導航:首頁 > 源碼編譯 > 數據挖掘中的數據分類演算法綜述

數據挖掘中的數據分類演算法綜述

發布時間:2022-04-25 10:06:27

㈠ 數據挖掘十大經典演算法及各自優勢

數據挖掘十大經典演算法及各自優勢

不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;2) 在樹構造過程中進行剪枝;3) 能夠完成對連續屬性的離散化處理;4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。
4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。
6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

以上是小編為大家分享的關於數據挖掘十大經典演算法及各自優勢的相關內容,更多信息可以關注環球青藤分享更多干貨

㈡ 數據挖掘中的分類技術

數據挖掘中的分類技術
KNN(K最近鄰演算法)
演算法核心:如果一個樣本在特徵空間中K個最相似的樣本中的大多數屬於一個類別,則該樣本也屬於這個類別,並具有這個類別的特徵
在確定分類時只依靠最鄰近的一個或幾個樣本的類別來決定待分樣本所屬類別,在做決策時只與極少數的相鄰樣本有關
由於KNN方法主要依靠周圍有限的臨近樣本,而不是依靠判別類域的方法來確定樣本所屬類別。對於類域交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更合適
決策樹
決策樹要解決的問題是用哪些屬性充當這棵樹的各個節點的問題,決策樹按分裂標准不同可以分為基於資訊理論的方法和基於最小GINI指標方法
神經網路
神經網路的學習是一個過程,並按照一定的規則(學習演算法)調整各層的權值矩陣,待網路各層權值都收斂到一定值,學習過程結束
支持向量機(SVM)
盡量把樣本中從更高維度看起來在一起的樣本合在一起
支持向量機的目的是找到一個最優超平面,使分類間隔最大。最優超平面就是要求分類面不但能將兩類正確分開,而且使分類間隔最大
在兩類樣本中離分類面最近且位於平行於最優超平面上的點就是支持向量,為找到最優超平面,只要找到所有的支持向量即可
對於非線形支持向量機,通常做法為把線形不可分轉換成線形可分,通過一個非線形映射將低維輸入空間中的數據特徵映射到高維。

㈢ 常用的數據挖掘演算法有哪幾類

常用的數據挖掘演算法分為以下幾類:神經網路,遺傳演算法,回歸演算法,聚類分析演算法,貝耶斯演算法。

目前已經進入大數據的時代,所以數據挖掘和大數據分析的就業前景非常好,學好大數據分析和數據挖掘可以在各個領域中發揮自己的價值;同時,大數據分析並不是一蹴而就的事情,而是需要你日積月累的數據處理經驗,不是會被輕易替代的。一家公司的各項工作,基本上都都用數據體現出來,一位高級的數據分析師職位通常是數據職能架構中領航者,擁有較高的分析和思辨能力,對於業務的理解到位,並且深度知曉公司的管理和商業行為,他可以負責一個子產品或模塊級別的項目,帶領團隊來全面解決問題,把控手下數據分析師的工作質量。

想要了解更多有關數據挖掘演算法的信息,可以了解一下CDA數據分析師的課程。課程教你學企業需要的敏捷演算法建模能力,可以學到前沿且實用的技術,挖掘數據的魅力;教你用可落地、易操作的數據科學思維和技術模板構建出優秀模型,只教實用干貨,以專精技術能力提升業務效果與效率。點擊預約免費試聽課。

㈣ 數據挖掘的經典演算法有哪些

1. C4.5


C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:


1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;


2) 在樹構造過程中進行剪枝;


3) 能夠完成對連續屬性的離散化處理;


4) 能夠對不完整數據進行處理。


2. The k-means algorithm 即K-Means演算法


k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。


3. Support vector machines


支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。


4. The Apriori algorithm


Apriori演算法,它是一種最具影響力的挖掘布爾關聯規則頻繁項集的演算法。它的演算法核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。


關於數據挖掘的經典演算法有哪些,該如何下手的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

㈤ 三種經典的數據挖掘演算法

演算法,可以說是很多技術的核心,而數據挖掘也是這樣的。數據挖掘中有很多的演算法,正是這些演算法的存在,我們的數據挖掘才能夠解決更多的問題。如果我們掌握了這些演算法,我們就能夠順利地進行數據挖掘工作,在這篇文章我們就給大家簡單介紹一下數據挖掘的經典演算法,希望能夠給大家帶來幫助。
1.KNN演算法
KNN演算法的全名稱叫做k-nearest neighbor classification,也就是K最近鄰,簡稱為KNN演算法,這種分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似,即特徵空間中最鄰近的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。KNN演算法常用於數據挖掘中的分類,起到了至關重要的作用。
2.Naive Bayes演算法
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。這種演算法在數據挖掘工作使用率還是挺高的,一名優秀的數據挖掘師一定懂得使用這一種演算法。
3.CART演算法
CART, 也就是Classification and Regression Trees。就是我們常見的分類與回歸樹,在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。這兩個思想也就決定了這種演算法的地位。
在這篇文章中我們給大家介紹了關於KNN演算法、Naive Bayes演算法、CART演算法的相關知識,其實這三種演算法在數據挖掘中占據著很高的地位,所以說如果要從事數據挖掘行業一定不能忽略這些演算法的學習。

