導航:首頁 > 源碼編譯 > 中國數學演算法有哪些

中國數學演算法有哪些

發布時間:2022-04-21 17:07:18

1. 中國古代數學優秀演算法,除輾轉相除法秦九韶演算法和更相減損術外

「方程術」的關鍵演算法叫「遍乘直除」,《九章算術》卷4中有「開方術」和「開立方術」 「四元術」 「中國剩餘定理」
中國古代數學將幾何問題也歸結為代數方程,然後用程式化的演算法來求解.因此,中國古代數學具有明顯的演算法化、機械化的特徵.以下擇要舉例說明中國古代數學發展的這種特徵.

2. 除了更相減損術,秦九韶算術和割圓術還有哪些中國古代數學中的演算法

秦九韶 數學 1202~1247 創立解一次同餘式的「大 衍求一術」和求高次方程數值解的正負開方術 秦九韶—— 1202~1247 年,中國數學家。寫有《數書九章》,創立解一次同餘式的「大 衍求一術」和求高次方程數值解的正負開方術。

李治 數學 測園海鏡 李治——中國數學家,著有「測園海鏡」是中國第一本系統改述「天元術」的巨書。

朋友`你可以參考http://www.nikerchina.com/nikezhongguo/chengchefangfa.htm

3. 常用的數學計算公式都有哪些

1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數

2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數= 1倍數

3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度

4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價

5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率

6、 加數+加數=和 和-一個加數=另一個加數

7、 被減數-減數=差 被減數-差=減數 差+減數=被減數

8、 因數×因數=積 積÷一個因數=另一個因數

9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數

小學數學圖形計算公式

1、正方形:C周長 S面積 a邊長 周長=邊長×4C=4a 面積=邊長×邊長S=a×a

2、正方體:V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6
體 積=棱長×棱長×棱長 V=a×a×a
3、長方形:
C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab
4、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh

5、三角形
s面積 a底 h高 面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高

6、平行四邊形:s面積 a底 h高 面積=底×高 s=ah

7、梯形:s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)×h÷2

8 圓形:S面 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
(2)面積=半徑×半徑×∏

9、圓柱體:v體積 h:高 s:底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑

10、圓錐體:v體積 h高 s底面積 r底面半徑 體積=底面積×高÷3

總數÷總份數=平均數

和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數

和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)

差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)

植樹問題

1、非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數

⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)

2、封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數

盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數

相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間

追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間

流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2

濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量

利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)

長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米

面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米

體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升

重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤

人民幣單位換算
1元=10角
1角=10分
1元=100分

時間單位換算
1世紀=100年 1年=12月
大月(31天)有: 1\3\5\7\8\10\12月
小月(30天)的有: 4\6\9\11月
平年 2月28天, 閏年 2月29天
平年全年365天, 閏年全年366天
1日=24小時 1小時=60分
1分=60秒 1小時=3600秒
小學數學幾何形體周長 面積 體積計算公式

1、長方形的周長=(長+寬)×2 C=(a+b)×2

2、正方形的周長=邊長×4 C=4a

3、長方形的面積=長×寬 S=ab

4、正方形的面積=邊長×邊長 S=a.a= a

5、三角形的面積=底×高÷2 S=ah÷2

6、平行四邊形的面積=底×高 S=ah

7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2

8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2

9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr

10、圓的面積=圓周率×半徑×半徑
常見的初中數學公式

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12 兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17 三角形內角和定理 三角形三個內角的和等於180°

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22 邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理(ASA) 有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形
全等

27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角
所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論2 有一個角等於60°的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的
一半

38 直角三角形斜邊上的中線等於斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關於某條直線對稱的兩個圖形是全等形

