Ⅰ 請問什麼是遺傳演算法,並給兩個例子
遺傳演算法(Genetic Algorithm, GA)是近幾年發展起來的一種嶄新的全局優化演算法,它借
用了生物遺傳學的觀點,通過自然選擇、遺傳、變異等作用機制,實現各個個體的適應性
的提高。這一點體現了自然界中"物競天擇、適者生存"進化過程。1962年Holland教授首次
提出了GA演算法的思想,從而吸引了大批的研究者,迅速推廣到優化、搜索、機器學習等方
面,並奠定了堅實的理論基礎。 用遺傳演算法解決問題時,首先要對待解決問題的模型結構
和參數進行編碼,一般用字元串表示,這個過程就將問題符號化、離散化了。也有在連續
空間定義的GA(Genetic Algorithm in Continuous Space, GACS),暫不討論。
一個串列運算的遺傳演算法(Seguential Genetic Algoritm, SGA)按如下過程進行:
(1) 對待解決問題進行編碼;
(2) 隨機初始化群體X(0):=(x1, x2, … xn);
(3) 對當前群體X(t)中每個個體xi計算其適應度F(xi),適應度表示了該個體的性能好
壞;
(4) 應用選擇運算元產生中間代Xr(t);
(5) 對Xr(t)應用其它的運算元,產生新一代群體X(t+1),這些運算元的目的在於擴展有限
個體的覆蓋面,體現全局搜索的思想;
(6) t:=t+1;如果不滿足終止條件繼續(3)。
GA中最常用的運算元有如下幾種:
(1) 選擇運算元(selection/reproction): 選擇運算元從群體中按某一概率成對選擇個
體,某個體xi被選擇的概率Pi與其適應度值成正比。最通常的實現方法是輪盤賭(roulett
e wheel)模型。
(2) 交叉運算元(Crossover): 交叉運算元將被選中的兩個個體的基因鏈按概率pc進行交叉
,生成兩個新的個體,交叉位置是隨機的。其中Pc是一個系統參數。
(3) 變異運算元(Mutation): 變異運算元將新個體的基因鏈的各位按概率pm進行變異,對
二值基因鏈(0,1編碼)來說即是取反。
上述各種運算元的實現是多種多樣的,而且許多新的運算元正在不斷地提出,以改進GA的
某些性能。系統參數(個體數n,基因鏈長度l,交叉概率Pc,變異概率Pm等)對演算法的收斂速度
及結果有很大的影響,應視具體問題選取不同的值。
GA的程序設計應考慮到通用性,而且要有較強的適應新的運算元的能力。OOP中的類的繼
承為我們提供了這一可能。
定義兩個基本結構:基因(ALLELE)和個體(INDIVIDUAL),以個體的集合作為群體類TP
opulation的數據成員,而TSGA類則由群體派生出來,定義GA的基本操作。對任一個應用實
例,可以在TSGA類上派生,並定義新的操作。
TPopulation類包含兩個重要過程:
FillFitness: 評價函數,對每個個體進行解碼(decode)並計算出其適應度值,具體操
作在用戶類中實現。
Statistic: 對當前群體進行統計,如求總適應度sumfitness、平均適應度average、最好
個體fmax、最壞個體fmin等。
TSGA類在TPopulation類的基礎上派生,以GA的系統參數為構造函數的參數,它有4個
重要的成員函數:
Select: 選擇運算元,基本的選擇策略採用輪盤賭模型(如圖2)。輪盤經任意旋轉停止
後指針所指向區域被選中,所以fi值大的被選中的概率就大。
Crossover: 交叉運算元,以概率Pc在兩基因鏈上的隨機位置交換子串。
Mutation: 變異運算元,以概率Pm對基因鏈上每一個基因進行隨機干擾(取反)。
Generate: 產生下代,包括了評價、統計、選擇、交叉、變異等全部過程,每運行一
次,產生新的一代。
SGA的結構及類定義如下(用C++編寫):
[code] typedef char ALLELE; // 基因類型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 個體定義
class TPopulation{ // 群體類定義
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;
INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;
TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 評價函數
virtual void Statistics(); // 統計函數
};
class TSGA : public TPopulation{ // TSGA類派生於群體類
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation
TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 產生新的一代
};
用戶GA類定義如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]
由於GA是一個概率過程,所以每次迭代的情況是不一樣的;系統參數不同,迭代情況
也不同。在實驗中參數一般選取如下:個體數n=50-200,變異概率Pm=0.03, 交叉概率Pc=
0.6。變異概率太大,會導致不穩定。
參考文獻
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine
Learning. Addison-Wesley, Reading, MA, 1989
● 陳根社、陳新海,"遺傳演算法的研究與進展",《信息與控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"採用遺傳演算法自學習模型控制規則",《自動化理論、技術與應
用》,中國自動化學會 第九屆青年學術年會論文集,1993, PP233-238
● 方建安、邵世煌,"採用遺傳演算法學習的神經網路控制器",《控制與決策》,199
3,8(3), PP208-212
● 蘇素珍、土屋喜一,"使用遺傳演算法的迷宮學習",《機器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993
Ⅱ ERP中的偏置時間,偏置期,與提前期,給我一個詳解。包括演算法
偏置時間 偏置期 提前期?
