導航:首頁 > 源碼編譯 > 音頻演算法工程師招聘

音頻演算法工程師招聘

發布時間:2022-04-25 11:34:45

『壹』 美團演算法工程師的怎麼樣

研究方向
視頻演算法工程師、圖像處理演算法工程師、音頻演算法工程師 通信基帶演算法工程師 信號演算法工程師
目前國內外狀況
國內從事演算法研究的工程師不少,但是高級演算法工程師卻很少,是一個非常緊缺的專業工程師。演算法工程師根據研究領域來分主要有音頻/視頻演算法處理、圖像技術方面的二維信息演算法處理和通信物理層、雷達信號處理、生物醫學信號處理等領域的一維信息演算法處理。
在計算機音視頻和圖形圖像技術等二維信息演算法處理方面比較先進的視頻處理演算法:機器視覺成為此類演算法研究的核心;另外還有2D轉3D演算法(2D-to-3D conversion),去隔行演算法(de-interlacing),運動估計運動補償演算法(Motion estimation/Motion Compensation),去噪演算法(Noise Rection),縮放演算法(scaling),銳化處理演算法(Sharpness),超解析度演算法(Super Resolution),手勢識別(gesture recognition),人臉識別(face recognition)。
在通信物理層等一維信息領域目用的演算法:無線領域的RRM、RTT,傳送領域的調制解調、信道均衡、信號檢測、網路優化、信號分解等。
另外數據挖掘、互聯網搜索演算法也成為當今的熱門方向。
演算法工程師逐漸往人工智慧方向發展。

『貳』 演算法工程師是做什麼的

演算法工程師是一個非常高端的職位;是非常緊缺的專業工程師,兼具前途和錢途!

專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。

目前國內從事演算法研究的工程師不少,但是高級演算法工程師卻很少,是一個非常緊缺的專業工程師。演算法工程師根據研究領域來分主要有音頻/視頻演算法處理、圖像技術方面的二維信息演算法處理和通信物理層、雷達信號處理、生物醫學信號處理等領域的一維信息演算法處理。
在計算機音視頻和圖形圖形圖像技術等二維信息演算法處理方面目前比較先進的視頻處理演算法:機器視覺成為此類演算法研究的核心;另外還有2D轉3D演算法(2D-to-3D conversion),去隔行演算法(de-interlacing),運動估計運動補償演算法(Motion estimation/Motion Compensation),去噪演算法(Noise Rection),縮放演算法(scaling),銳化處理演算法(Sharpness),超解析度演算法(Super Resolution),手勢識別(gesture recognition),人臉識別(face recognition)。
在通信物理層等一維信息領域目前常用的演算法:無線領域的RRM、RTT,傳送領域的調制解調、信道均衡、信號檢測、網路優化、信號分解等。
另外數據挖掘、互聯網搜索演算法也成為當今的熱門方向。
演算法工程師逐漸往人工智慧方向發展。

『叄』 都快2021年了,演算法崗位應該怎樣准備面試

說到演算法崗位,現在網上的第一反應可能就是內卷,演算法崗位也號稱是內卷最嚴重的崗位。針對這個問題,其實之前我也有寫過相關的文章。這個崗位競爭激烈不假,但我個人覺得稱作內卷有些過了。就我個人的感覺,這幾年的一個大趨勢是從迷茫走向清晰。

早在2015年我在阿里媽媽實習的時候,那個時候我覺得其實對於演算法工程師這個崗位的招聘要求甚至包括工作內容其實業內是沒有一個統一的標準的。可以認為包括各大公司其實對這個崗位具體的工作內容以及需要的候選人的能力要求都不太一致,不同的面試官有不同的風格,也有不同的標准。

我舉幾個例子,第一個例子是我當初實習面試的時候,因為是本科生,的確對機器學習這個領域了解非常非常少,可以說是幾乎沒有。但是我依然通過了,通過的原因也很簡單,因為有acm的獲獎背景,面試的過程當中主要也都是一些演算法題,都還算是答得不錯。但是在交叉面試的時候,一位另一個部門的總監就問我有沒有這塊的經驗?我很明確地說了,沒有,但是我願意學。

接著他告訴我,演算法工程師的工作內容主要和機器學習相關,因此機器學習是基本的。當時我就覺得我涼了,然而很意外地是還是通過了面試。

核心能力

由於我已經很久沒有接觸校招了,所以也很難說校招面試應該怎麼樣准備,只能說說如果是我來招聘,我會喜歡什麼樣的學生。也可以理解成我理解的一個合格優秀的演算法工程師應該有的能力。

模型理解

演算法工程師和模型打交道,那麼理解模型是必須的。其實不用說每一個模型都精通,這沒有必要,面試的時候問的模型也不一定用得到。但更多地是看重這個人在學習的時候的習慣,他是淺嘗輒止呢,還是會刨根究底,究竟能夠學到怎樣的地步。

在實際的工作當中我們可能會面臨各種各樣的情況,比如說新加了特徵但是沒有效果,比如升級了模型效果反而變差了等等,這些情況都是有可能發生的。當我們遇到這些情況之後,需要我們根據已知的信息來推理和猜測導致的原因從而針對性的採取相應的手段。因此這就需要我們對當前的模型有比較深入地了解,否則推導原因做出改進也就無從談起。

