導航:首頁 > 源碼編譯 > 粒子群演算法實例視頻

粒子群演算法實例視頻

發布時間:2022-04-26 03:00:32

1. 關於粒子群演算法解決一個實例問題

程序檢查一下 主要看粒子更新的地方 看是否有問題

2. 如何用粒子群優化(PSO)演算法實現多目標優化

粒子群演算法,也稱粒子群優化演算法(ParticleSwarmOptimization),縮寫為PSO,是近年來發展起來的一種新的進化演算法(EvolutionaryAlgorithm-EA)。PSO演算法屬於進化演算法的一種,和模擬退火演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover)和「變異」(Mutation)操作,它通過追隨當前搜索到的最優值來尋找全局最優。這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性。粒子群演算法是一種並行演算法。

3. C++的粒子群演算法運行結果

PSO粒子群優化演算法 摘自:人工智慧論壇 1. 引言
粒子群優化演算法(PSO)是一種進化計算技術(evolutionary computation),有Eberhart博士和kennedy博士發明。源於對鳥群捕食的行為研究 PSO同遺傳演算法類似,是一種基於疊代的優化工具。系統初始化為一組隨機解,通過疊代搜尋最優值。但是並沒有遺傳演算法用的交叉(crossover)以及變異(mutation)。而是粒子在解空間追隨最優的粒子進行搜索。詳細的步驟以後的章節介紹 同遺傳演算法比較,PSO的優勢在於簡單容易實現並且沒有許多參數需要調整。目前已廣泛應用於函數優化,神經網路訓練,模糊系統控制以及其他遺傳演算法的應用領域
2. 背景: 人工生命 "人工生命"是來研究具有某些生命基本特徵的人工系統. 人工生命包括兩方面的內容 1. 研究如何利用計算技術研究生物現象
2. 研究如何利用生物技術研究計算問題 我們現在關注的是第二部分的內容. 現在已經有很多源於生物現象的計算技巧. 例如, 人工神經網路是簡化的大腦模型. 遺傳演算法是模擬基因進化過程的. 現在我們討論另一種生物系統- 社會系統. 更確切的是, 在由簡單個體組成的群落與環境以及個體之間的互動行為. 也可稱做"群智能"(swarm intelligence). 這些模擬系統利用局部信息從而可能產生不可預測的群體行為 例如floys 和 boids, 他們都用來模擬魚群和鳥群的運動規律, 主要用於計算機視覺和計算機輔助設計. 在計算智能(computational intelligence)領域有兩種基於群智能的演算法. 蟻群演算法(ant colony optimization)和粒子群演算法(particle swarm optimization). 前者是對螞蟻群落食物採集過程的模擬. 已經成功運用在很多離散優化問題上. 粒子群優化演算法(PSO) 也是起源對簡單社會系統的模擬. 最初設想是模擬鳥群覓食的過程. 但後來發現PSO是一種很好的優化工具. 3. 演算法介紹 如前所述,PSO模擬鳥群的捕食行為。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。 PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的例子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索 PSO 初始化為一群隨機粒子(隨機解)。然後通過疊代找到最優解。在每一次疊代中,粒子通過跟蹤兩個"極值"來更新自己。第一個就是粒子本身所找到的最優解。這個解叫做個體極值pBest. 另一個極值是整個種群目前找到的最優解。這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分最為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 在找到這兩個最優值時, 粒子根據如下的公式來更新自己的速度和新的位置 v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = persent[] + v[] (b) v[] 是粒子的速度, persent[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2. 程序的偽代碼如下 For each particle
____Initialize particle
END Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End ____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained 在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax 4. 遺傳演算法和 PSO 的比較 大多數演化計算技術都是用同樣的過程
1. 種群隨機初始化
2. 對種群內的每一個個體計算適應值(fitness value).適應值與最優解的距離直接有關
3. 種群根據適應值進行復制