43 定理2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直
平分線

44 定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,
那麼交點在對稱軸上

45 逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩
個圖形關於這條直線對稱

46 勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,
即a^2+b^2=c^2

47 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,
那麼這個三角形是直角三角形

48 定理 四邊形的內角和等於360°

49 四邊形的外角和等於360°

50 多邊形內角和定理 n邊形的內角的和等於(n-2)×180°

51 推論 任意多邊的外角和等於360°

52 平行四邊形性質定理 1 平行四邊形的對角相等

53 平行四邊形性質定理 2 平行四邊形的對邊相等

54 推論 夾在兩條平行線間的平行線段相等

55 平行四邊形性質定理 3 平行四邊形的對角線互相平分

56 平行四邊形判定定理 1 兩組對角分別相等的四邊形是平行四邊形

57 平行四邊形判定定理 2 兩組對邊分別相等的四邊形是平行四邊形

58 平行四邊形判定定理 3 對角線互相平分的四邊形是平行四邊形

59 平行四邊形判定定理 4 一組對邊平行相等的四邊形是平行四邊形

60 矩形性質定理 1 矩形的四個角都是直角

61 矩形性質定理 2 矩形的對角線相等

62 矩形判定定理 1 有三個角是直角的四邊形是矩形

63 矩形判定定理 2 對角線相等的平行四邊形是矩形

64 菱形性質定理 1 菱形的四條邊都相等

65 菱形性質定理 2 菱形的對角線互相垂直,並且每一條對角線平分一組對角

66 菱形面積=對角線乘積的一半,即 S=(a×b)÷2

67 菱形判定定理 1 四邊都相等的四邊形是菱形

68 菱形判定定理 2 對角線互相垂直的平行四邊形是菱形

69 正方形性質定理 1 正方形的四個角都是直角,四條邊都相等
70 正方形性質定理 2 正方形的兩條對角線相等,並且互相垂直平分,每
條對角線平分一組對角

71 定理1 關於中心對稱的兩個圖形是全等的

72 定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被
對稱中心平分

73 逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,
那麼這兩個圖形關於這一點對稱

74 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

75 等腰梯形的兩條對角線相等

76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77 對角線相等的梯形是等腰梯形

78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,
那麼在其他直線上截得的線段也相等

79 推論 1 經過梯形一腰的中點與底平行的直線,必平分另一腰

80 推論 2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半

82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半
L=(a+b)÷2 S=L×h

83 (1)比例的基本性質 如果 a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d

84 (2)合比性質 如果 a/b=c/d,那麼(a±b)/b=(c±d)/d

85 (3)等比性質 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)
/(b+d+…+n)=a/b

86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例

87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得

的應線段成比例

88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線

段成比例,那麼這條直線平行於三角形的第三邊

89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的

三邊與原三角形三邊對應成比例

90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,

所構成的三角形與原三角形相似

91 相似三角形判定定理 1 兩角對應相等,兩三角形相似(ASA)

92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93 判定定理 2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)

94 判定定理 3 三邊對應成比例,兩三角形相似(SSS)

95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的

斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

96 性質定理 1 相似三角形對應高的比,對應中線的比與對應角平分線的

比都等於相似比

97 性質定理 2 相似三角形周長的比等於相似比

98 性質定理 3 相似三角形面積的比等於相似比的平方

99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的

餘角的正弦值

100 任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的

餘角的正切值

101 圓是定點的距離等於定長的點的集合

102 圓的內部可以看作是圓心的距離小於半徑的點的集合

103 圓的外部可以看作是圓心的距離大於半徑的點的集合

104 同圓或等圓的半徑相等

105 到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

106 和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

107 到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108 到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等

的一條直線

109 定理 不在同一直線上的三點確定一個圓。

110 垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

111 推論 1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

112 推論2 圓的兩條平行弦所夾的弧相等

113 圓是以圓心為對稱中心的中心對稱圖形

114 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,
所對的弦的弦心距相等

115 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦
心距中有一組量相等那麼它們所對應的其餘各組量都相等