所以面試的時候問起哪個模型都不重要,重要的是你能不能體現出你有過深入的研究和理解。

數據分析

演算法工程師一直和數據打交道,那麼分析數據、清洗數據、做數據的能力也必不可少。說起來簡單的數據分析,這當中其實牽扯很多,簡單來說至少有兩個關鍵點。

第一個關鍵點是處理數據的能力,比如SQL、hive、spark、MapRece這些常用的數據處理的工具會不會,會多少?是一個都不會呢,還是至少會一點。由於各個公司的技術棧不同,一般不會抱著候選人必須剛好會和我們一樣的期待去招人,但是候選人如果一無所知肯定也是不行的。由於學生時代其實很少接觸這種實踐的內容,很多人對這些都一無所知,如果你會一兩個,其實就是加分項。

第二個關鍵點是對數據的理解力,舉個簡單的例子,比如說現在的樣本訓練了模型之後效果不好,我們要分析它的原因,你該怎麼下手?這個問題日常當中經常遇到,也非常考驗演算法工程師對數據的分析能力以及他的經驗。數據是水,模型是船,我們要把船駛向遠方,只懂船隻構造是不行的,還需要對水文、天象也有了解。這樣才能從數據當中捕捉到trick,對一些現象有更深入的看法和理解。

工程能力

雖然是演算法工程師,但是並不代表工程能力不重要,相反工程能力也很重要。當然這往往不會成為招聘的硬性指標, 比如考察你之前做過什麼工程項目之類的。但是會在你的代碼測試環節有所體現,你的代碼風格,你的編碼能力都是你面試的考察點之一。

並不只是在面試當中如此,在實際工作當中,工程能力也很關鍵。往小了說可以開發一些工具、腳本方便自己或者是團隊當中其他人的日常工作,往大了說,你也可以成為團隊當中的開發擔當,負責其團隊當中最工程的工作。比如說復現一篇paper,或者是從頭擼一個模型。這其實也是一種差異化競爭的手段,你合理地負擔起別人負擔不了的工作,那麼自然就會成為你的業績。

時代在變化,行業在發展,如今的校招會問些什麼早已經和當年不同了。但不管怎麼說,這個崗位以及面試官對於人才的核心訴求幾乎是沒有變過的,我們從核心出發去構建簡歷、准備面試,相信一定可以有所收獲。

『肆』 人工智慧軟體畢業剛進入工作崗位都是幹啥的

首先,人工智慧領域目前已經逐漸形成了一個龐大的產業體系,整個產業體系結構中也涉及到大量的工作崗位。從人工智慧領域的研發方向來看,目前計算機視覺、自然語言處理、機器學習(深度學習)、機器人學這幾個領域的熱度相對比較高,相關的從業人員也比較多。
機器學習是人工智慧技術體系的一個重要基礎,大量人工智慧領域的技術研發都離不開機器學習的相關知識,所以機器學習領域的崗位頗具代表性。機器學習的具體步驟涉及到數據採集、演算法設計、演算法實現、演算法訓練、演算法驗證和演算法應用,其中就涉及到數據工程師崗位(數據採集、數據整理)、演算法工程師崗位(演算法設計、演算法實現)和軟體工程師崗位(應用),這些崗位的細分方向也比較多,比如演算法設計和演算法實現通常就是兩個不同的崗位。
隨著產業互聯網的快速發展,大型科技公司紛紛推出了自己的人工智慧平台,所以近幾年有很多計算機專業的研究生都選擇了人工智慧平台的相關研發崗位。由於不同公司往往有不同的側重點(計算機視覺、自然語言處理等),所以也會有不同的崗位側重,前幾年演算法崗位的人才需求量比較大,而目前開發崗位的人才需求量更大一些,這一點在2019年的秋招上有比較明顯的體現,不少畢業生也都從演算法崗位轉向了開發崗位。
隨著產業結構升級的持續推進,以及5G通信的落地應用,未來人工智慧領域的發展前景還是非常廣闊的,也會持續釋放出大量的人才需求。

『伍』 音頻演算法工程師需要點亮哪些技能點

基帶硬體工程師。看你做哪方面的了!

硬體工程師基本要掌握的是:
1、數字邏輯電路設計
2、EDA、PCB制圖
3、掌握一種或幾種嵌入式處理器
4、C語言或匯編。

基帶硬體工程師另外還要掌握的是:
1、模擬電路設計
2、基帶晶元(比如太網晶元)
3、數據編碼(比如曼徹斯特編碼、4B/5B編碼、PAM 5等編碼)

不過具體的要看你從事哪方面的事了,
如果是研發工作,可能還會用到FPGA\CPLD和DSP晶元!
還有一些數學演算法。
如果以前是做硬體工作的!搞基帶工作應當比較簡單,稍微熟悉下就可以了!