㈥ 數據挖掘概念綜述

數據挖掘概念綜述
數據挖掘又稱從資料庫中發現知識(KDD)、數據分析、數據融合(Data Fusion)以及決策支持。KDD一詞首次出現在1989年8月舉行的第11屆國際聯合人工智慧學術會議上。隨後在1991年、1993年和1994年都舉行KDD 專題討論會,匯集來自各個領域的研究人員和應用開發者,集中討論數據統計、海量數據分析算 法、知識表示、知識運用等問題。隨著參與人員的不斷增多,KDD國際會議發展成為年會。1998 年在美國紐約舉行的第四屆知識發現與數據 挖掘國際學術會議不僅進行了學術討論,並且有30多家軟體公司展示了他們的數據挖掘軟體產品,不少軟體已在北美、歐洲等國得到應用。
一、什麼是數據挖掘
1.1、數據挖掘的歷史
近十幾年來,人們利用信息技術生產和搜集數據的能力大幅度提高,千萬萬個資料庫被用於商業管理、政府辦公、科學研究和工程開發等等,這一勢頭仍將持續發展下去。於是,一個新的挑戰被提了出來:在這被稱之為信息爆炸的時代,信息過量幾乎成為人人需要面對的問題。如何才能不被信息的汪洋大海所淹沒,從中及時發現有用的知識,提高信息利用率呢?要想使數據真正成為一個公司的資源,只有充分利用它為公司自身的業務決策和戰略發展服務才行,否則大量的數據可能成為包袱,甚至成為垃圾。因此,面對」人們被數據淹沒,人們卻飢餓於知識」的挑戰。另一方面計算機技術的另一領域——人工智慧自1956年誕生之後取得了重大進展。經歷了博弈時期、自然語言理解、知識工程等階段,目前的研究 熱點是機器學習。機器學習是用計算機模擬人類學習的一門科學,比較成熟的演算法有神經網路、遺傳演算法等。用資料庫管理系統來存儲數據,用機器學習的方法來分析數據,挖掘大量數據背後的知識,這兩者的結合促成了資料庫中的知識發現(KDD:Knowledge Discovery in Databases)的產生,因此,數據挖掘和知識發現(DMKD)技術應運而生,並得以蓬勃發展,越來越顯示出其強大的生命力。
數據挖掘又稱從資料庫中發現知識(KDD)、數據分析、數據融合(Data Fusion)以及決策支持。KDD一詞首次出現在1989年8月舉行的第11屆國際聯合人工智慧學術會議上。隨後在1991年、1993年和1994年都舉行KDD 專題討論會,匯集來自各個領域的研究人員和應用開發者,集中討論數據統計、海量數據分析算 法、知識表示、知識運用等問題。隨著參與人員的不斷增多,KDD國際會議發展成為年會。1998 年在美國紐約舉行的第四屆知識發現與數據 挖掘國際學術會議不僅進行了學術討論,並且有30多家軟體公司展示了他們的數據挖掘軟體產品,不少軟體已在北美、歐洲等國得到應用。
2.2數據挖掘的概念
從1989年到現在,KDD的定義隨著人們研究的不斷深入也在不斷完善,目前比較公認的定義是Fayyad 等給出的:KDD是從數據集中識別出有效的、新穎的、潛在有用的以及最終可理解模式的高級處理過程。從定義可以看出,數據挖掘(DataMining)就是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。人們把原始數據看作是形成知識的源泉,就像從礦石中采礦一樣。原始數據可以是結構化的,如關系資料庫中的數據,也可以是半結構化的,如文本、圖形、圖像數據,甚至是分布在網路上的異構型數據。發現知識的方法可以是數學的,也可以是非數學的;可以是演繹的,也可以是歸納的。發現了的知識可以被用於信息管理、查詢優化、決策支持、過程式控制制等,還可以用於數據自身的維護。因此,數據挖掘是一門很廣義的交叉學科,它匯聚了不同領域的研究者,尤其是資料庫、人工智慧、數理統計、可視化、並行計算等方面的學者和工程技術人員。
特別要指出的是,數據挖掘技術從一開始就是面向應用的。它不僅是面向特定資料庫的簡單檢索查詢調用,而且要對這些數據進行微觀、中觀乃至宏觀的統計、分析、綜合和推理,以指導實際問題的求解,企圖發現事件間的相互關聯,甚至利用已有的數據對未來的活動進行預測。
