導航:首頁 > 源碼編譯 > 圖論演算法c語言

圖論演算法c語言

發布時間:2023-12-02 16:00:18

㈠ acm競賽知識點

1. acm常用小知識點
acm常用小知識點 1.ACM 關於ACM程序設計競賽,需要掌握哪些知識點,最好能詳細一
訓練過ACM等程序設計競賽的人在演算法上有較大的優勢,這就說明當你編程能力提高之後,主要時間是花在思考演算法上,不是花在寫程序與debug上。

下面給個計劃你練練:第一階段:練經典常用演算法,下面的每個演算法給我打上十到二十遍,同時自己精簡代碼,因為太常用,所以要練到寫時不用想,10-15分鍾內打完,甚至關掉顯示器都可以把程序打出來。1.最短路(Floyd、Dijstra,BellmanFord) 2.最小生成樹(先寫個prim,kruscal要用並查集,不好寫) 3.大數(高精度)加減乘除4.二分查找. (代碼可在五行以內) 5.叉乘、判線段相交、然後寫個凸包. 6.BFS、DFS,同時熟練hash表(要熟,要靈活,代碼要簡) 7.數學上的有:輾轉相除(兩行內),線段交點、多角形面積公式. 8. 調用系統的qsort, 技巧很多,慢慢掌握. 9. 任意進制間的轉換第二階段:練習復雜一點,但也較常用的演算法。

如: 1. 二分圖匹配(匈牙利),最小路徑覆蓋 2. 網路流,最小費用流。 3. 線段樹. 4. 並查集。

5. 熟悉動態規劃的各個典型:LCS、最長遞增子串、三角剖分、記憶化dp 6.博弈類演算法。博弈樹,二進製法等。

7.最大團,最大獨立集。 8.判斷點在多邊形內。

9. 差分約束系統. 10. 雙向廣度搜索、A*演算法,最小耗散優先.第三階段: 前兩個階段是打基礎,第三階段是鍛煉在比賽中可以快速建立模型、想新演算法。這就要平時多做做綜合的題型了。

1. 把oibh上的論文看看(大概幾百篇的,我只看了一點點,呵呵)。 2. 平時掃掃zoj上的難題啦,別老做那些不用想的題.(中大acm的版主經常說我挑簡單的來做:-P ) 3. 多參加網上的比賽,感受一下比賽的氣氛,評估自己的實力. 4. 一道題不要過了就算,問一下人,有更好的演算法也打一下。

5. 做過的題要記好 :-)下面轉自:ACMer必備知識(任重而道遠。)

圖論 路徑問題 0/1邊權最短路徑 BFS 非負邊權最短路徑(Dijkstra) 可以用Dijkstra解決問題的特徵 負邊權最短路徑 Bellman-Ford Bellman-Ford的Yen-氏優化 差分約束系統 Floyd 廣義路徑問題 傳遞閉包 極小極大距離 / 極大極小距離 Euler Path / Tour 圈套圈演算法 混合圖的 Euler Path / Tour Hamilton Path / Tour 特殊圖的Hamilton Path / Tour 構造 生成樹問題 最小生成樹 第k小生成樹 最優比率生成樹 0/1分數規劃 度限制生成樹 連通性問題 強大的DFS演算法 無向圖連通性 割點 割邊 二連通分支 有向圖連通性 強連通分支 2-SAT 最小點基 有向無環圖 拓撲排序 有向無環圖與動態規劃的關系 二分圖匹配問題 一般圖問題與二分圖問題的轉換思路 最大匹配 有向圖的最小路徑覆蓋 0 / 1矩陣的最小覆蓋 完備匹配 最優匹配 穩定婚姻 網路流問題 網路流模型的簡單特徵和與線性規劃的關系 最大流最小割定理 最大流問題 有上下界的最大流問題 循環流 最小費用最大流 / 最大費用最大流 弦圖的性質和判定組合數學 解決組合數學問題時常用的思想 逼近 遞推 / 動態規劃 概率問題 Polya定理計算幾何 / 解析幾何 計算幾何的核心:叉積 / 面積 解析幾何的主力:復數 基本形 點 直線,線段 多邊形 凸多邊形 / 凸包 凸包演算法的引進,卷包裹法 Graham掃描法 水平序的引進,共線凸包的補丁 完美凸包演算法 相關判定 兩直線相交 兩線段相交 點在任意多邊形內的判定 點在凸多邊形內的判定 經典問題 最小外接圓 近似O(n)的最小外接圓演算法 點集直徑 旋轉卡殼,對踵點 多邊形的三角剖分數學 / 數論 最大公約數 Euclid演算法 擴展的Euclid演算法 同餘方程 / 二元一次不定方程 同餘方程組 線性方程組 高斯消元法 解mod 2域上的線性方程組 整系數方程組的精確解法 矩陣 行列式的計算 利用矩陣乘法快速計算遞推關系 分數 分數樹 連分數逼近 數論計算 求N的約數個數 求phi(N) 求約數和 快速數論變換 …… 素數問題 概率判素演算法 概率因子分解數據結構 組織結構 二叉堆 左偏樹 二項樹 勝者樹 跳躍表 樣式圖標 斜堆 reap 統計結構 樹狀數組 虛二叉樹 線段樹 矩形面積並 圓形面積並 關系結構 Hash表 並查集 路徑壓縮思想的應用 STL中的數據結構 vector deque set / map動態規劃 / 記憶化搜索 動態規劃和記憶化搜索在思考方式上的區別 最長子序列系列問題 最長不下降子序列 最長公共子序列 最長公共不下降子序列 一類NP問題的動態規劃解法 樹型動態規劃 背包問題 動態規劃的優化 四邊形不等式 函數的凸凹性 狀態設計 規劃方向線性規劃常用思想 二分 最小表示法串 KMP Trie結構 後綴樹/後綴數組 LCA/RMQ 有限狀態自動機理論排序 選擇/冒泡 快速排序 堆排序 歸並排序 基數排序 拓撲排序 排序網路。
2.ACM需要具備什麼知識
ACM國際大學生程序設計競賽(ACM/ICPC :ACM International Collegiate Programming Contest)是由國際計算機界歷史悠久、頗具權威性的組織ACM( 美國計算機協會)學會(Association for puter Machineary)主辦,是世界上公認的規模最大、水平最高的國際大學生程序設計競賽,其目的旨在使大學生運用計算機來充分展示自已分析問題和解決問題的能力。該項競賽從1970年舉辦至今已歷25屆,因歷屆競賽都薈萃了世界各大洲的精英,雲集了計算機界的「希望之星」,而受到國際各知名大學的重視,並受到全世界各著名計算機公司如Microsoft(微軟公司) 、IBM等的高度關注,成為世界各國大學生最具影響力的國際級計算機類的賽事,ACM所頒發的獲獎證書也為世界各著名計算機公司、各知名大學所認可。