『陸』 演算法工程師 就業前景

一、演算法工程師簡介
(通常是月薪15k以上,年薪18萬以上,只是一個概數,具體薪資可以到招聘網站如拉鉤,獵聘網上看看)
演算法工程師目前是一個高端也是相對緊缺的職位;
演算法工程師包括
音/視頻演算法工程師(通常統稱為語音/視頻/圖形開發工程師)、圖像處理演算法工程師、計算機視覺演算法工程師、通信基帶演算法工程師、信號演算法工程師、射頻/通信演算法工程師、自然語言演算法工程師、數據挖掘演算法工程師、搜索演算法工程師、控制演算法工程師(雲台演算法工程師,飛控演算法工程師,機器人控制演算法)、導航演算法工程師(
@之介
感謝補充)、其他【其他一切需要復雜演算法的行業】
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊,做這一行經常要讀論文;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
演算法工程師的技能樹(不同方向差異較大,此處僅供參考)
1 機器學習
2 大數據處理:熟悉至少一個分布式計算框架Hadoop/Spark/Storm/ map-rece/MPI
3 數據挖掘
4 扎實的數學功底
5 至少熟悉C/C++或者java,熟悉至少一門編程語言例如java/python/R
加分項:具有較為豐富的項目實踐經驗(不是水論文的哪種)
二、演算法工程師大致分類與技術要求
(一)圖像演算法/計算機視覺工程師類
包括
圖像演算法工程師,圖像處理工程師,音/視頻處理演算法工程師,計算機視覺工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:機器學習,模式識別
l
技術要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader語言,熟悉常見圖像處理演算法GPU實現及優化;
(2) 語言:精通C/C++;
(3) 工具:Matlab數學軟體,CUDA運算平台,VTK圖像圖形開源軟體【醫學領域:ITK,醫學圖像處理軟體包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用開源庫;
(5) 有人臉識別,行人檢測,視頻分析,三維建模,動態跟蹤,車識別,目標檢測跟蹤識別經歷的人優先考慮;
(6) 熟悉基於GPU的演算法設計與優化和並行優化經驗者優先;
(7) 【音/視頻領域】熟悉H.264等視頻編解碼標准和FFMPEG,熟悉rtmp等流媒體傳輸協議,熟悉視頻和音頻解碼演算法,研究各種多媒體文件格式,GPU加速;
應用領域:
(1) 互聯網:如美顏app
(2) 醫學領域:如臨床醫學圖像
(3) 汽車領域
(4) 人工智慧
相關術語:
(1) OCR:OCR (Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程
(2) Matlab:商業數學軟體;
(3) CUDA: (Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。 CUDA™是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題
(4) OpenCL: OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。
(5) OpenCV:開源計算機視覺庫;OpenGL:開源圖形庫;Caffe:是一個清晰,可讀性高,快速的深度學習框架。
(6) CNN:(深度學習)卷積神經網路(Convolutional Neural Network)CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。
(7) 開源庫:指的是計算機行業中對所有人開發的代碼庫,所有人均可以使用並改進代碼演算法。
(二)機器學習工程師
包括
機器學習工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:人工智慧,機器學習
l
技術要求:
(1) 熟悉Hadoop/Hive以及Map-Rece計算模式,熟悉Spark、Shark等尤佳;
(2) 大數據挖掘;
(3) 高性能、高並發的機器學習、數據挖掘方法及架構的研發;
應用領域:
(1)人工智慧,比如各類模擬、擬人應用,如機器人
(2)醫療用於各類擬合預測
(3)金融高頻交易
(4)互聯網數據挖掘、關聯推薦
(5)無人汽車,無人機

相關術語:
(1) Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(三)自然語言處理工程師
包括
自然語言處理工程師
要求
l
專業:計算機相關專業;
l
技術領域:文本資料庫
l
技術要求:
(1) 熟悉中文分詞標注、文本分類、語言模型、實體識別、知識圖譜抽取和推理、問答系統設計、深度問答等NLP 相關演算法;
(2) 應用NLP、機器學習等技術解決海量UGC的文本相關性;
(3) 分詞、詞性分析、實體識別、新詞發現、語義關聯等NLP基礎性研究與開發;
(4) 人工智慧,分布式處理Hadoop;
(5) 數據結構和演算法;
應用領域:
口語輸入、書面語輸入
、語言分析和理解、語言生成、口語輸出技術、話語分析與對話、文獻自動處理、多語問題的計算機處理、多模態的計算機處理、信息傳輸與信息存儲 、自然語言處理中的數學方法、語言資源、自然語言處理系統的評測。

相關術語:
(2) NLP:人工智慧的自然語言處理,NLP (Natural Language Processing) 是人工智慧(AI)的一個子領域。NLP涉及領域很多,最令我感興趣的是「中文自動分詞」(Chinese word segmentation):結婚的和尚未結婚的【計算機中卻有可能理解為結婚的「和尚「】