一般來說在科研領域中稱為KDD,而在工程領域則稱為數據挖掘。
二、數據挖掘的步驟
KDD包括以下步驟:
1、數據准備
KDD的處理對象是大量的數據,這些數據一般存儲在資料庫系統中,是長期積累的結果。但往往不適合直接在這些數據上面進行知識挖 掘,需要做數據准備工作,一般包括數據的選擇(選擇相關的數據)、凈化(消除噪音、冗餘數據)、推測(推算缺失數據)、轉換(離散值 數據與連續值數據之間的相互轉換,數據值的分組分類,數據項之間的計算組合等)、數據縮減(減少數據量)。如果KDD的對象是數據倉 庫,那麼這些工作往往在生成數據倉庫時已經准備妥當。數據准備是KDD 的第一個步驟,也是比較重要的一個步驟。數據准備是否做好將影 響到數據挖掘的效率和准確度以及最終模式的有效性。
2、數據挖掘
數據挖掘是KDD最關鍵的步驟,也是技術難點所在。研究KDD的人員中大部分都在研究數據挖掘技術,採用較多的技術有決策樹、分類、 聚類、粗糙集、關聯規則、神經網路、遺傳演算法等。數據挖掘根據KDD的目標,選取相應演算法的參數,分析數據,得到可能形成知識的模式 模型。
3、評估、解釋模式模型
上面得到的模式模型,有可能是沒有實際意義或沒有實用價值的,也有可能是其不能准確反映數據的真實意義,甚至在某些情況下是與事 實相反的,因此需要評估,確定哪些是有效的、有用的模式。評估可以根據用戶多年的經驗,有些模式也可以直接用數據來檢驗其准確性。 這個步驟還包括把模式以易於理解的方式呈現給用戶。
4、鞏固知識
用戶理解的、並被認為是符合實際和有價值的模式模型形成了知識。同時還要注意對知識做一
致性檢查,解決與以前得到的知識互相沖 突、矛盾的地方,使知識得到鞏固。
5、運用知識
發現知識是為了運用,如何使知識能被運用也是KDD的步驟之一。運用知識有兩種方法:一種是只需看知識本身所描述的關系或結果,就 可以對決策提供支持;另一種是要求對新的數據運用知識,由此可能產生新的問題,而需要對知識做進一步的優化
三、數據挖掘的特點及功能
3.1、數據挖掘的特點
數據挖掘具有如下幾個特點,當然,這些特點與數據挖掘要處理的數據和目的是密切相關的。
1、處理的數據規模十分巨大。
2、查詢一般是決策制定者(用戶)提出的即時隨機查詢,往往不能形成精確的查詢要求。
3、由於數據變化迅速並可能很快過時,因此需要對動態數據作出快速反應,以提供決策支持。
4、主要基於大樣本的統計規律,其發現的規則不一定適用於所有數據
3.2、數據挖掘的功能
數據挖掘所能發現的知識有如下幾種:
廣義型知識,反映同類事物共同性質的知識;
特徵型知識,反映事物各方面的特徵知識;
差異型知識,反映不同事物之間屬性差別的知識 ;關聯型知識,反映事物之間依賴或關聯的知識;
預測型知識,根據歷史的和當前的數據推測未來數據;偏離型知識,揭示事物偏離常規的異常現象。
所有這些知識都可以在不同的概念層次上被發現,隨著概念樹的提升,從微觀到中觀再到宏觀,以滿足不同用戶、不同層次決策的需要。例如,從一家超市的數據倉庫中,可以發現的一條典型關聯規則可能是」買麵包和黃油的顧客十有八九也買牛奶」,也可能是」買食品的顧客幾乎都用信用卡」,這種規則對於商家開發和實施客戶化的銷售計劃和策略是非常有用的。至於發現工具和方法,常用的有分類、聚類、減維、模式識別、可視化、決策樹、遺傳演算法、不確定性處理等。歸納起來,數據挖掘有如下幾個功能:
預測/驗證功能:預測/驗證功能指用資料庫的若干已知欄位預測或驗證其他未知欄位值。預測方法有統計分析方法、關聯規則和決策樹預測方法、回歸樹預測方法等。
描述功能:描述功能指找到描述數據的可理解模式。描述方法包括以下幾種:數據分類、回歸分析、簇聚、概括、構造依賴模式、變化和偏差分析、模式發現、路徑發現等。
四、數據挖掘的模式