該項競賽是年度性競賽,分區域預賽和國際決賽兩個階段進行,各預賽區第一名自動獲得參加世界決賽的資格,世界決賽安排在每年的3~4月舉行,而區域預賽安排在上一年的9月~12月在各大洲舉行。從1998年開始,IBM公司連續5年獨家贊助該項賽事的世界決賽和區域預賽。這項比賽是以大學為單位組隊(每支隊由教練、3名正式隊員,一名後備隊員組成)參賽,要求在5個小時內,解決5~8到題目。

ACM/ICPC的區域預賽是規模很大,范圍很廣的賽事,近幾年,全世界有1000多所大學, 2000多支參賽隊在六大洲的28~30個賽站中爭奪世界決賽的60~66個名額,去年我校舉辦的區域預賽,就有來自50多所高校的100多支隊伍參加,其激烈程度可想而知。

與其他編程競賽相比,ACM/ICPC題目難度更大,更強調演算法的高效性,不僅要解決一個指定的命題,而且必需要以最佳的方式解決指定的命題;它涉及知識面廣,與大學計算機系本科以及研究生如程序設計、離散數學、數據結構、人工智慧、演算法分析與設計等相關課程直接關聯,對數學要求更高,由於採用英文命題,對英語要求高,ACM/ICPC採用3人合作、共用一台電腦,所以它更強調團隊協作精神;由於許多題目並無現成的演算法,需要具備創新的精神,ACM/ICPC不僅強調學科的基礎,更強調全面素質和能力的培養。ACM/ICPC是一種全封閉式的競賽,能對學生能力進行實時的全面的考察,其成績的真實性更強,所以目前已成為內地高校的一個熱點,是培養全面發展優秀人材的一項重要的活動。概括來說就是:強調演算法的高效性、知識面要廣、對數學和英語要求較高、團隊協作和創新精神。
3.ACM需要那些方面的知識
一、語言是最重要的基本功 無論側重於什麼方面,只要是通過計算機程序去最終實現的競賽,語言都是大家要 過的第一道關。

亞洲賽區的比賽支持的語言包括C/C++與java。筆者首先說說JAVA,眾所 周知,作為面向對象的王牌語言,JAVA在大型工程的組織與安全性方面有著自己獨特的 優勢,但是對於信息學比賽的具體場合,JAVA則顯得不那麼合適,它對於輸入輸出流的 操作相比於C++要繁雜很多,更為重要的是JAVA程序的運行速度要比C++慢10倍以上,而 競賽中對於JAVA程序的運行時限卻往往得不到同等比例的放寬,這無疑對演算法設計提出 了更高的要求,是相當不利的。

其實,筆者並不主張大家在這種場合過多地運用面向對 象的程序設計思維,因為對於小程序來說這不旦需要花費更多的時間去編寫代碼,也會 降低程序的執行效率。 接著說C和C++。

許多現在參加講座的同學還在上大一,C的基礎知識剛剛學完,還沒 有接觸過C++,其實在賽場上使用純C的選手還是大有人在的,它們主要是看重了純C在效 率上的優勢,所以這部分同學如果時間有限,並不需要急著去學習新的語言,只要提高 了自己在演算法設計上的造詣,純C一樣能發揮巨大的威力。 而C++相對於C,在輸入輸出流上的封裝大大方便了我們的操作,同時降低了出錯的 可能性,並且能夠很好地實現標准流與文件流的切換,方便了調試的工作。

如果有些同 學比較在意這點,可以嘗試C和C++的混編,畢竟僅僅學習C++的流操作還是不花什麼時間 的。 C++的另一個支持來源於標准模版庫(STL),庫中提供的對於基本數據結構的統一 介面操作和基本演算法的實現可以縮減我們編寫代碼的長度,這可以節省一些時間。