(四)射頻/通信/信號演算法工程師類
包括
3G/4G無線通信演算法工程師, 通信基帶演算法工程師,DSP開發工程師(數字信號處理),射頻通信工程師,信號演算法工程師
要求
l
專業:計算機、通信相關專業;
l
技術領域:2G、3G、4G,BlueTooth(藍牙),WLAN,無線移動通信, 網路通信基帶信號處理
l
技術要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等無線通信相關知識,熟悉現有的通信系統和標准協議,熟悉常用的無線測試設備;
(2) 信號處理技術,通信演算法;
(3) 熟悉同步、均衡、信道解碼等演算法的基本原理;
(4) 【射頻部分】熟悉射頻前端晶元,扎實的射頻微波理論和測試經驗,熟練使用射頻電路模擬工具(如ADS或MW或Ansoft);熟練使用cadence、altium designer PCB電路設計軟體;
(5) 有扎實的數學基礎,如復變函數、隨機過程、數值計算、矩陣論、離散數學
應用領域:
通信
VR【用於快速傳輸視頻圖像,例如樂客靈境VR公司招募的通信工程師(數據編碼、流數據)】
物聯網,車聯網
導航,軍事,衛星,雷達
相關術語:
(1) 基帶信號:指的是沒有經過調制(進行頻譜搬移和變換)的原始電信號。
(2) 基帶通信(又稱基帶傳輸):指傳輸基帶信號。進行基帶傳輸的系統稱為基帶傳輸系統。傳輸介質的整個信道被一個基帶信號佔用.基帶傳輸不需要數據機,設備化費小,具有速率高和誤碼率低等優點,.適合短距離的數據傳輸,傳輸距離在100米內,在音頻市話、計算機網路通信中被廣泛採用。如從計算機到監視器、列印機等外設的信號就是基帶傳輸的。大多數的區域網使用基帶傳輸,如乙太網、令牌環網。
(3) 射頻:射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率(電磁波),頻率范圍從300KHz~300GHz之間(因為其較高的頻率使其具有遠距離傳輸能力)。射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。高頻(大於10K);射頻(300K-300G)是高頻的較高頻段;微波頻段(300M-300G)又是射頻的較高頻段。【有線電視就是用射頻傳輸方式】
(4) DSP:數字信號處理,也指數字信號處理晶元
(五)數據挖掘演算法工程師類
包括
推薦演算法工程師,數據挖掘演算法工程師
要求
l
專業:計算機、通信、應用數學、金融數學、模式識別、人工智慧;
l
技術領域:機器學習,數據挖掘
l
技術要求:
(1) 熟悉常用機器學習和數據挖掘演算法,包括但不限於決策樹、Kmeans、SVM、線性回歸、邏輯回歸以及神經網路等演算法;
(2) 熟練使用SQL、Matlab、Python等工具優先;
(3) 對Hadoop、Spark、Storm等大規模數據存儲與運算平台有實踐經驗【均為分布式計算框架】
(4) 數學基礎要好,如高數,統計學,數據結構
l
加分項:數據挖掘建模大賽;
應用領域
(1) 個性化推薦
(2) 廣告投放
(3) 大數據分析
相關術語
Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(六)搜索演算法工程師
要求
l
技術領域:自然語言
l
技術要求:
(1) 數據結構,海量數據處理、高性能計算、大規模分布式系統開發
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗
(4) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗;
(5) 精通倒排索引、全文檢索、分詞、排序等相關技術;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 優秀的資料庫設計和優化能力,精通MySQL資料庫應用 ;
(8) 了解推薦引擎和數據挖掘和機器學習的理論知識,有大型搜索應用的開發經驗者優先。
(七)控制演算法工程師類
包括了雲台控制演算法,飛控控制演算法,機器人控制演算法
要求
l
專業:計算機,電子信息工程,航天航空,自動化
l
技術要求:
(1) 精通自動控制原理(如PID)、現代控制理論,精通組合導航原理,姿態融合演算法,電機驅動,電機驅動
(2) 卡爾曼濾波,熟悉狀態空間分析法對控制系統進行數學模型建模、分析調試;
l
加分項:有電子設計大賽,機器人比賽,robocon等比賽經驗,有硬體設計的基礎;
應用領域
(1)醫療/工業機械設備
(2)工業機器人
(3)機器人
(4)無人機飛控、雲台控制等

(八)導航演算法工程師
要求
l 專業:計算機,電子信息工程,航天航空,自動化
l 技術要求(以公司職位JD為例)
公司一(1)精通慣性導航、激光導航、雷達導航等工作原理;
(2)精通組合導航演算法設計、精通卡爾曼濾波演算法、精通路徑規劃演算法;
(3)具備導航方案設計和實現的工程經驗;
(4)熟悉C/C++語言、熟悉至少一種嵌入式系統開發、熟悉Matlab工具;
公司二(1)熟悉基於視覺信息的SLAM、定位、導航演算法,有1年以上相關的科研或項目經歷;
(2)熟悉慣性導航演算法,熟悉IMU與視覺信息的融合;
應用領域
無人機、機器人等。

『柒』 演算法工程師的就業前景如何

人工智慧工作最受歡迎。演算法工程師平均招聘工資建議達到25978元。由於人才匱乏,企業競爭激烈,平均加薪超過7%。該市90%以上的人工智慧高薪工作都在天河區.近日,由廣州天河人才港和BOSS直接就業研究院聯合發布的《廣州市天河區2018年1-4月人才趨勢報告》,展示了該地區的主流發展趨勢:IAB已經成為天河區,和天河區創新型企業和大型企業布局或發展的核心主方向,企業以高薪吸引更多的行業優秀人才。「天河區企業渴望以高薪攫取IAB人才,這意味著企業要在這些行業中發揮實力。