這3個詞 我只理解到最後一個詞的意思! 前2個 沒接觸過. 應該是我見識少了
不顧根據你的問題 大概能理解你問題的意思. 你應該是要計算 一筆訂單 所需的 工時 物料 數量是多少! 提前期是多少! 我用我熟悉的名詞 給你簡單的做個 計算!
客戶下訂單A產品100件 要求7周後交貨!
BOM清單: 每件A產品由一件T組成, T又分別由2件U, 3件V組成; 每件U分別由1件W,2件X組成; 每件V分別由2件W,3件Y組成.
采購提前期: T為1周,U為2周,V為1周,W為3周,X為1周,Y為1周。該廠目前無配件存貨 .
這張圖就是 采購提前日期!!
還有你說的 能力清單. 這個計算起來 跟這個邏輯是一樣.
如果客戶 7周後要求交貨100 A產品
而工廠每天生產10件A產品. 提前生產期就是 從7周後倒推 100/10 天! 那天開始成產才能保證出貨!
我把回答寫反了! 應該是先計算MPS 再MRP .
我說這些都是很簡單的. 實際生產中 還要復雜很多! 如果不懂可以網路 MPS跟MRP 就是你襖的問題!!
Ⅲ 演算法與數據結構試題 急用!!!
這是我寫的順序查找和二分查找代碼
#include<iostream.h>
#define elemtype int
int sqsearch(elemtype a[],int n,elemtype x); //順序查找
int sqsearch2(elemtype a[],int n,elemtype x); //順序查找,列印查找過程
int binsearch(elemtype a[],int n,elemtype x); //折半查找
int binsearch2(elemtype a[],int n,elemtype x); //折半查找,列印查找過程
void printarray(elemtype a[],int n); //列印數組數據
int main()
{
int i,x;
const int n=9;
elemtype a1[10]={0,34,23,12,56,90,78,89,45,67};
elemtype a2[10]={0,12,23,34,45,56,67,78,89,90};
//順序查找
cout<<"順序查找:"<<endl;
cout<<"a1[]=";
printarray(a1,n);
cout<<"輸入要查找的數據:";
cin>>x;
if((i=sqsearch(a1,n,x))>0) //找到
cout<<"找到x==a1["<<i<<"]"<<endl;
else //未找到
cout<<"找不到"<<x<<endl;
cout<<endl<<"查找過程:"<<endl;
sqsearch2(a1,n,x); //查找過程
cout<<"完成順序查找!"<<endl;
//二分法查找
cout<<"二分法查找:"<<endl;
cout<<"a2[]=";
printarray(a2,n);
cout<<"輸入要查找的數據:";
cin>>x;
if((i=binsearch(a2,n,x))>0) //找到
cout<<"找到x==a1["<<i<<"]"<<endl;
else //未找到
cout<<"找不到"<<x<<endl;
cout<<endl<<"查找過程:"<<endl;
binsearch2(a2,n,x);
cout<<"完成順序查找!"<<endl;
return 0;
}
//在數組a[1.2...n]中順序查找x
//找到時返回元素下標,否則返回0
int sqsearch(elemtype a[],int n,elemtype x) //a[]是數組,n是元素個數,x是要查找的數
{
int i;
if(a[0]==x)
return 1;
else
{
a[0]=x;
for(i=n;!(a[i]==x);--i); //若找到則i大於0
return i;
}
}
//在數組a[1.2...n]中順序查找x,列印每次比較結果
//找到時返回元素下標,否則返回0
int sqsearch2(elemtype a[],int n,elemtype x) //a[]是數組,n是元素個數,x是要查找的數
{
int i;
a[0]=x;
for(i=n;!(a[i]==x);--i)
if(a[i]>x)
cout<<a[i]<<">"<<x<<endl;
else
cout<<a[i]<<"<"<<x<<endl;
return i;
}
//在數組a[1.2...n]中二分法查找x
//找到時返回元素下標,否則返回0
//前提:a[1.2...n]是非遞減有序的
int binsearch(elemtype a[],int n,elemtype x) //二分查找
{
int mid,low=1,high=n;
while(low<=high)
{
mid=(low+high)/2;
if(x==a[mid])
return mid;
else if(x<a[mid])
high=mid-1;
else
low=mid+1;
}
return 0;
}
//在數組a[1.2...n]中二分法查找x,每次列印比較結果
//找到時返回元素下標,否則返回0
//前提:a[1.2...n]是非遞減有序的
int binsearch2(elemtype a[],int n,elemtype x) //查找過程
{