數據挖掘的任務是從數據中發現模式。模式是一個用語言L來表示的一個表達式E,它可用來描述數據集F中數據的特性,E 所描述的數據是集 合F的一個子集FE。E作為一個模式要求它比列舉數據子集FE中所有元素的描述方法簡單。例如,「如果成績在81 ~90之間,則成績優良」可稱 為一個模式,而「如果成績為81、82、83、84、85、86、87、88、89 或90,則成績優良」就不能稱之為一個模式。
模式有很多種,按功能可分有兩大類:預測型(Predictive)模式和描述型(Descriptive)模式。
預測型模式是可以根據數據項的值精確確定某種結果的模式。挖掘預測型模式所使用的數據也都是可以明確知道結果的。例如,根據各種 動物的資料,可以建立這樣的模式:凡是胎生的動物都是哺乳類動物。當有新的動物資料時,就可以根據這個模式判別此動物是否是哺乳動物。
描述型模式是對數據中存在的規則做一種描述,或者根據數據的相似性把數據分組。描述型模式不能直接用於預測。例如,在地球上,70 %的表面被水覆蓋,30 %是土地。
在實際應用中,往往根據模式的實際作用細分為以下6 種:
1、分類模式
分類模式是一個分類函數( 分 類 器),能夠把數據集中的數據項映射到某個給定的類上。分類模式往往表現為一棵分類樹,根據數據的 值從樹根開始搜索,沿著數據滿足的分支往上走,走到樹葉就能確定類別。
2、回歸模式
回歸模式的函數定義與分類模式相似,它們的差別在於分類模式的預測值是離散的,回歸模式的預測值是連續的。如給出某種動物的特徵,可以用分類模式判定這種動物是哺乳動物還是鳥類;給出某個人的教育情況、工作經驗,可以用回歸模式判定這個人的年工資在哪個范圍內,是在6000元以下,還是在6000元到1萬元之間,還是在1萬元以上。
3、時間序列模式
時間序列模式根據數據隨時間變化的趨勢預測將來的值。這里要考慮到時間的特殊性質,像一些周期性的時間定義如星期、月、季節、年 等,不同的日子如節假日可能造成的影響,日期本身的計算方法,還有一些需要特殊考慮的地方如時間前後的相關性(過去的事情對將來有 多大的影響力)等。只有充分考慮時間因素,利用現有數據隨時間變化的一系列的值,才能更好地預測將來的值。
4、聚類模式
聚類模式把數據劃分到不同的組中,組之間的差別盡可能大,組內的差別盡可能小。與分類模式不同,進行聚類前並不知道將要劃分成幾 個組和什麼樣的組,也不知道根據哪一(幾)個數據項來定義組。一般來說,業務知識豐富的人應該可以理解這些組的含義,如果產生的模式無法理解或不可用,則該模式可能是無意義的,需要回到上階段重新組織數據。
5、關聯模式
關聯模式是數據項之間的關聯規則。關聯規則是如下形式的一種規則:「在無力償還貸款的人當中,60%的人的月收入在3000元以下。」
6、序列模式
序列模式與關聯模式相仿,而把數據之間的關聯性與時間聯系起來。為了發現序列模式,不僅需要知道事件是否發生,而且需要確定事件 發生的時間。例如,在購買彩電的人們當中,60%的人會在3個月內購買影碟機
五、數據挖掘的發現任務
數據挖掘涉及的學科領域和方法很多,有多種分類法。根據挖掘任務分,可分為分類或預測模型發現、數據總結、聚類、關聯規則發現、序列模式發現、依賴關系或依賴模型發現、異常和趨勢發現等等;根據挖掘對象分,有關系資料庫、面向對象資料庫、空間資料庫、時態資料庫、文本數據源、多媒體資料庫、異質資料庫、遺產資料庫以及環球網Web;根據挖掘方法分,可粗分為:機器學習方法、統計方法、神經網路方法和資料庫方法。機器學習中,可細分為:歸納學習方法(決策樹、規則歸納等)、基於範例學習、遺傳演算法等。統計方法中,可細分為:回歸分析(多元回歸、自回歸等)、判別分析(貝葉斯判別、費歇爾判別、非參數判別等)、聚類分析(系統聚類、動態聚類等)、探索性分析(主元分析法、相關分析法等)等。神經網路方法中,可細分為:前向神經網路(BP演算法等)、自組織神經網路(自組織特徵映射、競爭學習等)等。資料庫方法主要是多維數據分析或OLAP 方法,另外還有面向屬性的歸納方法。