『捌』 GPU演算法工程師是做什麼的

一、演算法工程師簡介(通常是月薪15k以上,年薪18萬以上,只是一個概數,具體薪資可以到招聘網站如拉鉤,獵聘網上看看)演算法工程師目前是一個高端也是相對緊缺的職位;演算法工程師包括音/視頻演算法工程師(通常統稱為語音/視頻/圖形開發工程師)、圖像處理演算法工程師、計算機視覺演算法工程師、通信基帶演算法工程師、信號演算法工程師、射頻/通信演算法工程師、自然語言演算法工程師、數據挖掘演算法工程師、搜索演算法工程師、控制演算法工程師(雲台演算法工程師,飛控演算法工程師,機器人控制演算法)、導航演算法工程師(@之介感謝補充)、其他【其他一切需要復雜演算法的行業】專業要求:計算機、電子、通信、數學等相關專業;學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;語言要求:英語要求是熟練,基本上能閱讀國外專業書刊,做這一行經常要讀論文;必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。演算法工程師的技能樹(不同方向差異較大,此處僅供參考)1 機器學習2 大數據處理:熟悉至少一個分布式計算框架Hadoop/Spark/Storm/ map-rece/MPI3 數據挖掘4 扎實的數學功底5 至少熟悉C/C++或者Java,熟悉至少一門編程語言例如java/python/R加分項:具有較為豐富的項目實踐經驗(不是水論文的哪種)二、演算法工程師大致分類與技術要求(一)圖像演算法/計算機視覺工程師類包括圖像演算法工程師,圖像處理工程師,音/視頻處理演算法工程師,計算機視覺工程師要求l 專業:計算機、數學、統計學相關專業;l 技術領域:機器學習,模式識別l 技術要求:(1) 精通DirectX HLSL和OpenGL GLSL等shader語言,熟悉常見圖像處理演算法GPU實現及優化;(2) 語言:精通C/C++;(3) 工具:Matlab數學軟體,CUDA運算平台,VTK圖像圖形開源軟體【醫學領域:ITK,醫學圖像處理軟體包】(4) 熟悉OpenCV/OpenGL/Caffe等常用開源庫;(5) 有人臉識別,行人檢測,視頻分析,三維建模,動態跟蹤,車識別,目標檢測跟蹤識別經歷的人優先考慮;(6) 熟悉基於GPU的演算法設計與優化和並行優化經驗者優先;(7) 【音/視頻領域】熟悉H.264等視頻編解碼標准和FFMPEG,熟悉rtmp等流媒體傳輸協議,熟悉視頻和音頻解碼演算法,研究各種多媒體文件格式,GPU加速;應用領域:(1) 互聯網:如美顏app(2) 醫學領域:如臨床醫學圖像(3) 汽車領域(4) 人工智慧相關術語:(1) OCR:OCR (Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程(2) Matlab:商業數學軟體;(3) CUDA: (Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。 CUDA™是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題(4) OpenCL: OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。(5) OpenCV:開源計算機視覺庫;OpenGL:開源圖形庫;Caffe:是一個清晰,可讀性高,快速的深度學習框架。(6) CNN:(深度學習)卷積神經網路(Convolutional Neural Network)CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。(7) 開源庫:指的是計算機行業中對所有人開發的代碼庫,所有人均可以使用並改進代碼演算法。(二)機器學習工程師包括機器學習工程師要求l 專業:計算機、數學、統計學相關專業;l 技術領域:人工智慧,機器學習l 技術要求:(1) 熟悉Hadoop/Hive以及Map-Rece計算模式,熟悉Spark、Shark等尤佳;(2) 大數據挖掘;(3) 高性能、高並發的機器學習、數據挖掘方法及架構的研發;應用領域:(1)人工智慧,比如各類模擬、擬人應用,如機器人(2)醫療用於各類擬合預測(3)金融高頻交易(4)互聯網數據挖掘、關聯推薦(5)無人汽車,無人機相關術語:(1) Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。(三)自然語言處理工程師包括自然語言處理工程師要求l 專業:計算機相關專業;l 技術領域:文本資料庫l 技術要求:(1) 熟悉中文分詞標注、文本分類、語言模型、實體識別、知識圖譜抽取和推理、問答系統設計、深度問答等NLP 相關演算法;(2) 應用NLP、機器學習等技術解決海量UGC的文本相關性;(3) 分詞、詞性分析、實體識別、新詞發現、語義關聯等NLP基礎性研究與開發;(4) 人工智慧,分布式處理Hadoop;(5) 數據結構和演算法;應用領域:口語輸入、書面語輸入、語言分析和理解、語言生成、口語輸出技術、話語分析與對話、文獻自動處理、多語問題的計算機處理、多模態的計算機處理、信息傳輸與信息存儲 、自然語言處理中的數學方法、語言資源、自然語言處理系統的評測。相關術語:(2) NLP:人工智慧的自然語言處理,NLP (Natural Language Processing) 是人工智慧(AI)的一個子領域。