『壹』 誰有BOBO的資料啊~~~
bobo老師機器學習網路網盤免費資源在線學習
鏈接: https://pan..com/s/1g8c05hj4PMN5HB6PtBgaUA
bobo老師機器學習 第9章 邏輯回歸 第8章 多項式回歸與模型泛化 第7章 PCA與梯度上升法 第6章 梯度下降法 第5章 線性回歸法 第4章 最基礎的分類演算法-
k近鄰演算法 kNN 第3章 Jupyter Notebook, numpy和m
第2章 機器學習基礎 第1章 歡迎來到 python3 玩轉機器學習
第14章 更多機器學習演算法 第13章 集成學習和隨機森林
第12章 決策樹 第11章 支撐向量機 SVM 第10章 評價分類結果
『貳』 如何用Python在10分鍾內樹立一個預測模型
所謂預測模型我理解是機器學習的監督式演算法。 常用的有 K 近鄰, 決策樹, 樸素貝葉斯等。 舉例: 使用k近鄰演算法預測一個女的是不是美女: 我們抽取特徵值:
身高,體重,三圍等。 你先設置一些經驗數據,例如: A: 165CM 50KG, 23 32,31 美 B 150 60KG 23 23 23 丑 現在輸入 C 163 45 25 30 30 選擇K =3, 演算法會找經驗數據中和這個數據最接近的三個 值,判斷這三個對象是 美 還是丑。 如果2,3個美,則預測為美。否則為丑。
對應的python代碼在網上都有,估計20-30 行吧。 自己找找。
『叄』 python機器學習實戰書十五章MapRece, mrjob在SVM上的應用實例上 有能在python3.7上順利運行的代碼嗎
第一部分分類第1章機器學習基礎21.1 何謂機器學習31.1.1 感測器和海量數據41.1.2 機器學習非常重要51.2 關鍵術語51.3 機器學習的主要任務71.4 如何選擇合適的演算法81.5 開發機器學習應用程序的步驟91.6 Python語言的優勢101.6.1 可執行偽代碼101.6.2 Python比較流行101.6.3 Python語言的特色111.6.4 Python語言的缺點111.7 NumPy函數庫基礎121.8 本章小結13第2章k-近鄰演算法 152.1 k-近鄰演算法概述152.1.1 准備:使用Python導入數據172.1.2 從文本文件中解析數據192.1.3 如何測試分類器202.2 示例:使用k-近鄰演算法改進約會網站的配對效果202.2.1 准備數據:從文本文件中解析數據212.2.2 分析數據:使用Matplotlib創建散點圖232.2.3 准備數據:歸一化數值252.2.4 測試演算法:作為完整程序驗證分類器262.2.5 使用演算法:構建完整可用系統272.3
『肆』 如何用python實現k近鄰演算法
import numpy as np
def read_data(filename):
'''讀取文本數據,格式:特徵1 特徵2 …… 類別'''
f=open(filename,'rt')
row_list=f.readlines() #以每行作為列表
f.close()
data_array=[]
labels_vector=[]
while True:
if not row_list:
break
row=row_list.pop(0).strip().split('\t') #去除換行號,分割製表符
temp_data_row=[float(a) for a in row[:-1]] #將字元型轉換為浮點型
data_array.append(temp_data_row) #取特徵值
labels_vector.append(row[-1]) #取最後一個作為類別標簽
return np.array(data_array),np.array(labels_vector)
def classify(test_data,dataset,labels,k):
'''分類'''
diff_dis_array=test_data-dataset #使用numpy的broadcasting
dis_array=(np.add.rece(diff_dis_array**2,axis=-1))**0.5 #求距離