但是 ,與此相對的,使用STL要在效率上做出一些犧牲,對於輸入規模很大的題目,有時候必 須放棄STL,這意味著我們不能存在「有了STL就可以不去管基本演算法的實現」的想法; 另外,熟練和恰當地使用STL必須經過一定時間的積累,准確地了解各種操作的時間復雜 度,切忌對STL中不熟悉的部分濫用,因為這其中蘊涵著許多初學者不易發現的陷阱。 通過以上的分析,我們可以看出僅就信息學競賽而言,對語言的掌握並不要求十分 全面,但是對於經常用到的部分,必須十分熟練,不允許有半點不清楚的地方,下面我 舉個真實的例子來說明這個道理——即使是一點很細微的語言障礙,都有可能釀成錯誤 : 在去年清華的賽區上,有一個隊在做F題的時候使用了cout和printf的混合輸出,由 於一個帶緩沖一個不帶,所以輸出一長就混亂了。

只是因為當時judge team中負責F題的 人眼睛尖,看出答案沒錯只是順序不對(答案有一頁多,是所有題目中最長的一個輸出 ),又看了看程序發現只是輸出問題就給了個Presentation error(格式錯)。如果審 題的人不是這樣而是直接給一個 Wrong Answer,相信這個隊是很難查到自己錯在什麼地 方的。

現在我們轉入第二個方面的討論,基礎學科知識的積累。 二、以數學為主的基礎知識十分重要 雖然被定性為程序設計競賽,但是參賽選手所遇到的問題更多的是沒有解決問題的 思路,而不是有了思路卻死活不能實現,這就是平時積累的基礎知識不夠。

今年World Final的總冠軍是波蘭華沙大學,其成員出自於數學系而非計算機系,這就是一個鮮活的 例子。競賽中對於基礎學科的涉及主要集中於數學,此外對於物理、電路等等也可能有 一定應用,但是不多。

因此,大一的同學也不必為自己還沒學數據結構而感到不知從何 入手提高,把數學撿起來吧!下面我來談談在競賽中應用的數學的主要分支。 1、離散數學——作為計算機學科的基礎,離散數學是競賽中涉及最多的數學分支, 其重中之重又在於圖論和組合數學,尤其是圖論。

圖論之所以運用最多是因為它的變化最多,而且可以輕易地結合基本數據結構和許 多演算法的基本思想,較多用到的知識包括連通性判斷、DFS和BFS,關節點和關鍵路徑、歐拉迴路、最小生成樹、最短路徑、二部圖匹配和網路流等等。雖然這部分的比重很大 ,但是往往也是競賽中的難題所在,如果有初學者對於這部分的某些具體內容暫時感到 力不從心,也不必著急,可以慢慢積累。

競賽中設計的組合計數問題大都需要用組合數學來解決,組合數學中的知識相比於 圖論要簡單一些,很多知識對於小學上過奧校的同學來說已經十分熟悉,但是也有一些 部分需要先對代數結構中的群論有初步了解才能進行學習。組合數學在競賽中很少以難 題的形式出現,但是如果積累不夠,任何一道這方面的題目卻都有可能成為難題。

2、數論——以素數判斷和同餘為模型構造出來的題目往往需要較多的數論知識來解 決,這部分在競賽中的比重並不大,但只要來上一道,也足以使知識不足的人冥思苦想 上一陣時間。素數判斷和同餘最常見的是在以密碼學為背景的題目中出現,在運用密碼 學常識確定大概的過程之後,核心演算法往往要涉及數論的內容。

3、計算幾何——計算幾何相比於其它部分來說是比較獨立的,就是說它和其它的知 識點很少有過多的結合,較常用到的部分包括——線段相交的判斷、多邊形面積的計算 、內點外點的判斷、凸包等。
4.ACM需要那些方面的知識
一、語言是最重要的基本功 無論側重於什麼方面,只要是通過計算機程序去最終實現的競賽,語言都是大家要 過的第一道關。

亞洲賽區的比賽支持的語言包括C/C++與JAVA。筆者首先說說JAVA,眾所 周知,作為面向對象的王牌語言,JAVA在大型工程的組織與安全性方面有著自己獨特的 優勢,但是對於信息學比賽的具體場合,JAVA則顯得不那麼合適,它對於輸入輸出流的 操作相比於C++要繁雜很多,更為重要的是JAVA程序的運行速度要比C++慢10倍以上,而 競賽中對於JAVA程序的運行時限卻往往得不到同等比例的放寬,這無疑對演算法設計提出 了更高的要求,是相當不利的。

其實,筆者並不主張大家在這種場合過多地運用面向對 象的程序設計思維,因為對於小程序來說這不旦需要花費更多的時間去編寫代碼,也會 降低程序的執行效率。 接著說C和C++。

許多現在參加講座的同學還在上大一,C的基礎知識剛剛學完,還沒 有接觸過C++,其實在賽場上使用純C的選手還是大有人在的,它們主要是看重了純C在效 率上的優勢,所以這部分同學如果時間有限,並不需要急著去學習新的語言,只要提高 了自己在演算法設計上的造詣,純C一樣能發揮巨大的威力。 而C++相對於C,在輸入輸出流上的封裝大大方便了我們的操作,同時降低了出錯的 可能性,並且能夠很好地實現標准流與文件流的切換,方便了調試的工作。