NLP涉及領域很多,最令我感興趣的是「中文自動分詞」(Chinese word segmentation):結婚的和尚未結婚的【計算機中卻有可能理解為結婚的「和尚「】(四)射頻/通信/信號演算法工程師類包括3G/4G無線通信演算法工程師, 通信基帶演算法工程師,DSP開發工程師(數字信號處理),射頻通信工程師,信號演算法工程師要求l 專業:計算機、通信相關專業;l 技術領域:2G、3G、4G,BlueTooth(藍牙),WLAN,無線移動通信, 網路通信基帶信號處理l 技術要求:(1) 了解2G,3G,4G,BlueTooth,WLAN等無線通信相關知識,熟悉現有的通信系統和標准協議,熟悉常用的無線測試設備;(2) 信號處理技術,通信演算法;(3) 熟悉同步、均衡、信道解碼等演算法的基本原理;(4) 【射頻部分】熟悉射頻前端晶元,扎實的射頻微波理論和測試經驗,熟練使用射頻電路模擬工具(如ADS或MW或Ansoft);熟練使用cadence、altium designer PCB電路設計軟體;(5) 有扎實的數學基礎,如復變函數、隨機過程、數值計算、矩陣論、離散數學應用領域:通信VR【用於快速傳輸視頻圖像,例如樂客靈境VR公司招募的通信工程師(數據編碼、流數據)】物聯網,車聯網導航,軍事,衛星,雷達相關術語:(1) 基帶信號:指的是沒有經過調制(進行頻譜搬移和變換)的原始電信號。(2) 基帶通信(又稱基帶傳輸):指傳輸基帶信號。進行基帶傳輸的系統稱為基帶傳輸系統。傳輸介質的整個信道被一個基帶信號佔用.基帶傳輸不需要數據機,設備化費小,具有速率高和誤碼率低等優點,.適合短距離的數據傳輸,傳輸距離在100米內,在音頻市話、計算機網路通信中被廣泛採用。如從計算機到監視器、列印機等外設的信號就是基帶傳輸的。大多數的區域網使用基帶傳輸,如乙太網、令牌環網。(3) 射頻:射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率(電磁波),頻率范圍從300KHz~300GHz之間(因為其較高的頻率使其具有遠距離傳輸能力)。射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。高頻(大於10K);射頻(300K-300G)是高頻的較高頻段;微波頻段(300M-300G)又是射頻的較高頻段。【有線電視就是用射頻傳輸方式】(4) DSP:數字信號處理,也指數字信號處理晶元(五)數據挖掘演算法工程師類包括推薦演算法工程師,數據挖掘演算法工程師要求l 專業:計算機、通信、應用數學、金融數學、模式識別、人工智慧;l 技術領域:機器學習,數據挖掘l 技術要求:(1) 熟悉常用機器學習和數據挖掘演算法,包括但不限於決策樹、Kmeans、SVM、線性回歸、邏輯回歸以及神經網路等演算法;(2) 熟練使用SQL、Matlab、Python等工具優先;(3) 對Hadoop、Spark、Storm等大規模數據存儲與運算平台有實踐經驗【均為分布式計算框架】(4) 數學基礎要好,如高數,統計學,數據結構l 加分項:數據挖掘建模大賽;應用領域(1) 個性化推薦(2) 廣告投放(3) 大數據分析相關術語Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。(六)搜索演算法工程師要求l 技術領域:自然語言l 技術要求:(1) 數據結構,海量數據處理、高性能計算、大規模分布式系統開發(2) hadoop、lucene(3) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗(4) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗;(5) 精通倒排索引、全文檢索、分詞、排序等相關技術;(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;(7) 優秀的資料庫設計和優化能力,精通MySQL資料庫應用 ;(8) 了解推薦引擎和數據挖掘和機器學習的理論知識,有大型搜索應用的開發經驗者優先。(七)控制演算法工程師類包括了雲台控制演算法,飛控控制演算法,機器人控制演算法要求l 專業:計算機,電子信息工程,航天航空,自動化l 技術要求:(1) 精通自動控制原理(如PID)、現代控制理論,精通組合導航原理,姿態融合演算法,電機驅動,電機驅動(2) 卡爾曼濾波,熟悉狀態空間分析法對控制系統進行數學模型建模、分析調試;l 加分項:有電子設計大賽,機器人比賽,robocon等比賽經驗,有硬體設計的基礎;應用領域(1)醫療/工業機械設備(2)工業機器人(3)機器人(4)無人機飛控、雲台控制等(八)導航演算法工程師要求l 專業:計算機,電子信息工程,航天航空,自動化l 技術要求(以公司職位JD為例)公司一(1)精通慣性導航、激光導航、雷達導航等工作原理;(2)精通組合導航演算法設計、精通卡爾曼濾波演算法、精通路徑規劃演算法;(3)具備導航方案設計和實現的工程經驗;(4)熟悉C/C++語言、熟悉至少一種嵌入式系統開發、熟悉Matlab工具;公司二(1)熟悉基於視覺信息的SLAM、定位、導航演算法,有1年以上相關的科研或項目經歷;(2)熟悉慣性導航演算法,熟悉IMU與視覺信息的融合;應用領域無人機、機器人等。