dis_array_index=np.argsort(dis_array) #升序距離的索引
class_count={}
for i in range(k):
temp_label=labels[dis_array_index[i]]
class_count[temp_label]=class_count.get(temp_label,0)+1 #獲取類別及其次數的字典
sorted_class_count=sorted(class_count.items(), key=lambda item:item[1],reverse=True) #字典的值按降序排列
return sorted_class_count[0][0] #返回元組列表的[0][0]
def normalize(dataset):
'''數據歸一化'''
return (dataset-dataset.min(0))/(dataset.max(0)-dataset.min(0))
k=3 #近鄰數
test_data=[0,0] #待分類數據
data,labels=read_data('testdata.txt')
print('數據集:\n',data)
print('標簽集:\n',labels)
result=classify(test_data,normalize(data),labels,k)
print('分類結果:',result)
『伍』 python分類演算法有哪些
常見的分類演算法有:
K近鄰演算法
決策樹
樸素貝葉斯
SVM
Logistic Regression
『陸』 python argsort( )究竟如何返回的
argsort( )使用K近鄰演算法進行排序從而實現返回。
K近鄰演算法原理:輸入一個新的沒有標簽的數據後,將新數據的每個特徵值與訓練樣本集中數據的對應的特徵進行比較,選擇訓練樣本數據集中前K個最相似的數據,最後,選擇K個最相似數據中出現次數最多的分類,作為新數據的分類。
Python是一種面向對象的解釋型計算機程序設計語言,由荷蘭人Guido van Rossum於1989年發明,第一個公開發行版發行於1991年。2017年編程語言排行榜:Python高居首位 。由於Python語言的簡潔性、易讀性以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學已經採用Python來教授程序設計課程。
『柒』 如何用python做基於k近鄰演算法的手寫數字識別系統
基於k近鄰演算法的手寫數字識別系統您好,我這有篇範文,
『捌』 學python看什麼書比較好
入門:
機器學習是人工智慧研究領域中一個極其重要的研究方向。
在現今的大數據時代背景下,捕獲數據並從中萃取有價值的信息或模式,成為各行業求生存、謀發展的決定性手段,這使得這一過去為分析師和數學家所專屬的研究領域越來越為人們所矚目。
《機器學習實戰》主要介紹機器學習基礎,以及如何利用演算法進行分類,並逐步介紹了多種經典的監督學習演算法,如k近鄰演算法、樸素貝葉斯演算法、Logistic回歸演算法、支持向量機、AdaBoost集成方法、基於樹的回歸演算法和分類回歸樹(CART)演算法等。
第三部分則重點介紹無監督學習及其一些主要演算法:k均值聚類演算法、Apriori演算法、FP-Growth演算法。第四部分介紹了機器學習演算法的一些附屬工具。
《機器學習實戰》通過精心編排的實例,切入日常工作任務,摒棄學術化語言,利用高效的可復用Python代碼來闡釋如何處理統計數據,進行數據分析及可視化。
通過各種實例,讀者可從中學會機器學習的核心演算法,並能將其運用於一些策略性任務中,如分類、預測、推薦。
另外,還可用它們來實現一些更高級的功能,如匯總和簡化等。
結論
大致是這些,總共是十二本。
這些書首先內容錯誤少,久經市場考驗,而且豐富詳實,在各自的領域把該講的都講了。
如果你想報班的話,千鋒Python的課程你可以切試試
『玖』 Python 在編程語言中是什麼地位為什麼很多大學不教 Python