116 定理 一條弧所對的圓周角等於它所對的圓心角的一半

117 推論 1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角
所對的弧也相等

118 推論 2 半圓(或直徑)所對的圓周角是直角;90° 的圓周角所對的弦
是直徑

119 推論 3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是
直角三角形

120 定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對


121 ①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r

122 切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切


123 切線的性質定理 圓的切線垂直於經過切點的半徑

124 推論 1 經過圓心且垂直於切線的直線必經過切點

125 推論 2 經過切點且垂直於切線的直線必經過圓心

126 切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和
這一點的連線平分兩條切線的夾角

127 圓的外切四邊形的兩組對邊的和相等

128 弦切角定理 弦切角等於它所夾的弧對的圓周角

129 推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等

130 相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等

131 推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線
段的比例中項

132 切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓
交點的兩條線段長的比例中項

133 推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩
條線段長的積相等

134 如果兩個圓相切,那麼切點一定在連心線上

135 ①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)

136 定理 相交兩圓的連心線垂直平分兩圓的公共弦

137 定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓
的外切正n邊形

138 定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139 正n邊形的每個內角都等於(n-2)×180°/n

140 定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

141 正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

142 正三角形面積 √3a/4 a表示邊長

143 如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因
此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144 弧長計算公式:L=n兀R/180

145 扇形面積公式:S扇形=n兀R^2/360=LR/2

146 內公切線長=d-(R-r) 外公切線長= d-(R+r)
實用工具:常用數學公式

公式分類 公式表達式

乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理

判別式
b2-4ac=0 註:方程有兩個相等的實根

b2-4ac>0 註:方程有兩個不等的實根

b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 13+23+33+43+53+63+…n3=n2(n+1)2/4
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R註:其中R表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註: (a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註: D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h 正棱錐側面積 S=1/2c*h'
正稜台側面積 S=1/2(c+c')h' 圓台側面積 S=1/2(c+c')l=pi(R+r)l
球的表面積 S=4pi*r2 圓柱側面積 S=c*h=2pi*h
圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r>0 扇形公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h

4. 有哪些演算法,是中國人自己創造的

勾股定理啊。在中國,《周髀算經》記載了勾股定理的公式與證明,相傳是商代由商高發現,故又稱之為商高定理;三國時代的蔣銘祖對《蔣銘祖算經》內的勾股定理作出了詳細注釋,又給出了另外一個證明。勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。中國是發現和研究勾股定理最古老的國家,公元前7至6世紀中國學者陳子,給出過任意直角三角形的三邊關系:以日下為勾,日高為股,勾、股各乘並開方除之得斜至日。在陳子後一二百年,希臘的著名數學家畢達哥拉斯才發現了這個定理。