如果有些同 學比較在意這點,可以嘗試C和C++的混編,畢竟僅僅學習C++的流操作還是不花什麼時間 的。 C++的另一個支持來源於標准模版庫(STL),庫中提供的對於基本數據結構的統一 介面操作和基本演算法的實現可以縮減我們編寫代碼的長度,這可以節省一些時間。

但是 ,與此相對的,使用STL要在效率上做出一些犧牲,對於輸入規模很大的題目,有時候必 須放棄STL,這意味著我們不能存在「有了STL就可以不去管基本演算法的實現」的想法; 另外,熟練和恰當地使用STL必須經過一定時間的積累,准確地了解各種操作的時間復雜 度,切忌對STL中不熟悉的部分濫用,因為這其中蘊涵著許多初學者不易發現的陷阱。 通過以上的分析,我們可以看出僅就信息學競賽而言,對語言的掌握並不要求十分 全面,但是對於經常用到的部分,必須十分熟練,不允許有半點不清楚的地方,下面我 舉個真實的例子來說明這個道理——即使是一點很細微的語言障礙,都有可能釀成錯誤 : 在去年清華的賽區上,有一個隊在做F題的時候使用了cout和printf的混合輸出,由 於一個帶緩沖一個不帶,所以輸出一長就混亂了。

只是因為當時judge team中負責F題的 人眼睛尖,看出答案沒錯只是順序不對(答案有一頁多,是所有題目中最長的一個輸出 ),又看了看程序發現只是輸出問題就給了個Presentation error(格式錯)。如果審 題的人不是這樣而是直接給一個 Wrong Answer,相信這個隊是很難查到自己錯在什麼地 方的。

現在我們轉入第二個方面的討論,基礎學科知識的積累。 二、以數學為主的基礎知識十分重要 雖然被定性為程序設計競賽,但是參賽選手所遇到的問題更多的是沒有解決問題的 思路,而不是有了思路卻死活不能實現,這就是平時積累的基礎知識不夠。

今年World Final的總冠軍是波蘭華沙大學,其成員出自於數學系而非計算機系,這就是一個鮮活的 例子。競賽中對於基礎學科的涉及主要集中於數學,此外對於物理、電路等等也可能有 一定應用,但是不多。

因此,大一的同學也不必為自己還沒學數據結構而感到不知從何 入手提高,把數學撿起來吧!下面我來談談在競賽中應用的數學的主要分支。 1、離散數學——作為計算機學科的基礎,離散數學是競賽中涉及最多的數學分支, 其重中之重又在於圖論和組合數學,尤其是圖論。

圖論之所以運用最多是因為它的變化最多,而且可以輕易地結合基本數據結構和許 多演算法的基本思想,較多用到的知識包括連通性判斷、DFS和BFS,關節點和關鍵路徑、歐拉迴路、最小生成樹、最短路徑、二部圖匹配和網路流等等。雖然這部分的比重很大 ,但是往往也是競賽中的難題所在,如果有初學者對於這部分的某些具體內容暫時感到 力不從心,也不必著急,可以慢慢積累。

競賽中設計的組合計數問題大都需要用組合數學來解決,組合數學中的知識相比於 圖論要簡單一些,很多知識對於小學上過奧校的同學來說已經十分熟悉,但是也有一些 部分需要先對代數結構中的群論有初步了解才能進行學習。組合數學在競賽中很少以難 題的形式出現,但是如果積累不夠,任何一道這方面的題目卻都有可能成為難題。

2、數論——以素數判斷和同餘為模型構造出來的題目往往需要較多的數論知識來解 決,這部分在競賽中的比重並不大,但只要來上一道,也足以使知識不足的人冥思苦想 上一陣時間。素數判斷和同餘最常見的是在以密碼學為背景的題目中出現,在運用密碼 學常識確定大概的過程之後,核心演算法往往要涉及數論的內容。

3、計算幾何——計算幾何相比於其它部分來說是比較獨立的,就是說它和其它的知 識點很少有過多的結合,較常用到的部分包括——線段相交的判斷、多邊形面積的計算 、內點外點的判斷、凸包等。
5.ACM需要具備什麼知識
ACM國際大學生程序設計競賽(ACM/ICPC :ACM International Collegiate Programming Contest)是由國際計算機界歷史悠久、頗具權威性的組織ACM( 美國計算機協會)學會(Association for puter Machineary)主辦,是世界上公認的規模最大、水平最高的國際大學生程序設計競賽,其目的旨在使大學生運用計算機來充分展示自已分析問題和解決問題的能力。該項競賽從1970年舉辦至今已歷25屆,因歷屆競賽都薈萃了世界各大洲的精英,雲集了計算機界的「希望之星」,而受到國際各知名大學的重視,並受到全世界各著名計算機公司如Microsoft(微軟公司) 、IBM等的高度關注,成為世界各國大學生最具影響力的國際級計算機類的賽事,ACM所頒發的獲獎證書也為世界各著名計算機公司、各知名大學所認可。

該項競賽是年度性競賽,分區域預賽和國際決賽兩個階段進行,各預賽區第一名自動獲得參加世界決賽的資格,世界決賽安排在每年的3~4月舉行,而區域預賽安排在上一年的9月~12月在各大洲舉行。從1998年開始,IBM公司連續5年獨家贊助該項賽事的世界決賽和區域預賽。這項比賽是以大學為單位組隊(每支隊由教練、3名正式隊員,一名後備隊員組成)參賽,要求在5個小時內,解決5~8到題目。