作者看著網上各種數據分析的知識泛濫, 但是沒有什麼體系,初學者不知道學哪些, 不知道學多少, 不知道學多深, 單純一個python語言, 數據分析會用到那種程度, 不可能說像開發那樣去學, numpy如果不是做演算法工程師用到的知識並不多, pandas知識雜亂無章, 哪些才是最常用的功能等等, 作者不忍眾生皆苦, 決定寫一套python數據分析的全套教程, 目前已完成一部分課件的製作。需要說明的是, 作為一名數據分析師, 你應該先會一點Excel和SQL知識,相關的內容, 網上很多。但是, 即便你一點Excel和SQL都不會也不會影響這部分的學習 !目前作者整理的大綱如下:
第一章 python編程基礎
1.1 python語言概述 1.2 數據科學神器--Anaconda介紹與安裝 1.3 標准輸入輸出 1.4 變數定義與賦值 1.5 數據類型 1.6 流程式控制制語句 1.7 函數
1.8 面向對象編程 第二章 python數據清洗之numpy 2.1 核心ndarray對象的創建 2.2 ndarray對象常用的屬性和方法 2.3 ndarray對象的索引和切片 2.4 ndarray對象的分割與合並 2.5 ndarray對象的廣播(Broadcast) 2.6 numpy中的算術運算函數 2.7 numpy中的統計函數 2.8 numpy中的排序 搜索 計數 去重函數 2.9 numpy中的字元串函數 2.10 numpy中可能會用到的線性代數模塊(後期機器學習會用到一點)
第三章 數據清洗神器pandas
3.1 pandas核心對象之Series對象的創建 常用屬性和方法 3.2 pandas核心對象之DataFrame對象的創建 常用屬性和方法 3.3 DataFrame對象的列操作和行操作 3.4 DataFrame對象的索引和切片 3.5 DataFrame對象的布爾索引 3.6 數據的讀入與導出 3.7 groupby分組運算 3.8 數據合並與數據透視
第四章 數據可視化matplotlib seaborn pyecharts
4.1 包括常用圖形的繪制,略
第五章 實戰案列
5.1 拉勾網數據分析相關職位分析 5.2 boss直聘數據分析相關職位分析 5.3 珍愛網女性用戶數據分析
第六章 機器學習
機器學習部分, 簡單的演算法會講手寫, 難的就用scikit-learn實現, 可能有小夥伴說, 這是調包俠乾的, 小哥哥!小姐姐!哪有那麼多公司, 那麼多人自己干寫演算法的, 有幾個人敢說他寫的演算法比scikit-learn寫得好? 再說了, 你是數據分析師, 這些是你的工具, 解決問題的!不是一天到晚拉格朗日對偶性!先來個機器學習介紹, 然後如下:
6.1 K近鄰演算法 6.2 Kmeans演算法 6.3 決策樹 階段案列:決策樹案列(保險行業) 6.4 線性回歸 嶺回歸 Lasso回歸 6.5 邏輯回歸 6.6 樸素貝葉斯 階段案列:推薦系統(電商玩具) 6.7 隨機森林 6.8 Adaboost 6.9 梯度提升樹GBDT 6.10 極端梯度提升樹Xgboost 6.11 支持向量機SVM 6.12 神經網路 階段案例:Xgboost案例
------------------------------本節內容-----------------------------------------
python語言概述
在說python之前, 我們還是先來看看計算機軟硬體的發展歷史。
1 計算機硬體的發展歷史
第一代計算機-電子管計算機(1946-1957)
無論如何,一項技術的突破必然伴隨著其他行業的突破,簡而言之,電子計算機的出現,前提必須有電子技術的進步,否則一切都是空談!下面是我列舉出計算機硬體的發展過程中, 一些比較重要的事件。
1906年, 美國的Lee De Forest 發明了電子管。在這之前造出數字電子計算機是不可能的。這為電子計算機的發 展奠定了基礎。
1924年2月, 一個具有劃時代意義的公司成立,IBM。
1935年, IBM推出IBM 601機。 這是一台能在一秒鍾算出乘法的穿孔卡片計算機。這台機器無論在自然科學還是在商業意義上都具有重要的地位。大約造了1500台。
1937年, 英國劍橋大學的Alan M. Turing (1912-1954)出版了他的論文 ,並提出了被後人稱之為"圖靈機"的數學模型。