從挖掘任務和挖掘方法的角度而言有數據總結、分類發現、聚類和關聯規則發現四種非常重要的發現任務。
5.1、數據總結
數據總結目的是對數據進行濃縮,給出它的緊湊描述。傳統的也是最簡單的數據總結方法是計算出資料庫的各個欄位上的求和值、平均值、方差值等統計值,或者用直方圖、餅狀圖等圖形方式表示。數據挖掘主要關心從數據泛化的角度來討論數據總結。數據泛化是一種把資料庫中的有關數據從低層次抽象到高層次上的過程。由於資料庫上的數據或對象所包含的信息總是最原始、基本的信息(這是為了不遺漏任何可能有用的數據信息)。人們有時希望能從較高層次的視圖上處理或瀏覽數據,因此需要對數據進行不同層次上的泛化以適應各種查詢要求。數據泛化目前主要有兩種技術:多維數據分析方法和面向屬性的歸納方法。
1、多維數據分析方法是一種數據倉庫技術,也稱作聯機分析處理(OLAP)。數據倉庫是面向決策支持的、集成的、穩定的、不同時間的歷史數據集合。決策的前提是數據分析。在數據分析中經常要用到諸如求和、總計、平均、最大、最小等匯集操作,這類操作的計算量特別大。因此一種很自然的想法是,把匯集操作結果預先計算並存儲起來,以便於決策支持系統使用。存儲匯集操作結果的地方稱作多維資料庫。多維數據分析技術已經在決策支持系統中獲得了成功的應用,如著名的SAS數據分析軟體包、Business Object公司的決策支持系統Business Object,以及IBM公司的決策分析工具都使用了多維數據分析技術。
採用多維數據分析方法進行數據總結,它針對的是數據倉庫,數據倉庫存儲的是離線的歷史數據。
2、為了處理聯機數據,研究人員提出了一種面向屬性的歸納方法。它的思路是直接對用戶感興趣的數據視圖(用一般的SQL查詢語言即可獲得)進行泛化,而不是像多維數據分析方法那樣預先就存儲好了泛化數據。方法的提出者對這種數據泛化技術稱之為面向屬性的歸納方法。原始關系經過泛化操作後得到的是一個泛化關系,它從較高的層次上總結了在低層次上的原始關系。有了泛化關系後,就可以對它進行各種深入的操作而生成滿足用戶需要的知識,如在泛化關系基礎上生成特性規則、判別規則、分類規則,以及關聯規則等。
5.2、分類發現
分類在數據挖掘中是一項非常重要的任務,目前在商業上應用最多。分類的目的是學會一個分類函數或分類模型(也常常稱作分類器),該模型能把資料庫中的數據項映射到給定類別中的某一個。分類和回歸都可用於預測。預測的目的是從利用歷史數據紀錄中自動推導出對給定數據的推廣描述,從而能對未來數據進行預測。和回歸方法不同的是,分類的輸出是離散的類別值,而回歸的輸出則是連續數值。
要構造分類器,需要有一個訓練樣本數據集作為輸入。訓練集由一組資料庫記錄或元組構成,每個元組是一個由有關欄位(又稱屬性或特徵)值組成的特徵向量,此外,訓練樣本還有一個類別標記。一個具體樣本的形式可為:( v1, v2, …, vn; c );其中vi表示欄位值,c表示類別。
分類器的構造方法有統計方法、機器學習方法、神經網路方法等等。統計方法包括貝葉斯法和非參數法(近鄰學習或基於事例的學習),對應的知識表示則為判別函數和原型事例。機器學習方法包括決策樹法和規則歸納法,前者對應的表示為決策樹或判別樹,後者則一般為產生式規則。神經網路方法主要是BP演算法,它的模型表示是前向反饋神經網路模型(由代表神經元的節點和代表聯接權值的邊組成的一種體系結構),BP演算法本質上是一種非線性判別函數。另外,最近又興起了一種新的方法:粗糙集(rough set),其知識表示是產生式規則。
不同的分類器有不同的特點。有三種分類器評價或比較尺度:1 預測准確度;2 計算復雜度;3 模型描述的簡潔度。預測准確度是用得最多的一種比較尺度,特別是對於預測型分類任務,目前公認的方法是10番分層交叉驗證法。計算復雜度依賴於具體的實現細節和硬體環境,在數據挖掘中,由於操作對象是巨量的資料庫,因此空間和時間的復雜度問題將是非常重要的一個環節。對於描述型的分類任務,模型描述越簡潔越受歡迎;例如,採用規則表示的分類器構造法就更有用,而神經網路方法產生的結果就難以理解。