ACM/ICPC的區域預賽是規模很大,范圍很廣的賽事,近幾年,全世界有1000多所大學, 2000多支參賽隊在六大洲的28~30個賽站中爭奪世界決賽的60~66個名額,去年我校舉辦的區域預賽,就有來自50多所高校的100多支隊伍參加,其激烈程度可想而知。

與其他編程競賽相比,ACM/ICPC題目難度更大,更強調演算法的高效性,不僅要解決一個指定的命題,而且必需要以最佳的方式解決指定的命題;它涉及知識面廣,與大學計算機系本科以及研究生如程序設計、離散數學、數據結構、人工智慧、演算法分析與設計等相關課程直接關聯,對數學要求更高,由於採用英文命題,對英語要求高,ACM/ICPC採用3人合作、共用一台電腦,所以它更強調團隊協作精神;由於許多題目並無現成的演算法,需要具備創新的精神,ACM/ICPC不僅強調學科的基礎,更強調全面素質和能力的培養。ACM/ICPC是一種全封閉式的競賽,能對學生能力進行實時的全面的考察,其成績的真實性更強,所以目前已成為內地高校的一個熱點,是培養全面發展優秀人材的一項重要的活動。概括來說就是:強調演算法的高效性、知識面要廣、對數學和英語要求較高、團隊協作和創新精神。
6.ACM常用的經典演算法
大概分為數論演算法,圖論演算法,A*演算法。

數論演算法:

排序(選擇,冒泡,快速,歸並,堆,基數,桶排序等)

遞歸,回溯

概率,隨機

公約數,素數

因數分解

矩陣運算

線性規劃

最小二乘

微積分

多項式分解和級數

圖論演算法:

哈夫曼樹(即最優二叉樹)

哈希表

Prim,Kruskal演算法(即最小生成樹演算法)

紅黑樹

a-B剪枝法

深、廣度搜索

拓撲排序

強連通分量

Dijkstra,Bellman-Ford,Floyd-Warashall演算法(最短路徑演算法)

計算幾何(線段相交,凸包,最近點對)

A*演算法:

動態規劃

貪心演算法

KMP演算法

哈密頓迴路問題

子集問題

博弈(極大極小值演算法等)
7.參加ACM需要准備哪些知識
學ACM要熟練C語言的基礎語法,對編程有很大的興趣,還要學關於數據結構的知識。

內容大多數是考數據結構,例如:深度搜索(dfs)、廣度搜索(bfs)、並查集、母函數、最小生成樹、數論、動態規劃(重點)、背包問題、最短路、網路流……還有很多演算法,我列出這些是經常考到的,我也在學習上述所說的。 最好買一本《數據結構》或者關於演算法的書看看,看完一些要自己動手實踐做題,做題的話去杭電acm做題,裡面有很多很基礎的題,不錯的。

資料的話,網路有很多,我多數都是網路或者 *** ,還有可以看看別人的博客的解題報告,裡面有詳細的介紹,不懂還可以問問同學師兄的。 對了,還有一點,acm比賽都是英文題目的,比賽時帶本字典查吧。

希望我說的你能滿意,祝你能在acm方面有所收獲。

㈡ 本科獨立用C語言完成沒有優化的C語言編譯器屬於什麼水平

我覺得水平還是很高的,但意義恐怕不大。編譯器技術是非常成熟的領域,而且由於應用場景的限
制實時,復雜的演算法已經自動出局了,你可選的東西是有限的。編譯器可能有很多實現的形
式,虛擬機/解釋器/靜態編譯器 等,也有成熟的開源實現。作為本科生,而非專門研究該分支的學生,應該合理分配自己學習的時間,如果做這個編譯器就干
掉了大半年,那計網和OS這些課程該咋辦? 

我知道很多人會認為沒有做編譯器優化特指中段優化,不考慮機器碼上的優化比較劃水。但編
譯器優化是一個很復雜的東西:首先它和你用的IR表示有關而且是強烈耦合,SSA IR基本還
好,有開源代碼和文獻記載,你想要的都能在網上挖到但這怎麼體現你的水平是吧。你
要考慮編譯器的性能,盡管編譯器的後端優化基本上可以納入到某種PEabstract interpretation的
范疇中。

要不然你可以通過編寫插件的方式白嫖例如visual studio code這類軟
件的強大編輯功能,如果你寫的不是c compiler,你也可以盡量把語法設計得很像c,這樣你又能進一步
白嫖其強大的intellisense code,當然仍然有不少人或者應該說團隊達到了這一步,到這里,應該卷死
了99.99%的同行應該毫無問題。

㈢ C語言演算法有哪些 並舉例和分析

演算法大全(C,C++)
一、 數論演算法

1.求兩數的最大公約數
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;

2.求兩數的最小公倍數
function lcm(a,b:integer):integer;
begin
if a<b then swap(a,b);
lcm:=a;
while lcm mod b>0 do inc(lcm,a);
end;

3.素數的求法
A.小范圍內判斷一個數是否為質數:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;