1937年, 美國貝爾試驗室的George Stibitz展示了用繼電器表示二進制的裝置。盡管僅僅是個展示品,但卻是世界上第一台二進制電子計算機。
1941年, Atanasoff和學生Berry完成了能解線性代數方程的計算機,取名叫"ABC"(Atanasoff-Berry Computer),用電容作存儲器,用穿孔卡片作輔助存儲器,那些孔實際上是"燒"上的。 時鍾頻率是60HZ,完成一次加法運算用時一秒。這就是ABC計算機。
1946年, 美國賓夕法尼亞大學,第一台通用電子計算機ENIAC (Electronic Numerical Integrator 和 Computer)誕生, 總工程師埃克特在當時年僅25歲。
這時的計算機的基本線路是採用電子管結構,程序從人工手編的 機器指令程序(0 1),過渡到符號語言(匯編),電子管計算機是計算工具革命性發展的開始,它所採用的進位制與程序存貯等基本技術思想,奠定了現代電子計算機技術基礎。以馮·諾依曼為代表。
第二代計算機——晶體管計算機(時間1957~1964)
電子管時代的計算機盡管已經步入了現代計算機的范疇,但其體積之大、能耗之高、故障之多、價格之貴大大制約了它的普及應用。直到晶體管被發明出來,電子計算機才找到了騰飛的起點,一發而不可收……
20世紀50年代中期,晶體管的出現使計算機生產技術得到了根本性的發展,由晶體管代替電子管作為計算機的基礎器件,用 磁芯或磁鼓作存儲器,在整體性能上,比第一代計算機有了很大的提高。
第三代計算機——中小規模集成電路計算機(時間1964~1971)
20世紀60年代中期, 計算機發展歷程隨著半導體工藝的發展,成功製造了集成電路。中小規模集成電路成為計算機的主要部件,主存儲器也漸漸過渡到 半導體存儲器,使計算機的體積更小,大大降低了計算機計算時的功耗,由於減少了 焊點和 接插件,進一步提高了計算機的可靠性。
第四代計算機——大規模和超大規模集成電路計算機(時間1971~至今)
隨著大規模集成電路的成功製作並用於計算機硬體生產過程,計算機的體積進一步縮小,性能進一步提高。集成更高的大容量半導體存儲器作為內存儲器,發展了並行技術和多機系統,出現了 精簡指令集計算機(RISC),軟體系統工程化、理論化,程序設計自動化。微型計算機在社會上的應用范圍進一步擴大,幾乎所有領域都能看到計算機的「身影」。
第五代計算機——泛指具有人工智慧的計算機(至今~未來)
目前還沒有明確地定義
2 簡述計算機軟體的發展歷史
編程語言的發展
計算機軟體系統的發展,也伴隨著編程語言的發展。計算機程序設計語言的發展,經歷了從機器語言、匯編語言到高級語言的歷程。
機器語言:簡單點說,機器本身也只認識0和1,電路無非就只有通和斷兩種狀態,對應的二進制就是二進制的1和1。
匯編語言:匯編語言只是把一些特殊的二進制用特殊的符號表示,例如,機器要傳送一個數據,假設「傳送」這個指令對應的機器碼是000101,則人們把000101用一個特殊符號,比如mov來表示,當人們要用這個指令時用mov就行,但是mov的本質還是000101,沒有脫離硬體的范圍,有可能這個指令不能在其他機器上用。
高級語言:高級語言完全脫離了硬體范疇,所有的語法更貼近人類的自然語言,人們只需要清楚高級語言的語法,寫出程序就行了,剩下的交給編譯器或者解釋器去編譯或者解釋成機器語言就行了,看,這樣就完全脫離了硬體的范疇,大大提高了程序的開發效率。接下來我們就來看看高級語言的發展,高級語言非常多,我們主要看看比較經典的幾個。
高級語言的發展
B語言與Unix
20世紀60年代,貝爾實驗室的研究員Ken Thompson(肯·湯普森)發明了B語言,並使用B編了個游戲 - Space Travel,他想玩自己這個游戲,所以他背著老闆找到了台空閑的機器 - PDP-7,但是這台機器沒有操作系統,於是Thompson著手為PDP-7開發操作系統,後來這個OS被命名為 - UNIX。
C語言
1971年,Ken Thompson(肯·湯普森)的同事D.M.Ritchie(DM里奇),也很想玩Space Travel,所以加入了Ken Thompson,合作開發UNIX,他的主要工作是改進Thompson的B語言。最終,在1972年這個新語言被稱為C,取BCPL的第二個字母,也是B的下一個字母。
