次數從2線性減小到0, 和 的模取[0,1]之間的隨機數。

灰狼能夠識別獵物的位置並包圍它們。當灰狼識別出獵物的位置後,β 和 δ 在 α 的帶領下指導狼群包圍獵物。在優化問題的決策空間中,我們對最佳解決方案(獵物的位置)並不了解。因此,為了模擬灰狼的狩獵行為,我們假設 α ,β 和 δ 更了解獵物的潛在位置。我們保存迄今為止取得的3個最優解決方案,並利用這三者的位置來判斷獵物所在的位置,同時強迫其他灰狼個體(包括 ω )依據最優灰狼個體的位置來更新其位置,逐漸逼近獵物。狼群內個體跟蹤獵物位置的機制如圖2所示。

<center>圖2.GWO 演算法中灰狼位置更新示意圖

灰狼個體跟蹤獵物位置的數學模型描述如下:

其中, 分別表示分別表示 α , β 和 δ 與其他個體間的距離。 分別代表 α , β 和 δ 的當前位置; 是隨機向量, 是當前灰狼的位置。

式(6)分別定義了狼群中 ω 個體朝向 α ,β 和 δ 前進的步長和方向,式(7)定義了 ω 的最終位置。

當獵物停止移動時,灰狼通過攻擊來完成狩獵過程。為了模擬逼近獵物, 的值被逐漸減小,因此 的波動范圍也隨之減小。換句話說,在迭代過程中,當 的值從2線性下降到0時,其對應的 的值也在區間[-a,a]內變化。如圖3a所示,當 的值位於區間內時,灰狼的下一位置可以位於其當前位置和獵物位置之間的任意位置。當 時,狼群向獵物發起攻擊(陷入局部最優)。

灰狼根據 α ,β 和 δ 的位置來搜索獵物。灰狼在尋找獵物時彼此分開,然後聚集在一起攻擊獵物。基於數學建模的散度,可以用 大於1 或小於-1 的隨機值來迫使灰狼與獵物分離,這強調了勘探(探索)並允許 GWO 演算法全局搜索最優解。如圖3b所示, 強迫灰狼與獵物(局部最優)分離,希望找到更合適的獵物(全局最優)。GWO 演算法還有另一個組件 來幫助發現新的解決方案。由式(4)可知, 是[0,2]之間的隨機值。 表示狼所在的位置對獵物影響的隨機權重, 表示影響權重大,反之,表示影響權重小。這有助於 GWO演算法更隨機地表現並支持探索,同時可在優化過程中避免陷入局部最優。另外,與 不同 是非線性減小的。這樣,從最初的迭代到最終的迭代中,它都提供了決策空間中的全局搜索。在演算法陷入了局部最優並且不易跳出時, 的隨機性在避免局部最優方面發揮了非常重要的作用,尤其是在最後需要獲得全局最優解的迭代中。

<center>圖4.演算法流程圖

[1] Seyedali Mirjalili,Seyed Mohammad Mirjalili,Andrew Lewis. Grey Wolf Optimizer[J]. Advances in Engineering Software,2014,69.

[2] 張曉鳳,王秀英.灰狼優化演算法研究綜述[J].計算機科學,2019,46(03):30-38.

https://mianbaoo.com/o/bread/Z5ecmZc=
文獻復現:
文獻復現:基於翻筋斗覓食策略的灰狼優化演算法(DSFGWO)
[1]王正通,程鳳芹,尤文,李雙.基於翻筋斗覓食策略的灰狼優化演算法[J/OL].計算機應用研究:1-5[2021-02-01]. https://doi.org/10.19734/j.issn.1001-3695.2020.04.0102 .

文獻復現:基於透鏡成像學習策略的灰狼優化演算法(LIS-GWO)
[1]龍文,伍鐵斌,唐明珠,徐明,蔡紹洪.基於透鏡成像學習策略的灰狼優化演算法[J].自動化學報,2020,46(10):2148-2164.