5. 數學中都有什麼演算法啊

定義法、配方法、待定系數法、換元法、反證法、數學歸納法、導數法、賦值法、消去法、定比分離法、比較法、分析法、綜合法 ,,,還有很多桑

介里有幾個比較詳細的哈。。。
一、換元法
「換元」的思想和方法,在數學中有著廣泛的應用,靈活運用換元法解題,有助於數量關系明朗化,變繁為簡,化難為易,給出簡便、巧妙的解答。
在解題過程中,把題中某一式子如f(x),作為新的變數y或者把題中某一變數如x,用新變數t的式子如g(t)替換,即通過令f(x)=y或x=g(t)進行變數代換,得到結構簡單便於求解的新解題方法,通常稱為換元法或變數代換法。
用換元法解題,關鍵在於根據問題的結構特徵,選擇能以簡馭繁,化難為易的代換f(x)=y或x=g(t)。就換元的具體形式而論,是多種多樣的,常用的有有理式代換,根式代換,指數式代換,對數式代換,三角式代換,反三角式代換,復變數代換等,宜在解題實踐中不斷總結經驗,掌握有關的技巧。
例如,用於求解代數問題的三角代換,在具體設計時,宜遵循以下原則:(1)全面考慮三角函數的定義域、值域和有關的公式、性質;(2)力求減少變數的個數,使問題結構簡單化;(3)便於藉助已知三角公式,建立變數間的內在聯系。只有全面考慮以上原則,才能謀取恰當的三角代換。
換元法是一種重要的數學方法,在多項式的因式分解,代數式的化簡計算,恆等式、條件等式或不等式的證明,方程、方程組、不等式、不等式組或混合組的求解,函數表達式、定義域、值域或最值的推求,以及解析幾何中的坐標替換,普通方程與參數方程、極坐標方程的互化等問題中,都有著廣泛的應用。
二、消元法
對於含有多個變數的問題,有時可以利用題設條件和某些已知恆等式(代數恆等式或三角恆等式),通過適當的變形,消去一部分變數,使問題得以解決,這種解題方法,通常稱為消元法,又稱消去法。
消元法是解方程組的基本方法,在推證條件等式和把參數方程化成普通方程等問題中,也有著重要的應用。
用消元法解題,具有較強的技巧性,常常需要根據題目的特點,靈活選擇合適的消元方法
三、待定系數法
按照一定規律,先寫出問題的解的形式(一般是指一個算式、表達式或方程),其中含有若干尚待確定的未知系數的值,從而得到問題的解。這種解題方法,通常稱為待定系數法;其中尚待確定的未知系數,稱為待定系數。
確定待定系數的值,有兩種常用方法:比較系數法和特殊值法。
四、判別式法
實系數一元二次方程
ax2+bx+c=0 (a≠0) ①
的判別式△=b2-4ac具有以下性質:
>0,當且僅當方程①有兩個不相等的實數根
△ =0,當且僅當方程①有兩個相等的實數根;
<0,當且僅當方程②沒有實數根。
對於二次函數
y=ax2+bx+c (a≠0)②
它的判別式△=b2-4ac具有以下性質:
>0,當且僅當拋物線②與x軸有兩個公共點;
△ =0,當且僅當拋物線②與x軸有一個公共點;
<0,當且僅當拋物線②與x軸沒有公共點。
五、 分析法與綜合法
分析法和綜合法源於分析和綜合,是思維方向相反的兩種思考方法,在解題過程中具有十分重要的作用。
在數學中,又把分析看作從結果追溯到產生這一結果的原因的一種思維方法,而綜合被看成是從原因推導到由原因產生的結果的另一種思維方法。通常把前者稱為分析法,後者稱為綜合法。
六、 數學模型法
例(哥尼斯堡七橋問題)18世紀東普魯士哥尼斯堡有條普萊格河,這條河有兩個支流,在城中心匯合後流入波羅的海。市內辦有七座各具特色的大橋,連接島區和兩岸。每到傍晚或節假日,許多居民來這里散步,觀賞美麗的風光。年長日久,有人提出這樣的問題:能否從某地出發,經過每一座橋一次且僅一次,然後返回出發地?
數學模型法,是指把所考察的實際問題,進行數學抽象,構造相應的數學模型,通過對數學模型的研究,使實際問題得以解決的一種數學方法。
七、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
八、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
九、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

介里LL沒有說很詳細桑,,,,內啥簡便演算法我也一起說了桑丶
乘法交換律,乘法分配律,加法交換律,加法結合律,乘法分配律,

6. 中國古代數學中的演算法有哪些 除輾轉相除法、更相減損術、秦九韶演算法和割圓術外.