另外要注意的是,分類的效果一般和數據的特點有關,有的數據雜訊大,有的有缺值, 有的分布稀疏,有的欄位或屬性間相關性強,有的屬性是離散的而有的是連續值或混合式的。目前普遍認為不存在某種方法能適合於各種特點的數據。
5.3、聚類
聚類是把一組個體按照相似性歸成若干類別,即」物以類聚」。它的目的是使得屬於同一類別的個體之間的距離盡可能的小,而不同類別上的個體間的距離盡可能的大。聚類方法包括統計方法、機器學習方法、神經網路方法和面向資料庫的方法。
在統計方法中,聚類稱聚類分析,它是多元數據分析的三大方法之一(其它兩種是回歸分析和判別分析)。它主要研究基於幾何距離的聚類,如歐式距離、明考斯基距離等。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。這種聚類方法是一種基於全局比較的聚類,它需要考察所有的個體才能決定類的劃分;因此它要求所有的數據必須預先給定,而不能動態增加新的數據對象。聚類分析方法不具有線性的計算復雜度,難以適用於資料庫非常大的情況。
在機器學習中聚類稱作無監督或無教師歸納;因為和分類學習相比,分類學習的例子或數據對象有類別標記,而要聚類的例子則沒有標記,需要由聚類學習演算法來自動確定。很多人工智慧文獻中,聚類也稱概念聚類;因為這里的距離不再是統計方法中的幾何距離 ,而是根據概念的描述來確定的。當聚類對象可以動態增加時,概念聚類則稱是概念形成。
在神經網路中,有一類無監督學習方法:自組織神經網路方法;如Kohonen自組織特徵映射網路、競爭學習網路等等。在數據挖掘領域里,見報道的神經網路聚類方法主要是自組織特徵映射方法,IBM在其發布的數據挖掘白皮書中就特別提到了使用此方法進行資料庫聚類分割。
5.4、關聯規則發現
關聯規則是形式如下的一種規則,」在購買麵包和黃油的顧客中,有90%的人同時也買了牛奶」(麵包+黃油 ( 牛奶 )。用於關聯規則發現的主要對象是事務型資料庫,其中針對的應用則是售貨數據,也稱貨籃數據。一個事務一般由如下幾個部分組成:事務處理時間 ,一組顧客購買的物品,有時也有顧客標識號(如信用卡號)。
由於條形碼技術的發展,零售部門可以利用前端收款機收集存儲大量的售貨數據。因此,如果對這些歷史事務數據進行分析,則可對顧客的購買行為提供極有價值的信息。例如,可以幫助如何擺放貨架上的商品(如把顧客經常同時買的商品放在一起),幫助如何規劃市場(怎樣相互搭配進貨)。由此可見,從事務數據中發現關聯規則,對於改進零售業等商業活動的決策非常重要。
如果不考慮關聯規則的支持度和可信度,那麼在事務資料庫中存在無窮多的關聯規則。事實上,人們一般只對滿足一定的支持度和可信度的關聯規則感興趣。在文獻中,一般稱滿足一定要求的(如較大的支持度和可信度)的規則為強規則。因此,為了發現出有意義的關聯規則,需要給定兩個閾值:最小支持度和最小可信度。前者即用戶規定的關聯規則必須滿足的最小支持度,它表示了一組物品集在統計意義上的需滿足的最低程度;後者即用戶規定的關聯規則必須滿足的最小可信度,它反應了關聯規則的最低可靠度。
在實際情況下,一種更有用的關聯規則是泛化關聯規則。因為物品概念間存在一種層次關系,如夾克衫、滑雪衫屬於外套類,外套、襯衣又屬於衣服類。有了層次關系後,可以幫助發現一些更多的有意義的規則。例如,」買外套,買鞋子」(此處,外套和鞋子是較高層次上的物品或概念,因而該規則是一種泛化的關聯規則)。由於商店或超市中有成千上萬種物品,平均來講,每種物品(如滑雪衫)的支持度很低,因此有時難以發現有用規則;但如果考慮到較高層次的物品(如外套),則其支持度就較高,從而可能發現有用的規則。另外,關聯規則發現的思路還可以用於序列模式發現。用戶在購買物品時,除了具有上述關聯規律,還有時間上或序列上的規律,因為,很多時候顧客會這次買這些東西,下次買同上次有關的一些東西,接著又買有關的某些東西。