B.判斷longint范圍內的數是否為素數(包含求50000以內的素數表):
procere getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i<50000 do begin
if p[i] then begin
j:=i*2;
while j<50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}

function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i]>=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}

二、圖論演算法

1.最小生成樹

A.Prim演算法:

procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{尋找離生成樹最近的未加入頂點k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {將頂點k加入生成樹}
{生成樹中增加一條新的邊k到closest[k]}
{修正各點的lowcost和closest值}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}

B.Kruskal演算法:(貪心)

按權值遞增順序刪去圖中的邊,若不形成迴路則將此邊加入最小生成樹。
function find(v:integer):integer; {返回頂點v所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;

procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定義n個集合,第I個集合包含一個元素I}
p:=n-1; q:=1; tot:=0; {p為尚待加入的邊數,q為邊集指針}
sort;
{對所有邊按權值遞增排序,存於e[I]中,e[I].v1與e[I].v2為邊I所連接的兩個頂點的序號,e[I].len為第I條邊的長度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;

2.最短路徑

A.標號法求解單源點最短路徑:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指頂點i到源點的最短路徑}
mark:array[1..maxn] of boolean;

procere bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1為源點}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {對每一個已計算出最短路徑的點}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}

B.Floyed演算法求解所有頂點對之間的最短路徑:
procere floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路徑上j的前驅結點}
for k:=1 to n do {枚舉中間結點}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;

C. Dijkstra 演算法:

var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路徑上I的前驅結點}
mark:array[1..maxn] of boolean;
procere dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循環一次加入一個離1集合最近的結點並調整其他結點的參數}
min:=maxint; u:=0; {u記錄離1集合最近的結點}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;

3.計算圖的傳遞閉包

Procere Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;

4.無向圖的連通分量

A.深度優先
procere dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {對結點I染色}
c[i]:=color;
dfs(I,color);
end;
end;

B 寬度優先(種子染色法)

5.關鍵路徑

幾個定義: 頂點1為源點,n為匯點。
a. 頂點事件最早發生時間Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0;
b. 頂點事件最晚發生時間 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n);
c. 邊活動最早開始時間 Ee[I], 若邊I由<j,k>表示,則Ee[I] = Ve[j];
d. 邊活動最晚開始時間 El[I], 若邊I由<j,k>表示,則El[I] = Vl[k] – w[j,k];
若 Ee[j] = El[j] ,則活動j為關鍵活動,由關鍵活動組成的路徑為關鍵路徑。
求解方法:
a. 從源點起topsort,判斷是否有迴路並計算Ve;
b. 從匯點起topsort,求Vl;
c. 算Ee 和 El;

6.拓撲排序

找入度為0的點,刪去與其相連的所有邊,不斷重復這一過程。
例 尋找一數列,其中任意連續p項之和為正,任意q 項之和為負,若不存在則輸出NO.

7.迴路問題

Euler迴路(DFS)
定義:經過圖的每條邊僅一次的迴路。(充要條件:圖連同且無奇點)

Hamilton迴路
定義:經過圖的每個頂點僅一次的迴路。

一筆畫
充要條件:圖連通且奇點個數為0個或2個。

9.判斷圖中是否有負權迴路 Bellman-ford 演算法

x[I],y[I],t[I]分別表示第I條邊的起點,終點和權。共n個結點和m條邊。
procere bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {枚舉每一條邊}
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return true;
end;

10.第n最短路徑問題

*第二最短路徑:每舉最短路徑上的每條邊,每次刪除一條,然後求新圖的最短路徑,取這些路徑中最短的一條即為第二最短路徑。
*同理,第n最短路徑可在求解第n-1最短路徑的基礎上求解。

三、背包問題

*部分背包問題可有貪心法求解:計算Pi/Wi
數據結構:
w[i]:第i個背包的重量;
p[i]:第i個背包的價值;

1.0-1背包: 每個背包只能使用一次或有限次(可轉化為一次):

A.求最多可放入的重量。
NOIP2001 裝箱問題
有一個箱子容量為v(正整數,o≤v≤20000),同時有n個物品(o≤n≤30),每個物品有一個體積 (正整數)。要求從 n 個物品中,任取若千個裝入箱內,使箱子的剩餘空間為最小。
l 搜索方法
procere search(k,v:integer); {搜索第k個物品,剩餘空間為v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit; {s[n]為前n個物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;

l DP
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
實現:將最優化問題轉化為判定性問題
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 邊界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
優化:當前狀態只與前一階段狀態有關,可降至一維。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;

B.求可以放入的最大價值。
F[I,j] 為容量為I時取前j個背包所能獲得的最大價值。
F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[ i,j-1] }

C.求恰好裝滿的情況數。
DP:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
if j+now<=n then inc(c[j+now],a[j]);
a:=c;
end;

2.可重復背包

A求最多可放入的重量。
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
狀態轉移方程為
f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])

B.求可以放入的最大價值。
USACO 1.2 Score Inflation
進行一次競賽,總時間T固定,有若干種可選擇的題目,每種題目可選入的數量不限,每種題目有一個ti(解答此題所需的時間)和一個si(解答此題所得的分數),現要選擇若干題目,使解這些題的總時間在T以內的前提下,所得的總分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*p[j] } (0<=k<= i div w[j])
其中f[i,j]表示容量為i時取前j種背包所能達到的最大值。
*實現:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time>=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t>f[i] Then f[i]:=t;
End;
Writeln(f[M]);
End.