文獻復現:一種優化局部搜索能力的灰狼演算法(IGWO)
[1]王習濤.一種優化局部搜索能力的灰狼演算法[J].計算機時代,2020(12):53-55.

文獻復現:基於自適應頭狼的灰狼優化演算法(ALGWO)
[1]郭陽,張濤,胡玉蝶,杜航.基於自適應頭狼的灰狼優化演算法[J].成都大學學報(自然科學版),2020,39(01):60-63+73.

文獻復現:基於自適應正態雲模型的灰狼優化演算法 (CGWO)
[1]張鑄,饒盛華,張仕傑.基於自適應正態雲模型的灰狼優化演算法[J/OL].控制與決策:1-6[2021-02-08]. https://doi.org/10.13195/j.kzyjc.2020.0233 .

文獻復現:改進非線性收斂因子灰狼優化演算法
[1]王正通,尤文,李雙.改進非線性收斂因子灰狼優化演算法[J].長春工業大學學報,2020,41(02):122-127.

文獻復現:一種基於收斂因子改進的灰狼優化演算法
[1]邢燕禎,王東輝.一種基於收斂因子改進的灰狼優化演算法[J].網路新媒體技術,2020,9(03):28-34.

文獻復現:基於萊維飛行和隨機游動策略的灰狼演算法(GWOM )
[1]李陽,李維剛,趙雲濤,劉翱.基於萊維飛行和隨機游動策略的灰狼演算法[J].計算機科學,2020,47(08):291-296.

文獻復現:一種改進的灰狼優化演算法(EGWO)
[1]龍文,蔡紹洪,焦建軍,伍鐵斌.一種改進的灰狼優化演算法[J].電子學報,2019,47(01):169-175.

文獻復現:改進收斂因子和比例權重的灰狼優化演算法(CGWO)
[1]王秋萍,王夢娜,王曉峰.改進收斂因子和比例權重的灰狼優化演算法[J].計算機工程與應用,2019,55(21):60-65+98.

文獻復現:一種改進非線性收斂方式的灰狼優化演算法研究(CGWO)
[1]談發明,趙俊傑,王琪.一種改進非線性收斂方式的灰狼優化演算法研究[J].微電子學與計算機,2019,36(05):89-95.

文獻復現:一種基於Tent 映射的混合灰狼優化的改進演算法(PSOGWO)
[1]滕志軍,呂金玲,郭力文,許媛媛.一種基於Tent映射的混合灰狼優化的改進演算法[J].哈爾濱工業大學學報,2018,50(11):40-49.

文獻復現:基於差分進化與優勝劣汰策略的灰狼優化演算法(IGWO)
[1]朱海波,張勇.基於差分進化與優勝劣汰策略的灰狼優化演算法[J].南京理工大學學報,2018,42(06):678-686.

文獻復現:基於 Iterative 映射和單純形法的改進灰狼優化演算法(SMIGWO)
[1]王夢娜,王秋萍,王曉峰.基於Iterative映射和單純形法的改進灰狼優化演算法[J].計算機應用,2018,38(S2):16-20+54.

文獻復現:一種基於混合策略的灰狼優化演算法(EPDGWO)
[1]牛家彬,王輝.一種基於混合策略的灰狼優化演算法[J].齊齊哈爾大學學報(自然科學版),2018,34(01):16-19+32.

文獻復現:基於隨機收斂因子和差分變異的改進灰狼優化演算法(IGWO)
[1]徐松金,龍文.基於隨機收斂因子和差分變異的改進灰狼優化演算法[J].科學技術與工程,2018,18(23):252-256.

文獻復現:一種基於差分進化和灰狼演算法的混合優化演算法(DEGWO)
[1]金星,邵珠超,王盛慧.一種基於差分進化和灰狼演算法的混合優化演算法[J].科學技術與工程,2017,17(16):266-269.

文獻復現:協調探索和開發能力的改進灰狼優化演算法(IGWO)
[1]龍文,伍鐵斌.協調探索和開發能力的改進灰狼優化演算法[J].控制與決策,2017,32(10):1749-1757.