「四元術」(多元高次方程列式與消元解法),「垛積術」(高階等差數列求和),「招差術」(高次內插法)
我只知道這些了

7. 中國古代數學中的演算法有哪些

「四元術」(多元高次方程列式與消元解法),「垛積術」(高階等差數列求和),「招差術」(高次內插法)
我只知道這些了

8. 數學的各種演算法

演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
形式化演算法的概念部分源自嘗試解決希爾伯特提出的判定問題,並在其後嘗試定義有效計算性或者有效方法中成形。這些嘗試包括庫爾特·哥德爾、Jacques Herbrand和斯蒂芬·科爾·克萊尼分別於1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義為形式化演算法的情況。
一個演算法應該具有以下五個重要的特徵:
有窮性
(Finiteness)
演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
確切性
(Definiteness)
演算法的每一步驟必須有確切的定義;
輸入項
(Input)
一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
輸出項
(Output)
一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
可行性
(Effectiveness)
演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。
一、數據對象的運算和操作:計算機可以執行的基本操作是以指令的形式描述的。一個計算機系統能執行的所有指令的集合,成為該計算機系統的指令系統。一個計算機的基本運算和操作有如下四類:[1]
1.算術運算:加減乘除等運算
2.邏輯運算:或、且、非等運算
3.關系運算:大於、小於、等於、不等於等運算
4.數據傳輸:輸入、輸出、賦值等運算[1]
二、演算法的控制結構:一個演算法的功能結構不僅取決於所選用的操作,而且還與各操作之間的執行順序有關。
演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
演算法可以宏泛地分為三類:
一、有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。
二、有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。
三、無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。
希望我能幫助你解疑釋惑。

9. 中國古代數學中的演算法


關於輾轉相除法,
搜了一下,
在我國古代的《九章算術》中就有記載,現摘錄如下:
約分術曰:「可半者半之,不可半者,副置分母、子之數,以少減多,更相減損,求其等也。以等數約之。」
其中所說的「等數」,就是最大公約數。求「等數」的辦法是「更相減損」法,實際上就是輾轉相除法。
輾轉相除法求最大公約數,是一種比較好的方法,比較快。
對於52317和75569兩個數,你能迅速地求出它們的最大公約數嗎?一般來說你會找一找公共的使因子,這題可麻煩了,不好找,質因子大。
現在教你用輾轉相除法來求最大公約數。
先用較大的75569除以52317,得商1,余數23252,再以52317除以23252,得商2,余數是5813,再用23252做被除數,5813做除數,正好除盡得商數4。這樣5813就是75569和52317的最大公約數。你要是用分解使因數的辦法,肯定找不到。
那麼,這輾轉相除法為什麼能得到最大公約數呢?下面我就給大夥談談。
比如說有要求a、b兩個整數的最大公約數,a>b,那麼我們先用a除以b,得到商8,余數r1:a÷b=q1…r1我們當然也可以把上面這個式子改寫成乘法式:a=bq1+r1------l)
如果r1=0,那麼b就是a、b的最大公約數3。要是r1≠0,就繼續除,用b除以r1,我們也可以有和上面一樣的式子:
b=r1q2+r2-------2)
如果余數r2=0,那麼r1就是所求的最大公約數3。為什麼呢?因為如果2)式變成了b=r1q2,那麼b1r1的公約數就一定是a1b的公約數。這是因為一個數能同時除盡b和r1,那麼由l)式,就一定能整除a,從而也是a1b的公約數。
反過來,如果一個數d,能同時整除a1b,那麼由1)式,也一定能整除r1,從而也有d是b1r1的公約數。
這樣,a和b的公約數與b和r1的公約數完全一樣,那麼這兩對的最大公約數也一定相同。那b1r1的最大公約數,在r1=0時,不就是r1嗎?所以a和b的最大公約數也是r1了。
有人會說,那r2不等於0怎麼辦?那當然是繼續往下做,用r1除以r2,……直到余數為零為止。
在這種方法里,先做除數的,後一步就成了被除數,這就是輾轉相除法名字的來歷吧。