C.求恰好裝滿的情況數。
Ahoi2001 Problem2
求自然數n本質不同的質數和的表達式的數目。
思路一,生成每個質數的系數的排列,在一一測試,這是通法。
procere try(dep:integer);
var i,j:integer;
begin
cal; {此過程計算當前系數的計算結果,now為結果}
if now>n then exit; {剪枝}
if dep=l+1 then begin {生成所有系數}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;

思路二,遞歸搜索效率較高
procere try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest<=0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;
{main: try(1,n); }

思路三:可使用動態規劃求解
USACO1.2 money system
V個物品,背包容量為n,求放法總數。
轉移方程:

Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
for k:=1 to n div now do
if j+now*k<=n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {讀入第一個物品的重量}
i:=0; {a[i]為背包容量為i時的放法總數}
while i<=n do begin
a[i]:=1; inc(i,now); end; {定義第一個物品重的整數倍的重量a值為1,作為初值}
for i:=2 to v do
begin
read(now);
update; {動態更新}
end;
writeln(a[n]);

四、排序演算法

A.快速排序:

procere qsort(l,r:integer);
var i,j,mid:integer;
begin
i:=l;j:=r; mid:=a[(l+r) div 2]; {將當前序列在中間位置的數定義為中間數}
repeat
while a[i]<mid do inc(i); {在左半部分尋找比中間數大的數}
while a[j]>mid do dec(j);{在右半部分尋找比中間數小的數}
if i<=j then begin {若找到一組與排序目標不一致的數對則交換它們}
swap(a[i],a[j]);
inc(i);dec(j); {繼續找}
end;
until i>j;
if l<j then qsort(l,j); {若未到兩個數的邊界,則遞歸搜索左右區間}
if i<r then qsort(i,r);
end;{sort}

B.插入排序:

思路:當前a[1]..a[i-1]已排好序了,現要插入a[i]使a[1]..a[i]有序。
procere insert_sort;
var i,j:integer;
begin
for i:=2 to n do begin
a[0]:=a[i];
j:=i-1;
while a[0]<a[j] do begin
a[j+1]:=a[j];
j:=j-1;
end;
a[j+1]:=a[0];
end;
end;{inset_sort}

C.選擇排序:
procere sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then swap(a[i],a[j]);
end;

D. 冒泡排序
procere bubble_sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=n downto i+1 do
if a[j]<a[j-1] then swap( a[j],a[j-1]); {每次比較相鄰元素的關系}
end;

E.堆排序:
procere sift(i,m:integer);{調整以i為根的子樹成為堆,m為結點總數}
var k:integer;
begin
a[0]:=a[i]; k:=2*i;{在完全二叉樹中結點i的左孩子為2*i,右孩子為2*i+1}
while k<=m do begin
if (k<m) and (a[k]<a[k+1]) then inc(k);{找出a[k]與a[k+1]中較大值}
if a[0]<a[k] then begin a[i]:=a[k];i:=k;k:=2*i; end
else k:=m+1;
end;
a[i]:=a[0]; {將根放在合適的位置}
end;

procere heapsort;
var
j:integer;
begin
for j:=n div 2 downto 1 do sift(j,n);
for j:=n downto 2 do begin
swap(a[1],a[j]);
sift(1,j-1);
end;

㈣ 怎麼學習編寫程序

1 一、明確學習目的

學習編程對大多數IT業人員來說都是非常有用的。學編程,做一名編程人員,從個人角度講,可以解決在軟體使用中所遇到的問題,改進現有軟體,可以為自己找到一份理想的工作添加重要得砝碼,有利於在求職道路上謀得一個好的職位;從國家的角度,可以為中國的軟體產業做出應有的貢獻,一名優秀的程序員永遠是被爭奪的對象。學習編程還能鍛煉思維,使我們的邏輯思維更加嚴密;能夠不斷享受到創新的樂趣,將一直有機會走在高科技的前沿,因為程序設計本身是一種創造性的工作。知識經濟時代給我們帶來了無限的機會,要想真正掌握計算機技術,並在IT行業里干出一番事業來,有所作為,具有一定的編程能力是一個基本條件和要求。

2 二、打好基礎

學編程要具備一定的基礎,總結之有以下幾方面:

1、數學基礎 從計算機發展和應用的歷史來看計算機的數學模型和體系結構等都是有數學家提出的,最早的計算機也是為數值計算而設計的。因此,要學好計算機就要有一定的數學基礎,出學者有高中水平就差不多了。

2、邏輯思維能力的培養學程序設計要有一定的邏輯思維能力,「邏思力」的培養要長時間的實踐鍛煉。要想成為一名優秀的程序員,最重要的是掌握編程思想。要做到這一點必須在反復的實踐、觀察、分析、比較、總結中逐漸地積累。因此在學習編程過程中,我們不必等到什麼都完全明白了才去動手實踐,只要明白了大概,就要敢於自己動手去體驗。誰都有第一次。有些問題只有通過實踐後才能明白,也只有實踐才能把老師和書上的知識變成自己的,高手都是這樣成材的。

3 三、注意理解一些重要概念

一本程序設計的書看到的無非就是變數、函數、條件語句、循環語句等概念,但要真正能進行編程應用,需要深入理解這些概念,在理解的基礎上應用,不要只簡單地學習語法、結構,而要吃透針這些語法、結構的應用例子,做到舉一反三,觸類旁通。