『玖』 大數據時代,IT行業8大的熱門崗位哪一個適合你

1、演算法工程師
何萬青博士曾經介紹把一件事做快做好的三種方法,其中就提到過「提高流水線效率、更好的演算法和更短的代碼關鍵路徑。」可以看出演算法在系統效率中的重要地位。演算法是讓機器按照人類設想的方式去解決問題,演算法很大程度上取決於問題類型和工程師對機器編程的理解,其效率的高低與演算法息息相關。
在數學和計算機科學之中,演算法(Algorithm)為一個計算的具體步驟,常用於計算、數據處理和自動推理。在大數據時代,演算法的功能和作用得到進一步凸顯。比如針對公司搜索業務,開發搜索相關性演算法、排序演算法。對公司海量用戶行為數據和用戶意圖,設計數據挖掘演算法。
演算法工程師,根據研究領域來分主要有音頻/視頻演算法處理、圖像技術方面的二維信息演算法處理和通信物理層、雷達信號處理、生物醫學信號處理等領域的一維信息演算法處理。另外數據挖掘、互聯網搜索演算法這些體現大數據發展方向的演算法,在近幾年越來越流行,而且演算法工程師也逐漸朝向人工智慧的方向發展。
2、商業智能分析師
演算法工程師延伸出來的商業智能,尤其是在大數據領域變得更加火熱。IT職業與咨詢服務公司Bluewolf曾經發布報告指出,IT職位需求增長最快的是移動、數據、雲服務和面向用戶的技術人員,其中具體的職位則包括有商業智能分析師一項。
商業智能分析師往往需要精通資料庫知識和統計分析的能力,能夠使用商業智能工具,識別或監控現有的和潛在的客戶。收集商業情報數據,提供行業報告,分析技術的發展趨勢,確定市場未來的產品開發策略或改進現有產品的銷售。
商業智能和邏輯分析技能在大數據時代顯得特別重要,擁有商業知識以及強大的數據和數學分析背景的IT人才,在將來的IT職場上更能獲得大型企業的青睞。不過這些技能並不是一般人都能掌握的,一些公司目前正在招聘統計學家並教授他們有關技術和商業的知識。
3、數據挖掘工程師
數據挖掘工程師,也可以叫做「數據挖掘專家」。數據挖掘是通過分析每個數據,從大量數據中尋找其規律的技術。數據挖掘是一種決策支持過程,它主要基於人工智慧、機器學習、模式識別、統計學、資料庫、可視化技術等,高度自動化地分析企業的數據,做出歸納性的推理,從中挖掘出潛在的模式,幫助決策者調整市場策略,減少風險,做出正確的決策。
數據挖掘專家或者說數據挖掘工程師掌握的技能,能夠為其快速創造財富。當年亞馬遜的首位數據挖掘工程師大衛·賽林格(DavidSelinger)創辦的數據挖掘公司,將類似於亞馬遜的產品推薦引擎系統銷售給在線零售和廣告銷售商,而這種產品推薦引擎系統,也成為亞馬遜有史以來最賺錢的工具。數據挖掘的價值由此可見一斑。
4、咨詢顧問
任何業務部門和任何行業企業,都有IT系統在背後默默無聞地支撐著。在雲計算大數據時代,業務面臨的挑戰和機遇也會給IT系統帶來更多要求。在這種情況下,IT系統的規劃部署和運維,都要有更為精通的專業人士才能勝任,並滿足面向未來大數據分析、雲計算服務應用的需要。
紐約蒙特法沃醫療中心(montefioremedicalcenter)的副主席傑克-沃夫(JackWolf)曾經表示,他尋求不僅會建立和使用系統而且還會給予其他員工技術支持的新員工,他說:"新的系統意味著你必須有更多的咨詢台來處理更多的咨詢量。"當然,這里體現的主要是某個系統的技術支持的功能,但管中規豹我們不難發現,無論是部署初期的物料采購還是運維過程中的金玉良言,都凸顯出這種技術咨詢顧問的重要性。
5、網路工程師
網路工程師可以說是一個「綠色長青」的職業,網路技術一直以來就處於急需之中,美國人力資源公司羅勃海佛國際(RobertHalfInternational)第三季度IT招聘指數和技能報告指出,網路管理占總需求技能排名中的第二位。對於雲計算時代來說,網路在雲資源池中(計算、存儲、網路)更是扮演著更為重要的作用。
另一方面,IPv6標准、物聯網、移動互聯等蓬勃發展,使得對於網路工程師尤其是新型網路工程師(移動、IPv6、雲計算方向)的人才和技能要求也越來越多。網路工程師也因此而可以細分成多個發展方向,相應的技能要求其側重也有所不同。比如網路安全、網路存儲、架構設計、移動網路等等。
6、移動應用開發工程師
移動應用開發,會隨著移動互聯網時代的到來變得更受追捧。截至2012年底我國已經有10億手機用戶,移動智能終端用戶超過4億,在移動支付、移動購物、移動旅遊、移動社交等方面涌現了大量的移動互聯網游戲、應用和創業公司。
移動平台智能系統較多,但真正有影響力的也不外乎iOS、Android、WP、Blackberry等。大量原來PC和互聯網上的信息化應用、互聯網應用均已出現在手機平台上,一些前所未見的新奇應用也開始出現,並日漸增多。
移動應用開發,由於存有多個平台系統,因此不同的平台開發者其所面臨的機遇和挑戰也不盡相同。一個很明顯的例子就是,當初由Google公司和開放手機聯盟領導及開發的基於Linux的安卓系統,在開源之後就給廣大開發者(商)帶來巨大商機,而堅定選擇iOS平台的的開發工程師,也通過蘋果生態系統的不斷擴建和智能設備的高市場佔有,使得較早的一批開發者都賺得盆滿缽滿。不過在國內由於用戶習慣、產業環境和版權保護的問題,移動應用開發者並沒有因此而獲得相應的收益。
7、軟體工程設計師
近年IT業界逐漸涌現出一股軟體定義網路(SDN)、軟體定義數據中心、軟體定義存儲(SDS)和軟體定義伺服器(MoonShot)等浪潮,大有軟體定義未來一切IT基礎設施的趨勢。
PaaS、SaaS、數據挖掘和分析、數據管理和監控、虛擬化、應用開發等等,都是軟體工程師大展身手的好舞台。相應的,這些技術領域也對軟體工程師的要求會更高,尤其是虛擬化和面向BYOD、雲計算、大數據等應用的開發和管理,都需要有更高深的技術支撐。
和演算法工程師有點類似的地方在於,軟體工程師也需要注重設計模式的使用,一位優秀的工程師通常能識別並利用模式,而不是受制於模式。工程師不應讓系統去適應某種模式,而是需要發現在系統中使用模式的時機。
8、資料庫開發和管理
資料庫開發和管理在大數據時代顯得尤為重要,相關的資料庫管理、運維和開發技術,將成為廣大BI、大型企業和咨詢分析機構特別看重的技能體現。代表著更多類型(尤其是非結構化類型)的海量數據的涌現,要求我們實時採集、分析、傳輸這些數據集,在對基礎設施提出嚴峻挑戰的同時,也特別強調了資料庫開發和管理人員的挑戰。