4. 如果終止條件滿足的話,就停止,否則轉步驟2 從以上步驟,我們可以看到PSO和GA有很多共同之處。兩者都隨機初始化種群,而且都使用適應值來評價系統,而且都根據適應值來進行一定的隨機搜索。兩個系統都不是保證一定找到最優解 但是,PSO 沒有遺傳操作如交叉(crossover)和變異(mutation). 而是根據自己的速度來決定搜索。粒子還有一個重要的特點,就是有記憶。 與遺傳演算法比較, PSO 的信息共享機制是很不同的. 在遺傳演算法中,染色體(chromosomes) 互相共享信息,所以整個種群的移動是比較均勻的向最優區域移動. 在PSO中, 只有gBest (or lBest) 給出信息給其他的粒子, 這是單向的信息流動. 整個搜索更新過程是跟隨當前最優解的過程. 與遺傳演算法比較, 在大多數的情況下,所有的粒子可能更快的收斂於最優解 5. 人工神經網路 和 PSO 人工神經網路(ANN)是模擬大腦分析過程的簡單數學模型,反向轉播演算法是最流行的神經網路訓練演算法。進來也有很多研究開始利用演化計算(evolutionary computation)技術來研究人工神經網路的各個方面。 演化計算可以用來研究神經網路的三個方面:網路連接權重,網路結構(網路拓撲結構,傳遞函數),網路學習演算法。 不過大多數這方面的工作都集中在網路連接權重,和網路拓撲結構上。在GA中,網路權重和/或拓撲結構一般編碼為染色體(Chromosome),適應函數(fitness function)的選擇一般根據研究目的確定。例如在分類問題中,錯誤分類的比率可以用來作為適應值 演化計算的優勢在於可以處理一些傳統方法不能處理的例子例如不可導的節點傳遞函數或者沒有梯度信息存在。但是缺點在於:在某些問題上性能並不是特別好。2. 網路權重的編碼而且遺傳運算元的選擇有時比較麻煩 最近已經有一些利用PSO來代替反向傳播演算法來訓練神經網路的論文。研究表明PSO 是一種很有潛力的神經網路演算法。PSO速度比較快而且可以得到比較好的結果。而且還沒有遺傳演算法碰到的問題 這里用一個簡單的例子說明PSO訓練神經網路的過程。這個例子使用分類問題的基準函數(Benchmark function)IRIS數據集。(Iris 是一種鳶尾屬植物) 在數據記錄中,每組數據包含Iris花的四種屬性:萼片長度,萼片寬度,花瓣長度,和花瓣寬度,三種不同的花各有50組數據. 這樣總共有150組數據或模式。 我們用3層的神經網路來做分類。現在有四個輸入和三個輸出。所以神經網路的輸入層有4個節點,輸出層有3個節點我們也可以動態調節隱含層節點的數目,不過這里我們假定隱含層有6個節點。我們也可以訓練神經網路中其他的參數。不過這里我們只是來確定網路權重。粒子就表示神經網路的一組權重,應該是4*6+6*3=42個參數。權重的范圍設定為[-100,100] (這只是一個例子,在實際情況中可能需要試驗調整).在完成編碼以後,我們需要確定適應函數。對於分類問題,我們把所有的數據送入神經網路,網路的權重有粒子的參數決定。然後記錄所有的錯誤分類的數目作為那個粒子的適應值。現在我們就利用PSO來訓練神經網路來獲得盡可能低的錯誤分類數目。PSO本身並沒有很多的參數需要調整。所以在實驗中只需要調整隱含層的節點數目和權重的范圍以取得較好的分類效果。 6. PSO的參數設置 從上面的例子我們可以看到應用PSO解決優化問題的過程中有兩個重要的步驟: 問題解的編碼和適應度函數
PSO的一個優勢就是採用實數編碼, 不需要像遺傳演算法一樣是二進制編碼(或者採用針對實數的遺傳操作.例如對於問題 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接編碼為 (x1, x2, x3), 而適應度函數就是f(x). 接著我們就可以利用前面的過程去尋優.這個尋優過程是一個疊代過程, 中止條件一般為設置為達到最大循環數或者最小錯誤 PSO中並沒有許多需要調節的參數,下面列出了這些參數以及經驗設置 粒子數: 一般取 20 – 40. 其實對於大部分的問題10個粒子已經足夠可以取得好的結果, 不過對於比較難的問題或者特定類別的問題, 粒子數可以取到100 或 200 粒子的長度: 這是由優化問題決定, 就是問題解的長度 粒子的范圍: 由優化問題決定,每一維可是設定不同的范圍 Vmax: 最大速度,決定粒子在一個循環中最大的移動距離,通常設定為粒子的范圍寬度,例如上面的例子里,粒子 (x1, x2, x3) x1 屬於 [-10, 10], 那麼 Vmax 的大小就是 20 學習因子: c1 和 c2 通常等於 2. 不過在文獻中也有其他的取值. 但是一般 c1 等於 c2 並且范圍在0和4之間 中止條件: 最大循環數以及最小錯誤要求. 例如, 在上面的神經網路訓練例子中, 最小錯誤可以設定為1個錯誤分類, 最大循環設定為2000, 這個中止條件由具體的問題確定. 全局PSO和局部PSO: 我們介紹了兩種版本的粒子群優化演算法: 全局版和局部版. 前者速度快不過有時會陷入局部最優. 後者收斂速度慢一點不過很難陷入局部最優. 在實際應用中, 可以先用全局PSO找到大致的結果,再有局部PSO進行搜索. 另外的一個參數是慣性權重, 由Shi 和Eberhart提出, 有興趣的可以參考他們1998年的論文(題目: A modified particle swarm optimizer)