4 四、掌握編程思想

學習一門語言或開發工具,語法結構、功能調用是次要的,最主要是學習它的思想。關鍵是學一種思想,有了思想,那麼我們就可以觸類旁通。

5 五、多實踐、多交流

掌握編程思想必須在編程實際工作中去實踐和體會。編程起步階段要經常自己動手設計程序,具體設計時不要拘泥於固定的思維方式,遇到問題要多想幾種解決的方案。這就要多交流,各人的思維方式不同、角度各異,各有高招,通過交流可不斷吸收別人的長處,豐富編程實踐,幫助自己提高水平。親自動手進行程序設計是創造性思維應用的體現,也是培養邏輯思維的好方法。

6 六、養成良好的編程習慣

編程入門不難,但入門後不斷學習是十分重要的,相對來說較為漫長。在此期間要注意養成一些良好的編程習慣。編程風格的好壞很大程度影響程序質量。良好的編程風格可以使程序結構清晰合理,且使程序代碼便於維護。如代碼的縮進編排、變數命令規則的一致性、代碼的注釋等。

7 七、上網學編程

在網上可以學到很多不同的編程思想、方法、經驗和技巧,有大量的工具和作品及相關的輔導材料供下載。

8 八、加強計算機理論知識的再學習

學編程是符合「理論→實踐→再理論→再實踐」的一個認識過程。一開始要具有一定的計算機理論基礎知識,包括編程所需的數學基礎知識,具備了入門的條件,就可以開始編程的實踐,從實踐中可以發現問題需要加強計算機理論知識的再學習。程序人人皆可編,但當你發現編到一定程度很難再提高的時候,就要回頭來學習一些計算機科學和數學基礎理論。學過之後,很多以前遇到的問題都會迎刃而解,使人有豁然開朗之感。因此在學習編程的過程中要不斷地針對應用中的困惑和問題深入學習數據結構、演算法、計算機原理、編譯原理、操作系統原理、軟體工程等計算機科學的理論基礎和數理邏輯、代數系統、圖論、離散數學等數學理論基礎知識。這樣經過不斷的學習,再努力地實踐,編程水平一定會不斷提高到一個新高度。

㈤ 想學計算機編程但是不知道學什麼

1.首先剛入門的話,你要先明確目標選擇一門編程語言入門。個人建議選擇java或者C。在學習編程語言的時候,計算機有關的知識你也是需要涉及的,也要多多去了解一下,看一些書籍,在網上下載視頻邊看邊學效果會好一些。在你理論知識的基礎上學習起來會相對容易一些。當你熟悉掌握一門語言後,這個時候就可以有學習的目標了。自己對哪方面感興趣喜歡哪種語言就學哪門。

2.我這邊來簡單介紹一下java的學習內容吧。

①JAVA編程基礎(基礎語法、面向對象、和諧特性等)

②WEB應用開發(靜態網頁製作、Oracle資料庫、Java Web開發技術、Linux技術、網站性能與安全、軟體工程開發流程、Java Web和諧等)

③企業級框架開發(數據結構與演算法、SSH框架、JavaEE和諧等)

④項目實訓

3.如果你真的想學好編程語言,C語言也是蠻重要的。但是新手學C語言通常會出現一個問題,就是除了寫個排序演算法,似乎根本想不出來C語言有什麼用。這是因為我們的教科書講C語言的時候,只講這些基本演算法,甚至連讀寫文件都不去講,更不用說圖形界面處理了和網路操作了,沒有這些知識,想寫一個真正的應用那是不可能的。不過,書上沒有不等於學不了,文件操作和網路操作的講解網路上有著大把的講解,只要你找幾篇文章看看,具備了這些基礎知識,寫一個自己的WEB伺服器並不難。在逐步增加功能完善功能的同時,你的C語言基本上就可以達到相當牛人的水平了。

4.互聯網行業目前還是最熱門的行業之一,學習IT技能之後足夠優秀是有機會進入騰訊、阿里、網易等互聯網大廠高薪就業的,發展前景非常好,普通人也可以學習。

想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,建議實地考察對比一下。

祝你學有所成,望採納。

閱讀全文

與圖論演算法c語言相關的資料

熱點內容
江陰cnc編程培訓技術學校 瀏覽:307
centos命令行亂碼 瀏覽:293
赤峰加密防塵網廠 瀏覽:6
無錫程序員接私活小程序 瀏覽:494
單片機怎麼做手工 瀏覽:814
pdf君主論 瀏覽:440
如何把網站添加到伺服器 瀏覽:707
如何刷機升級安卓11 瀏覽:581
linux設備管理命令 瀏覽:567
有什麼解壓的軟體可以打開 瀏覽:72
文件管理裡面的空文件夾能刪嗎 瀏覽:178
新量能成交量通達信指標公式源碼 瀏覽:993
行為博弈pdf 瀏覽:840
加密電腦文件導出 瀏覽:982
java反編譯apk 瀏覽:401
怎麼做加密的字體 瀏覽:672
pdf高清雜志 瀏覽:805
jsp壓縮文件 瀏覽:619
一加健康app怎麼添加音樂 瀏覽:773
編程建築施工 瀏覽:862