int mid,low=1,high=n;
while(low<=high)
{
mid=(low+high)/2;
if(x==a[mid])
{
cout<<a[mid]<<"="<<x<<endl;
return mid;
}
else if(x<a[mid])
{
cout<<a[mid]<<">"<<x<<endl;
high=mid-1;
}
else
{
cout<<a[mid]<<"<"<<x<<endl;
low=mid+1;
}
}
return 0;
}
//列印順組數據a[1....n]
void printarray(int a[],int n)
{
int i;
cout<<"{";
for(i=0;i<=n;i++)
{
cout<<a[i];
while(i<n)
{
cout<<",";
break;
}
}
cout<<"}"<<endl;
}
Ⅳ 機器學習演算法中GBDT和XGBOOST的區別有哪些
機器學習演算法中GBDT和XGBOOST的區別有哪些?
在昨天阿里的面試中被問到了,我只簡單的說了下xgboost能自動利用cpu的多線程,而且適當改進了gradient boosting,加了剪枝,控制了模型的復雜程度
添加評論
分享
默認排序按時間排序
9 個回答
weponML/DM,https://github.com/wepe
252人贊同
xgboost相比傳統gbdt有何不同?xgboost為什麼快?xgboost如何支持並行?
看了陳天奇大神的文章和slides,略抒己見,沒有面面俱到,不恰當的地方歡迎討論:
傳統GBDT以CART作為基分類器,xgboost還支持線性分類器,這個時候xgboost相當於帶L1和L2正則化項的邏輯斯蒂回歸(分類問題)或者線性回歸(回歸問題)。
傳統GBDT在優化時只用到一階導數信息,xgboost則對代價函數進行了二階泰勒展開,同時用到了一階和二階導數。順便提一下,xgboost工具支持自定義代價函數,只要函數可一階和二階求導。
xgboost在代價函數里加入了正則項,用於控制模型的復雜度。正則項里包含了樹的葉子節點個數、每個葉子節點上輸出的score的L2模的平方和。從Bias-variance tradeoff角度來講,正則項降低了模型的variance,使學習出來的模型更加簡單,防止過擬合,這也是xgboost優於傳統GBDT的一個特性。
Shrinkage(縮減),相當於學習速率(xgboost中的eta)。xgboost在進行完一次迭代後,會將葉子節點的權重乘上該系數,主要是為了削弱每棵樹的影響,讓後面有更大的學習空間。實際應用中,一般把eta設置得小一點,然後迭代次數設置得大一點。(補充:傳統GBDT的實現也有學習速率)
列抽樣(column subsampling)。xgboost借鑒了隨機森林的做法,支持列抽樣,不僅能降低過擬合,還能減少計算,這也是xgboost異於傳統gbdt的一個特性。
對缺失值的處理。對於特徵的值有缺失的樣本,xgboost可以自動學習出它的分裂方向。
xgboost工具支持並行。boosting不是一種串列的結構嗎?怎麼並行的?注意xgboost的並行不是tree粒度的並行,xgboost也是一次迭代完才能進行下一次迭代的(第t次迭代的代價函數里包含了前面t-1次迭代的預測值)。xgboost的並行是在特徵粒度上的。我們知道,決策樹的學習最耗時的一個步驟就是對特徵的值進行排序(因為要確定最佳分割點),xgboost在訓練之前,預先對數據進行了排序,然後保存為block結構,後面的迭代中重復地使用這個結構,大大減小計算量。這個block結構也使得並行成為了可能,在進行節點的分裂時,需要計算每個特徵的增益,最終選增益最大的那個特徵去做分裂,那麼各個特徵的增益計算就可以開多線程進行。
可並行的近似直方圖演算法。樹節點在進行分裂時,我們需要計算每個特徵的每個分割點對應的增益,即用貪心法枚舉所有可能的分割點。當數據無法一次載入內存或者在分布式情況下,貪心演算法效率就會變得很低,所以xgboost還提出了一種可並行的近似直方圖演算法,用於高效地生成候選的分割點。
=============
回復@肖岩在評論里的問題,因為有些公式放正文比較好。評論里討論的問題的大意是 「xgboost代價函數里加入正則項,是否優於cart的剪枝」。其實陳天奇大神的slides裡面也是有提到的,我當一下搬運工。
決策樹的學習過程就是為了找出最優的決策樹,然而從函數空間里所有的決策樹中找出最優的決策樹是NP-C問題,所以常採用啟發式(Heuristic)的方法,如CART裡面的優化GINI指數、剪枝、控制樹的深度。這些啟發式方法的背後往往隱含了一個目標函數,這也是大部分人經常忽視掉的。xgboost的目標函數如下:
這個公式形式上跟ID3演算法(採用entropy計算增益) 、CART演算法(採用gini指數計算增益) 是一致的,都是用分裂後的某種值 減去 分裂前的某種值,從而得到增益。為了限制樹的生長,我們可以加入閾值,當增益大於閾值時才讓節點分裂,上式中的gamma即閾值,它是正則項里葉子節點數T的系數,所以xgboost在優化目標函數的同時相當於做了預剪枝。另外,上式中還有一個系數lambda,是正則項里leaf score的L2模平方的系數,對leaf score做了平滑,也起到了防止過擬合的作用,這個是傳統GBDT里不具備的特性。