㈦ 數據挖掘演算法的演算法分類

C4.5就是一個決策樹演算法,它是決策樹(決策樹也就是做決策的節點間像一棵樹一樣的組織方式,其實是一個倒樹)核心演算法ID3的改進演算法,所以基本上了解了一半決策樹構造方法就能構造它。決策樹構造方法其實就是每次選擇一個好的特徵以及分裂點作為當前節點的分類條件。C4.5比ID3改進的地方時:
ID3選擇屬性用的是子樹的信息增益(這里可以用很多方法來定義信息,ID3使用的是熵(entropy)(熵是一種不純度度量准則)),也就是熵的變化值,而C4.5用的是信息增益率。也就是多了個率嘛。一般來說率就是用來取平衡用的,就像方差起的作用差不多,比如有兩個跑步的人,一個起點是100m/s的人、其1s後為110m/s;另一個人起速是1m/s、其1s後為11m/s。如果僅算差值那麼兩個就是一樣的了;但如果使用速度增加率(加速度)來衡量,2個人差距就很大了。在這里,其克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足。在樹構造過程中進行剪枝,我在構造決策樹的時候好討厭那些掛著幾個元素的節點。對於這種節點,乾脆不考慮最好,不然很容易導致overfitting。對非離散數據都能處理,這個其實就是一個個式,看對於連續型的值在哪裡分裂好。也就是把連續性的數據轉化為離散的值進行處理。能夠對不完整數據進行處理,這個重要也重要,其實也沒那麼重要,缺失數據採用一些方法補上去就是了。 (樸素貝葉斯NB)
NB認為各個特徵是獨立的,誰也不關誰的事。所以一個樣本(特徵值的集合,比如「數據結構」出現2次,「文件」出現1次),可以通過對其所有出現特徵在給定類別的概率相乘。比如「數據結構」出現在類1的概率為0.5,「文件」出現在類1的概率為0.3,則可認為其屬於類1的概率為0.5*0.5*0.3。 (支持向量機SVM)
SVM就是想找一個分類得最」好」的分類線/分類面(最近的一些兩類樣本到這個」線」的距離最遠)。這個沒具體實現過,上次聽課,那位老師自稱自己實現了SVM,敬佩其鑽研精神。常用的工具包是LibSVM、SVMLight、MySVM。 (Mining frequent patterns without candidate generation)
這個也不太清楚。FP-growth演算法(Frequent Pattern-growth)使用了一種緊縮的數據結構來存儲查找頻繁項集所需要的全部信息。採用演算法:將提供頻繁項集的資料庫壓縮到一棵FP-tree來保留項集關聯信息,然後將壓縮後的資料庫分成一組條件資料庫(一種特殊類型的投影資料庫),每個條件資料庫關聯一個頻繁項集。 K-Means是一種最經典也是使用最廣泛的聚類方法,時至今日扔然有很多基於其的改進模型提出。K-Means的思想很簡單,對於一個聚類任務(你需要指明聚成幾個類,當然按照自然想法來說不應該需要指明類數,這個問題也是當前聚類任務的一個值得研究的課題),首先隨機選擇K個簇中心,然後反復計算下面的過程直到所有簇中心不改變(簇集合不改變)為止:步驟1:對於每個對象,計算其與每個簇中心的相似度,把其歸入與其最相似的那個簇中。
步驟2:更新簇中心,新的簇中心通過計算所有屬於該簇的對象的平均值得到。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。 BIRCH也是一種聚類演算法,其全稱是Balanced Iterative Recing and Clustering using Hierarchies。BIRCH也是只是看了理論沒具體實現過。是一個綜合的層次聚類特徵(Clustering Feature, CF)和聚類特徵樹(CF Tree)兩個概念,用於概括聚類描述。聚類特徵樹概括了聚類的有用信息,並且佔用空間較元數據集合小得多,可以存放在內存中,從而可以提高演算法在大型數據集合上的聚類速度及可伸縮性。
BIRCH演算法包括以下兩個階段:
1)掃描資料庫,建立動態的一棵存放在內存的CF Tree。如果內存不夠,則增大閾值,在原樹基礎上構造一棵較小的樹。
2)對葉節點進一步利用一個全局性的聚類演算法,改進聚類質量。
由於CF Tree的葉節點代表的聚類可能不是自然的聚類結果,原因是給定的閾值限制了簇的大小,並且數據的輸入順序也會影響到聚類結果。因此需要對葉節點進一步利用一個全局性的聚類演算法,改進聚類質量。 AdaBoost做分類的一般知道,它是一種boosting方法。這個不能說是一種演算法,應該是一種方法,因為它可以建立在任何一種分類演算法上,可以是決策樹,NB,SVM等。
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器(強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。使用adaboost分類器可以排除一些不必要的訓練數據,並將關鍵放在關鍵的訓練數據上面。 GSP,全稱為Generalized Sequential Pattern(廣義序貫模式),是一種序列挖掘演算法。對於序列挖掘沒有仔細看過,應該是基於關聯規則的吧!網上是這樣說的:
GSP類似於Apriori演算法,採用冗餘候選模式的剪除策略和特殊的數據結構-----哈希樹來實現候選模式的快速訪存。
GSP演算法描述:
1)掃描序列資料庫,得到長度為1的序列模式L1,作為初始的種子集。
2)根據長度為i 的種子集Li ,通過連接操作和修剪操作生成長度為i+1的候選序列模式Ci+1;然後掃描序列資料庫,計算每個候選序列模式的支持度,產生長度為i+1的序列模式Li+1,並將Li+1作為新的種子集。
3)重復第二步,直到沒有新的序列模式或新的候選序列模式產生為止。
產生候選序列模式主要分兩步:
連接階段:如果去掉序列模式s1的第一個項目與去掉序列模式s2的最後一個項目所得到的序列相同,則可以將s1與s2進行連接,即將s2的最後一個項目添加到s1中。
修切階段:若某候選序列模式的某個子序列不是序列模式,則此候選序列模式不可能是序列模式,將它從候選序列模式中刪除。
候選序列模式的支持度計算:對於給定的候選序列模式集合C,掃描序列資料庫,對於其中的每一條序列s,找出集合C中被s所包含的所有候選序列模式,並增加其支持度計數。 又是一個類似Apriori的序列挖掘。
其中經典十大演算法為:C4.5,K-Means,SVM,Apriori,EM,PageRank,AdaBoost,KNN,NB和CART。

㈧ 數據挖掘常用演算法有哪些

1、 樸素貝葉斯


樸素貝葉斯(NB)屬於生成式模型(即需要計算特徵與類的聯合概率分布),計算過程非常簡單,只是做了一堆計數。NB有一個條件獨立性假設,即在類已知的條件下,各個特徵之間的分布是獨立的。這樣樸素貝葉斯分類器的收斂速度將快於判別模型,如邏輯回歸,所以只需要較少的訓練數據即可。即使NB條件獨立假設不成立,NB分類器在實踐中仍然表現的很出色。它的主要缺點是它不能學習特徵間的相互作用,用mRMR中的R來講,就是特徵冗餘。


2、邏輯回歸(logistic regression)