10. 中國數學有那些著名的公式和定理

算籌是中國古代的計算工具,真正意義上的中國古代數學體系形成於自西漢至南北朝的三、四百年期間。《算數書》成書於西漢初年,是傳世的中國最早的數學專著,它是1984年由考古學家在湖北江陵張家山出土的漢代竹簡中發現的。《周髀算經》編纂於西漢末年,它雖然是一本關於「蓋天說」的天文學著作,但是包括兩項數學成就——(1)勾股定理的特例或普遍形式(「若求邪至日者,以日下為句,日高為股,句股各自乘,並而開方除之,得邪至日。」——這是中國最早關於勾股定理的書面記載);(2)測太陽高或遠的「陳子測日法」。
《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。注重實際應用是《九章算術》的一個顯著特點。該書的一些知識還傳播至印度和阿拉伯,甚至經過這些地區遠至歐洲。
九章算術》標志以籌算為基礎的中國古代數學體系的正式形成。
中國古代數學在三國及兩晉時期側重於理論研究,其中以趙爽與劉徽為主要代表人物。
趙爽學術成就體現於對《周髀算經》的闡釋。在《勾股圓方圖注》中,他還用幾何方法證明了勾股定理,其實這已經體現「割補原理」的方法。用幾何方法求解二次方程也是趙爽對中國古代數學的一大貢獻。三國時期魏人劉徽則注釋了《九章算術》,其著作《九章算術注》不僅對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且系統地闡述了中國傳統數學的理論體系與數學原理,並且多有創造。其發明的「割圓術」(圓內接正多邊形面積無限逼近圓面積),為圓周率的計算奠定了基礎,同時劉徽還算出圓周率的近似值——「3927/1250(3.1416)」。他設計的「牟合方蓋」的幾何模型為後人尋求球體積公式打下重要基礎。在研究多面體體積過程中,劉徽運用極限方法證明了「陽馬術」。另外,《海島算經》也是劉徽編撰的一部數學論著。
南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世。
祖沖之、祖暅父子的工作在這一時期最具代表性。他們著重進行數學思維和數學推理,在前人劉徽《九章算術注》的基礎上前進了一步。根據史料記載,其著作《綴術》(已失傳)取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同時在天文學上也有一定貢獻。

隋唐時期的主要成就在於建立中國數學教育制度,這大概主要與國子監設立算學館及科舉制度有關。在當時的算學館《算經十書》成為專用教材對學生講授。《算經十書》收集了《周髀算經》、《九章算術》、《海島算經》等10部數學著作。所以當時的數學教育制度對繼承古代數學經典是有積極意義的。
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
從公元11世紀到14世紀的宋、元時期,是以籌算為主要內容的中國古代數學的鼎盛時期,其表現是這一時期涌現許多傑出的數學家和數學著作。中國古代數學以宋、元數學為最高境界。在世界范圍內宋、元數學也幾乎是與阿拉伯數學一道居於領先集團的。
賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚。 秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。
14世紀中、後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,於是自此中國古代數學便開始呈現全面衰退之勢。
明代珠算開始普及於中國。1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作。但是有人認為,珠算的普及是抑制建立在籌算基礎之上的中國古代數學進一步發展的主要原因之一。

由於演算天文歷法的需要,自16世紀末開始,來華的西方傳教士便將西方一些數學知識傳入中國。數學家徐光啟向義大利傳教士利馬竇學習西方數學知識,而且他們還合譯了《幾何原本》的前6卷(1607年完成)。徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作。鄧玉函編譯的《大測》〔2卷〕、《割圓八線表》〔6卷〕和羅雅谷的《測量全義》〔10卷〕是介紹西方三角學的著作。

閱讀全文

與中國數學演算法有哪些相關的資料

熱點內容
成都市區建成面積演算法 瀏覽:656
智能家居單片機 瀏覽:93
買男裝用什麼app好 瀏覽:851
文件夾合並了怎麼拆開 瀏覽:256
波段副圖源碼無未來函數 瀏覽:84
livecn伺服器地址 瀏覽:257
程序員這個工作真的很吃香嗎 瀏覽:844
程序員和數學分析師待遇 瀏覽:678
壓縮氣彈簧怎麼拆 瀏覽:321
華為公有雲伺服器添加虛擬ip 瀏覽:209
程序員和運營哪個累 瀏覽:24
抖音安卓信息提示音怎麼設置 瀏覽:454
光速虛擬機的共享文件夾 瀏覽:248
程序員培訓機構發的朋友圈真實性 瀏覽:742
天乾地支簡單演算法 瀏覽:299
下載個壓縮文件 瀏覽:300
普通人電腦關機vs程序員關機 瀏覽:628
米酷建站源碼 瀏覽:115
氫氣app怎麼搜搭配 瀏覽:619
pdf綠盟 瀏覽:505