4. 基於粒子群演算法的函數優化問題matlab編程,用於函數。畢業論文,求助

我這里有一個粒子群的完整範例:<群鳥覓食的優化問題>
function main()
clc;clear all;close all;
tic; %程序運行計時
E0=0.001; %允許誤差
MaxNum=100; %粒子最大迭代次數
narvs=1; %目標函數的自變數個數
particlesize=30; %粒子群規模
c1=2; %每個粒子的個體學習因子,也稱為加速常數
c2=2; %每個粒子的社會學習因子,也稱為加速常數
w=0.6; %慣性因子
vmax=0.8; %粒子的最大飛翔速度
x=-5+10*rand(particlesize,narvs); %粒子所在的位置
v=2*rand(particlesize,narvs); %粒子的飛翔速度
%用inline定義適應度函數以便將子函數文件與主程序文件放在一起,
%目標函數是:y=1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2))
%inline命令定義適應度函數如下:
fitness=inline('1/(1+(2.1*(1-x+2*x.^2).*exp(-x.^2/2)))','x');
%inline定義的適應度函數會使程序運行速度大大降低
for i=1:particlesize
for j=1:narvs
f(i)=fitness(x(i,j));
end
end
personalbest_x=x;
personalbest_faval=f;
[globalbest_faval i]=min(personalbest_faval);
globalbest_x=personalbest_x(i,:);
k=1;
while k<=MaxNum
for i=1:particlesize
for j=1:narvs
f(i)=fitness(x(i,j));
end
if f(i)<personalbest_faval(i) %判斷當前位置是否是歷史上最佳位置
personalbest_faval(i)=f(i);
personalbest_x(i,:)=x(i,:);
end
end
[globalbest_faval i]=min(personalbest_faval);
globalbest_x=personalbest_x(i,:);
for i=1:particlesize %更新粒子群里每個個體的最新位置
v(i,:)=w*v(i,:)+c1*rand*(personalbest_x(i,:)-x(i,:))...
+c2*rand*(globalbest_x-x(i,:));
for j=1:narvs %判斷粒子的飛翔速度是否超過了最大飛翔速度
if v(i,j)>vmax;
v(i,j)=vmax;
elseif v(i,j)<-vmax;
v(i,j)=-vmax;
end
end
x(i,:)=x(i,:)+v(i,:);
end
if abs(globalbest_faval)<E0,break,end
k=k+1;
end
Value1=1/globalbest_faval-1; Value1=num2str(Value1);
% strcat指令可以實現字元的組合輸出
disp(strcat('the maximum value','=',Value1));
%輸出最大值所在的橫坐標位置
Value2=globalbest_x; Value2=num2str(Value2);
disp(strcat('the corresponding coordinate','=',Value2));
x=-5:0.01:5;
y=2.1*(1-x+2*x.^2).*exp(-x.^2/2);
plot(x,y,'m-','linewidth',3);
hold on;
plot(globalbest_x,1/globalbest_faval-1,'kp','linewidth',4);
legend('目標函數','搜索到的最大值');xlabel('x');ylabel('y');grid on;toc;

5. 粒子群演算法

傳統的多目標優化方法是將多目標問題通過加權求和轉化為單目標問題來處理的,而粒子演算法主要是解決一些多目標優化問題的(例如機械零件的多目標設計優化),其優點是容易實現,精度高,收斂速度快,你可以參照http://ke..com/view/1531379.htm,對它產生的背景,原理,數學描述和流程都寫的很清楚,當然最主要的還是結合你的優化對象編寫程序。