Ⅳ 在自主許可權內什麼通過交易系統向交易室下達交易指令
在自主許可權內基金經理通過交易系統向交易室下達交易指令。交易系統或相關負責人員審核投資指令的合法合規性,違規指令將被攔截,反饋給基金經理。其他指令被分發給交易員。交易員接收到指令後有權根據自身對市場的判斷選擇合適時機完成交易。基金公司投資交易包括形成投資策略、構建投資組合、執行交易指令、績效評估與組合調整、風險控制等環節。
拓展資料:
1、演算法交易是通過數學建模將常用交易理念同化為自動化的交易模型,並藉助計算機強大的存儲與計算功能實現交易自動化(或半自動化)的一種交易方式。 交易演算法的核心是其背後的量化交易模型,而模型的優劣取決於人的交易理念和基於數據的量化分析,以及兩者的有效結合。
2、演算法與人(交易員)的互動是至關重要的,兩者之間互為補充:人(交易員)教授「演算法」交易理念,反過來被訓練過的演算法可以幫助人(交易員)實現快速的交易執行。
3、常見的演算法交易策略簡介如下: (1)成交量加權平均價格演算法(VWAP),是最基本的交易演算法之一,旨在下單時以盡可能接近市場按成交量加權的均價進行,以盡量降低該交易對市場的沖擊。 (2)時間加權平均價格演算法(TwAP),是根據特定的時間間隔,在每個時間點上平均下單的演算法。 (3)跟量演算法(TVOL),旨在幫助投資者跟上市場交易量。若交易量放大則同樣放大這段時間內的下單成交量,反之則相應降低這段時間內的下單成交量。交易時間主要依賴交易 期間市場的活躍程度。 (4)執行偏差演算法(Is),是在盡量不造成大的市場沖擊的情況下,盡快以接近客戶委託時的市場成交價格來完成交易的最優化演算法。
一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序n個項目要Ο(nlogn)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(nlogn)演算法更快,因為它的內部循環(innerloop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divideandconquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1從數列中挑出一個元素,稱為「基準」(pivot),
2重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。
堆排序的平均時間復雜度為Ο(nlogn) 。
創建一個堆H[0..n-1]
把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1
三:歸並排序
歸並排序(Mergesort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(DivideandConquer)的一個非常典型的應用。
1.申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列
2.設定兩個指針,最初位置分別為兩個已經排序序列的起始位置
3.比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置
4.重復步驟3直到某一指針達到序列尾
5.將另一序列剩下的所有元素直接復制到合並序列尾
四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。
五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜度,五位演算法作者做了精妙的處理。
1.將n個元素每5個一組,分成n/5(上界)組。
2.取出每一組的中位數,任意排序方法,比如插入排序。
3.遞歸的調用selection演算法查找上一步中所有中位數的中位數,設為x,偶數個中位數的情況下設定為選取中間小的一個。
4.用x來分割數組,設小於等於x的個數為k,大於x的個數即為n-k。
5.若i==k,返回x;若i<k,在小於x的元素中遞歸查找第i小的元素;若i>k,在大於x的元素中遞歸查找第i-k小的元素。
終止條件:n=1時,返回的即是i小元素。
六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。
深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。
深度優先遍歷圖演算法步驟:
1.訪問頂點v;
2.依次從v的未被訪問的鄰接點出發,對圖進行深度優先遍歷;直至圖中和v有路徑相通的頂點都被訪問;
3.若此時圖中尚有頂點未被訪問,則從一個未被訪問的頂點出發,重新進行深度優先遍歷,直到圖中所有頂點均被訪問過為止。
上述描述可能比較抽象,舉個實例:
DFS在訪問圖中某一起始頂點v後,由v出發,訪問它的任一鄰接頂點w1;再從w1出發,訪問與w1鄰接但還沒有訪問過的頂點w2;然後再從w2出發,進行類似的訪問,…如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點u為止。
接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。
七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。
BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。
1.首先將根節點放入隊列中。
2.從隊列中取出第一個節點,並檢驗它是否為目標。
如果找到目標,則結束搜尋並回傳結果。
否則將它所有尚未檢驗過的直接子節點加入隊列中。
3.若隊列為空,表示整張圖都檢查過了——亦即圖中沒有欲搜尋的目標。結束搜尋並回傳「找不到目標」。
4.重復步驟2。
八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』salgorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。
該演算法的輸入包含了一個有權重的有向圖G,以及G中的一個來源頂點S。我們以V表示G中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u,v)表示從頂點u到v有路徑相連。我們以E表示G中所有邊的集合,而邊的權重則由權重函數w:E→[0,∞]定義。因此,w(u,v)就是從頂點u到頂點v的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有V中有頂點s及t,Dijkstra演算法可以找到s到t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點s到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。
1.初始時令S=,T=,T中頂點對應的距離值
若存在<V0,Vi>,d(V0,Vi)為<V0,Vi>弧上的權值
若不存在<V0,Vi>,d(V0,Vi)為∞
2.從T中選取一個其距離值為最小的頂點W且不在S中,加入S
3.對其餘T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的距離值縮短,則修改此距離值
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止
九:動態規劃演算法
動態規劃(Dynamicprogramming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。通常許多子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量:一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個子問題解之時直接查表。這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。
關於動態規劃最經典的問題當屬背包問題。
1.最優子結構性質。如果問題的最優解所包含的子問題的解也是最優的,我們就稱該問題具有最優子結構性質(即滿足最優化原理)。最優子結構性質為動態規劃演算法解決問題提供了重要線索。
2.子問題重疊性質。子問題重疊性質是指在用遞歸演算法自頂向下對問題進行求解時,每次產生的子問題並不總是新問題,有些子問題會被重復計算多次。動態規劃演算法正是利用了這種子問題的重疊性質,對每一個子問題只計算一次,然後將其計算結果保存在一個表格中,當再次需要計算已經計算過的子問題時,只是在表格中簡單地查看一下結果,從而獲得較高的效率。
十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下,如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。
通過掌握以上演算法,能夠幫你迅速提高編程能力,成為一名優秀的程序員。
Ⅶ C語言演算法
1.輸入語句:scanf("控制格式",接受值列表),其中控制格式常用的有:%d,%c,%s,%f,分別
表示整型,字元型,字元串和浮點型.
例如int
a;char
c;scanf("%d
%c",&a,&c);表示向a和c輸入值
2.賦值語句:=號,如將b賦值為10,為b=10
3.條件:if(布爾表達式){程序}else{程序}(注:此結構可嵌套)
switch(離散量){case
常量:...;case
常量:...}
例:int
a;scanf("%d",&a);
if(a>10)
{printf("大於專10");}
else
{printf("小於10")}
例:switch(months)
{
case
1:printf("1月有31天");break;
case
3:printf("3月有31天");break;
....
default:break;
}
4.循環屬:for結構,while結構,do-while結構
for(初始化;判斷;變化)
{
}
while(條件)
{
}
do
{
}while(條件)
Ⅷ 數據挖掘 K-NN演算法 這個題 過程對嗎!!!幫忙下 謝謝
過程正確。不需要一定要和第一個比。
KNN演算法[5]的基本思路是[6]:在給定新文本後,考慮在訓練文本集中與該新文本距離最近(最相似)的 K 篇文本,根據這 K 篇文本所屬的類別判定新文本所屬的類別,具體的演算法步驟如下:
一、:根據特徵項集合重新描述訓練文本向量
二、:在新文本到達後,根據特徵詞分詞新文本,確定新文本的向量表示
三、:在訓練文本集中選出與新文本最相似的 K 個文本,