『拾』 關於python在企業開發中的工作是什麼

Python 不僅僅是一個設計優秀的程序語言,它能夠完成現實中的各種任務,你可以在任何場合應用Python, 從網站和游戲開發到機器人和太空梭控制。 (如何學好Python,請看總結!)
盡管如此,Python 的應用領域分為下面幾類。下文將介紹一些Python 具體能幫我們做的事情。
1.python可以用於系統編程 Python 對操作系統服務的內置介面,使其成為編寫可移植的維護操作系統的管理工具和部件(有時也被稱為Shell 工具)的理想工具。
Python 程序可以搜索文件和目錄樹,可以運行其他程序,用進程或線程進行並行處理等等。
2.python可以用於用戶圖形介面 Python 的簡潔以及快速的開發周期十分適合開發GUI 程序。
此外,基於C++ 平台的工具包wxPython GUI API 可以使用Python 構建可移植的GUI 。 諸如PythonCard 和Dabo 等一些高級工具包是構建在wxPython 和Tkinter 的基礎API 之上的。通過適當的庫,你可以使用其他的GUI 工具包,例如,Qt 、GTK 、MFC 和Swing 等。
3..python可以用於Internet 腳本 Python 提供了標准Internet 模塊,使Python 能夠廣泛地在多種網路任務中發揮作用,無論是在伺服器端還是在客戶端都是如此。 而且網路上還可以獲得很多使用Python 進行Internet 編程的第三方工具此外,Python 涌現了許多Web 開發工具包,例如,Django 、TurboGears 、Pylons 、Zope 和WebWare ,使Python 能夠快速構建功能完善和高質量的網站。
4.python可以用於組件集成 在介紹Python 作為控制語言時,曾涉及它的組件集成的角色。Python 可以通過C/C++ 系統進行擴展,並能夠嵌套C/C++ 系統的特性,使其能夠作為一種靈活的粘合語言,腳本化處理其他系統和組件的行為。
例如,將一個C庫集成到Python 中,能夠利用Python 進行測試並調用庫中的其他組件;將Python 嵌入到產品中,在不需要重新編譯整個產品或分發源代碼的情況下,能夠進行產品的單獨定製。 5.python能用於資料庫編程 對於傳統的資料庫需求,Python 提供了對所有主流關系資料庫系統的介面,Python 定義了一種通過Python 腳本存取SQL 資料庫系統的可移植的資料庫API ,這個API 對於各種底層應用的資料庫系統都是統一的。
所以一個寫給自由軟體MySQL 系統的腳本在很大程度上不需改變就可以工作在其他系統上(例如,Oracle )-- 你僅需要將底層的廠商介面替換掉就可以實現。
6.python 可以用於快速原型 對於Python 程序來說,使用Python 或C編寫的組件看起來都是一樣的。正因為如此,我們可以在一開始利用Python 做系統原型,之後再將組件移植到C或C++ 這樣的編譯語言上。
7.python 可以用於數值計算和科學計算編程 我們之前提到過的NumPy 數值編程擴展包括很多高級工具,通過將Python 與出於速度考慮而使用編譯語言編寫的數值計算的常規代碼進行集成,其他一些數值計算工具為Python 提供了動畫、3D 可視化、並行處理等功能的支持。
8.python 可以用於游戲、圖像、人工智慧、XML 、機器人等 Python 的應用領域很多,遠比這里提到的多得多。 例如,可以利用pygame 系統使用Python 對圖形和游戲進行編程;用PIL 和其他的一些工具進行圖像處理;用PyRo 工具包進行機器人控制編程。
總結:一個優秀的Python工程師在任何的公司待遇都是非常不錯的,不僅僅領域很廣,相比於其他的程序語言來說,Python更加靈活,功能強大,簡單易學,是大部分企業,開發者,甚至運維和測試喜歡的語言,包括全世界最大的蘋果公司。如果對於你來說想要學習,但是缺乏指引,缺乏別人的教導你會寸步難行,甚至錯過一次高薪發展的機會,【新人不怕學不好,就怕沒人教!】仔細閱讀下面的代碼,加上代碼裡面的內容,你就有了一次全新的機會和改變,成為一名優秀的高薪Python開發者,你只差這一件事!資源是小,學習是大,學習全在你,註定不平凡。

閱讀全文

與音頻演算法工程師招聘相關的資料

熱點內容
亞馬遜雲伺服器的選擇 瀏覽:810
單片機頻率發生器 瀏覽:732
備份與加密 瀏覽:623
用什麼app可以看論壇 瀏覽:52
javajdbcmysql連接 瀏覽:473
製作linux交叉編譯工具鏈 瀏覽:751
編程負數除以正數 瀏覽:512
app和aso有什麼區別 瀏覽:326
手機vmap是什麼文件夾 瀏覽:36
塔科夫鎖服如何選擇伺服器 瀏覽:290
消費者生產者問題java 瀏覽:61
程序員筱柒顧默結婚的時候 瀏覽:578
安卓截長屏怎麼弄 瀏覽:475
優信辦理解壓手續怎麼那麼慢 瀏覽:605
私有雲伺服器一體機安全嗎 瀏覽:430
python的tk界面禁用滑鼠 瀏覽:186
怎麼看伺服器mac地址 瀏覽:291
安卓如何將圖鏡像翻轉 瀏覽:325
操作系統設計與實現pdf 瀏覽:547
長虹空調遙控什麼app 瀏覽:739