文獻復現:基於Cat混沌與高斯變異的改進灰狼優化演算法(IGWO)
[1]徐辰華,李成縣,喻昕,黃清寶.基於Cat混沌與高斯變異的改進灰狼優化演算法[J].計算機工程與應用,2017,53(04):1-9+50.

文獻復現:具有自適應搜索策略的灰狼優化演算法(SAGWO)
[1]魏政磊,趙輝,韓邦傑,孫楚,李牧東.具有自適應搜索策略的灰狼優化演算法[J].計算機科學,2017,44(03):259-263.

文獻復現:採用動態權重和概率擾動策略改進的灰狼優化演算法(IGWO)
[1]陳闖,Ryad Chellali,邢尹.採用動態權重和概率擾動策略改進的灰狼優化演算法[J].計算機應用,2017,37(12):3493-3497+3508.

文獻復現:具有自適應調整策略的混沌灰狼優化演算法(CLSGWO)
[1]張悅,孫惠香,魏政磊,韓博.具有自適應調整策略的混沌灰狼優化演算法[J].計算機科學,2017,44(S2):119-122+159.

文獻復現:強化狼群等級制度的灰狼優化演算法(GWOSH)
[1]張新明,塗強,康強,程金鳳.強化狼群等級制度的灰狼優化演算法[J].數據採集與處理,2017,32(05):879-889.

文獻復現:一種新型非線性收斂因子的灰狼優化演算法(NGWO)
[1]王敏,唐明珠.一種新型非線性收斂因子的灰狼優化演算法[J].計算機應用研究,2016,33(12):3648-3653.

文獻復現:重選精英個體的非線性收斂灰狼優化演算法(EGWO)
[1]黎素涵,葉春明.重選精英個體的非線性收斂灰狼優化演算法[J].計算機工程與應用,2021,57(01):62-68.

https://mianbaoo.com/o/bread/aZ2Wl54=

③ 灰狼演算法

灰狼優化演算法(GWO)模擬了自然界灰狼的領導和狩獵層級,在狼群中存在四種角色,αalphaα狼負責領導是最具有智慧的在狩獵當中可以敏銳的知道獵物的位置,βetaβ狼可以認為是軍師比較具有智慧比較能知道獵物的位置,δdeltaδ狼負責協助前兩個層級的狼,最後是ωomegaω狼負責跟從。


的位置作為獵物(最優解)所處的位置。

注意:注意智能優化演算法都是在優化函數光滑性較差,容易落入局部最優時才使用的,不要亂用。智能優化演算法的收斂是一種概率意義的收斂,所以得到的解並不一定絕對最優,並且往往收斂較慢。


④ 狼群演算法和灰狼演算法的區別

狼群演算法是基於狼群群體智能,模擬狼群捕食行為及其獵物分配方式,以「勝者為王」的頭狼產生規則和「強者生存」的狼群更新機制,提出一種新的群體智能演算法。而灰狼演算法是狼群演算法的優化版

閱讀全文

與改進狼群演算法任務分配相關的資料

熱點內容
劉德華返老還童的電影叫什麼 瀏覽:264
羅莎卡拉喬洛 bodyguard 瀏覽:964
金玉王朝完整番外txt 瀏覽:558
需要錢觀看的網站 瀏覽:23
不可能的世界小說免費看 瀏覽:744
3d左右分屏電影網站 瀏覽:378
擁有系統幫助國家的小說 瀏覽:709
哦哦叱吒風雨里古惑仔粵語歌 瀏覽:138
銷售女王韓國 瀏覽:432
出軌的電影歐美 瀏覽:463
女生適合學編程 瀏覽:942
cad中的移動命令 瀏覽:685
0855影視在線看 瀏覽:11
求小仙兒有聲小說資源 瀏覽:993
老版皮特電影 瀏覽:634
韓國19禁 中文字幕 瀏覽:201
女性露點電影原罪 瀏覽:358
亞馬遜雲自建ssr伺服器教程 瀏覽:570
泰國流產嬰兒復仇的電影 瀏覽:200
我常在周末去看電影英語 瀏覽:418