6. 粒子群演算法,模擬退火演算法,遺傳演算法,神經網路有關聯嗎

他們是相互獨立的章節,如果你確定只有粒子群演算法和模擬退火演算法有用,那麼遺傳演算法和神經網路完全不用看的,他們之間沒有什麼關聯。

7. 粒子群演算法在數據挖掘方面的應用有哪些可以舉一些實例么,或者推薦一些相關的網站,謝謝

看樣子應該是優化,特徵提取,聚類,預測,關聯都可以用到的演算法
如果單純的說數據挖掘的應用應該很不好說,不通的主題可能他都能嵌入,但是適用與否應該要具體分析了

8. 遺傳演算法、粒子群演算法、蟻群演算法,各自優缺點和如何混合請詳細點 謝謝

遺傳演算法適合求解離散問題,具備數學理論支持,但是存在著漢明懸崖等問題。
粒子群演算法適合求解實數問題,演算法簡單,計算方便,求解速度快,但是存在著陷入局部最優等問題。
蟻群演算法適合在圖上搜索路徑問題,計算開銷會大。
要將三種演算法進行混合,就要針對特定問題,然後融合其中的優勢,比如將遺傳演算法中的變異運算元加入粒子群中就可以形成基於變異的粒子群演算法。

9. 粒子群演算法的和PSO

人工神經網路(ANN)是模擬大腦分析過程的簡單數學模型,誤差反向傳播演算法是最流行的神經網路訓練演算法。近來也有很多研究開始利用演化計算(evolutionary computation)技術來研究人工神經網路的各個方面。
演化計算可以用來研究神經網路的三個方面:網路連接權重,網路結構(網路拓撲結構,傳遞函數),網路學習演算法。
不過大多數這方面的工作都集中在網路連接權重,和網路拓撲結構上。在GA中,網路權重和/或拓撲結構一般編碼為染色體(Chromosome),適應函數(fitness function)的選擇一般根據研究目的確定。例如在分類問題中,錯誤分類的比率可以用來作為適應值
演化計算的優勢在於可以處理一些傳統方法不能處理的例子例如不可導的節點傳遞函數或者沒有梯度信息存在。但是缺點在於:在某些問題上性能並不是特別好。2. 網路權重的編碼而且遺傳運算元的選擇有時比較麻煩
最近已經有一些利用PSO來代替反向傳播演算法來訓練神經網路的論文。研究表明PSO 是一種很有潛力的神經網路演算法。PSO速度比較快而且可以得到比較好的結果。而且還沒有遺傳演算法碰到的問題 這里用一個簡單的例子說明PSO訓練神經網路的過程。這個例子使用分類問題的基準函數(Benchmark function)IRIS數據集。(Iris 是一種鳶尾屬植物) 在數據記錄中,每組數據包含Iris花的四種屬性:萼片長度,萼片寬度,花瓣長度,和花瓣寬度,三種不同的花各有50組數據. 這樣總共有150組數據或模式。
我們用3層的神經網路來做分類。現在有四個輸入和三個輸出。所以神經網路的輸入層有4個節點,輸出層有3個節點我們也可以動態調節隱含層節點的數目,不過這里我們假定隱含層有6個節點。我們也可以訓練神經網路中其他的參數。不過這里我們只是來確定網路權重。粒子就表示神經網路的一組權重,應該是4*6+6*3=42個參數。權重的范圍設定為[-100,100] (這只是一個例子,在實際情況中可能需要試驗調整).在完成編碼以後,我們需要確定適應函數。對於分類問題,我們把所有的數據送入神經網路,網路的權重有粒子的參數決定。然後記錄所有的錯誤分類的數目作為那個粒子的適應值。現在我們就利用PSO來訓練神經網路來獲得盡可能低的錯誤分類數目。PSO本身並沒有很多的參數需要調整。所以在實驗中只需要調整隱含層的節點數目和權重的范圍以取得較好的分類效果。

閱讀全文

與粒子群演算法實例視頻相關的資料

熱點內容
單片機頻率發生器 瀏覽:732
備份與加密 瀏覽:623
用什麼app可以看論壇 瀏覽:52
javajdbcmysql連接 瀏覽:473
製作linux交叉編譯工具鏈 瀏覽:751
編程負數除以正數 瀏覽:512
app和aso有什麼區別 瀏覽:326
手機vmap是什麼文件夾 瀏覽:36
塔科夫鎖服如何選擇伺服器 瀏覽:290
消費者生產者問題java 瀏覽:61
程序員筱柒顧默結婚的時候 瀏覽:578
安卓截長屏怎麼弄 瀏覽:475
優信辦理解壓手續怎麼那麼慢 瀏覽:605
私有雲伺服器一體機安全嗎 瀏覽:430
python的tk界面禁用滑鼠 瀏覽:186
怎麼看伺服器mac地址 瀏覽:291
安卓如何將圖鏡像翻轉 瀏覽:325
操作系統設計與實現pdf 瀏覽:547
長虹空調遙控什麼app 瀏覽:739
四軸外圓編程教程 瀏覽:947