邏輯回歸是一個分類方法,屬於判別式模型,有很多正則化模型的方法(L0,L1,L2),而且不必像在用樸素貝葉斯那樣擔心特徵是否相關。與決策樹與SVM相比,還會得到一個不錯的概率解釋,甚至可以輕松地利用新數據來更新模型(使用在線梯度下降演算法online gradient descent)。如果需要一個概率架構(比如,簡單地調節分類閾值,指明不確定性,或者是要獲得置信區間),或者希望以後將更多的訓練數據快速整合到模型中去,那麼可以使用它。


3、 線性回歸


線性回歸是用於回歸的,而不像Logistic回歸是用於分類,其基本思想是用梯度下降法對最小二乘法形式的誤差函數進行優化。


4、最近鄰演算法——KNN


KNN即最近鄰演算法,其主要過程為:計算訓練樣本和測試樣本中每個樣本點的距離(常見的距離度量有歐式距離,馬氏距離等);對上面所有的距離值進行排序;選前k個最小距離的樣本;根據這k個樣本的標簽進行投票,得到最後的分類類別;如何選擇一個最佳的K值,這取決於數據。


5、決策樹


決策樹中很重要的一點就是選擇一個屬性進行分枝,因此要注意一下信息增益的計算公式,並深入理解它。


6、SVM支持向量機


高准確率,為避免過擬合提供了很好的理論保證,而且就算數據在原特徵空間線性不可分,只要給個合適的核函數,它就能運行得很好。在動輒超高維的文本分類問題中特別受歡迎。可惜內存消耗大,難以解釋,運行和調參也有些煩人,而隨機森林卻剛好避開了這些缺點,比較實用。

㈨ 數據挖掘演算法有哪些

以下主要是常見的10種數據挖掘的演算法,數據挖掘分為:分類(Logistic回歸模型、神經網路、支持向量機等)、關聯分析、聚類分析、孤立點分析。每一大類下都有好幾種演算法,這個具體可以參考數據挖掘概論這本書(英文最新版)

㈩ 用於數據挖掘的分類演算法有哪些,各有何優劣

1、樸素貝葉斯(Naive Bayes, NB)

簡單,就像做一些數數的工作。

如果條件獨立假設成立的話,NB將比鑒別模型(如Logistic回歸)收斂的更快,所以你只需要少量的訓練數據。

如果你想做類似半監督學習,或者是既要模型簡單又要性能好,NB值得嘗試.


2.Logistic回歸(Logistic Regression, LR)

LR有很多方法來對模型正則化。比起NB的條件獨立性假設,LR不需要考慮樣本是否是相關的。

如果你想要一些概率信息(如,為了更容易的調整分類閾值,得到分類的不確定性,得到置信區間),或者希望將來有更多數據時能方便的更新改進模型,LR是值得使用的.


3.決策樹(Decision Tree, DT)

DT是非參數的,所以你不需要擔心野點(或離群點)和數據是否線性可分的問題(例如,DT可以輕松的處理這種情況:屬於A類的樣本的特徵x取值往往非常小或者非常大,而屬於B類的樣本的特徵x取值在中間范圍)。

DT的主要缺點是容易過擬合,這也正是隨機森林(Random Forest, RF)(或者Boosted樹)等集成學習演算法被提出來的原因。

此外,RF在很多分類問題中經常表現得最好,且速度快可擴展,也不像SVM那樣需要調整大量的參數,所以最近RF是一個非常流行的演算法.


4.支持向量機(Support Vector Machine, SVM)

很高的分類正確率,對過擬合有很好的理論保證,選取合適的核函數,面對特徵線性不可分的問題也可以表現得很好。

SVM在維數通常很高的文本分類中非常的流行。由於較大的內存需求和繁瑣的調參,我認為RF已經開始威脅其地位了.

閱讀全文

與數據挖掘中的數據分類演算法綜述相關的資料

熱點內容
單片機頻率發生器 瀏覽:732
備份與加密 瀏覽:623
用什麼app可以看論壇 瀏覽:52
javajdbcmysql連接 瀏覽:473
製作linux交叉編譯工具鏈 瀏覽:751
編程負數除以正數 瀏覽:512
app和aso有什麼區別 瀏覽:326
手機vmap是什麼文件夾 瀏覽:36
塔科夫鎖服如何選擇伺服器 瀏覽:290
消費者生產者問題java 瀏覽:61
程序員筱柒顧默結婚的時候 瀏覽:578
安卓截長屏怎麼弄 瀏覽:475
優信辦理解壓手續怎麼那麼慢 瀏覽:605
私有雲伺服器一體機安全嗎 瀏覽:430
python的tk界面禁用滑鼠 瀏覽:186
怎麼看伺服器mac地址 瀏覽:291
安卓如何將圖鏡像翻轉 瀏覽:325
操作系統設計與實現pdf 瀏覽:547
長虹空調遙控什麼app 瀏覽:739
四軸外圓編程教程 瀏覽:947