C語言和Unix
1973年,C主體完成。Ken Thompson和D.M.Ritchie迫不及待的開始用C語言完全重寫了UNIX。此時編程的樂趣已經使他們完全忘記了那個「Space Travel」,一門心思的投入到了UNIX和C語言的開發中。自此,C語言和UNIX相輔相成的發展至今。
類C語言起源、歷史
C++(C plus plus Programming Language) - 1983
還是貝爾實驗室的人,Bjarne Stroustrup(本賈尼·斯特勞斯特盧普) 在C語言的基礎上推出了C++,它擴充和完善了C語言,特別是在面向對象編程方面。一定程度上克服了C語言編寫大型程序時的不足。
Python (Python Programming Language)--1991
1989年聖誕節期間,Guido van Rossum 在阿姆斯特丹,Guido van Rossum為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,做為ABC語言的一種繼承。之所以選中Python(大蟒蛇的意思)作為該編程語言的名字,是因為他是一個叫Monty Python的喜劇團體的愛好者。第一個Python的版本發布於1991年。
Java(Java Programming Language) - 1995
Sun公司的Patrick Naughton的工作小組研發了Java語言,主要成員是James Gosling(詹姆斯·高斯林)
C(C Sharp Programming Language) - 2000
Microsoft公司的Anders Hejlsberg(安德斯·海爾斯伯格)發明了C,他也是Delphi語言之父。
當然現在還有一些新語言,比如2009年Google的go語言,以及麻省理工的julia等。
3 為什麼是Python
Python有哪些優點
1 語法簡單 漂亮:我們可以說Python是簡約的語言,非常易於讀寫。在遇到問題時,我們可以把更多的注意力放在問題本身上,而不用花費太多精力在程序語言、語法上。
2 豐富而免費的庫:Python社區創造了各種各樣的Python庫。在他們的幫助下,你可以管理文檔,執行單元測試、資料庫、web瀏覽器、電子郵件、密碼學、圖形用戶界面和更多的東西。所有東西包括在標准庫,然而,除了它,還有很多其他的庫。
3 開源:Python是免費開源的。這意味著我們不用花錢,就可以共享、復制和交換它,這也幫助Python形成了豐富的社區資源,使其更加完善,技術發展更快。
4 Python既支持面向過程,也支持面向對象編程。在面向過程編程中,程序員復用代碼,在面向對象編程中,使用基於數據和函數的對象。盡管面向對象的程序語言通常十分復雜,Python卻設法保持簡潔。
5 Python兼容眾多平台,所以開發者不會遇到使用其他語言時常會遇到的困擾。
Python有哪些作用
Python是什麼都能做,但是我們學的是數據分析,我們看看在數據分析領域Python能做什麼。
數據採集:以Scrapy 為代表的各類方式的爬蟲
數據鏈接:Python有大量各類資料庫的第三方包,方便快速的實現增刪改查
數據清洗:Numpy、Pandas,結構化和非結構化的數據清洗及數據規整化的利器
數據分析:Scikit-Learn、Scipy,統計分析,科學計算、建模等
數據可視化:Matplotlib、Seaborn等等大量各類可視化的庫
所以說總結, 為什麼數據科學選的是python, 最重要就是兩個原因:
1 語法簡單漂亮
2 大量豐富免費的第三方庫
『拾』 python能做什麼有趣的東西
python能做什麼有趣的東西?下面給大家介紹35個Python實例:
1. Python3 實現圖片識別
2. Python3 圖片隱寫術
3. 200 行 Python 代碼實現 2048
4. Python實現3D建模工具
5. 使用 Python 定製詞雲
相關推薦:《Python教程》
6. Python3 智能裁切圖片
7.微信變為聊天機器人
8. 使用 Python 解數學方程
9. 使用 Python 創建照片馬賽克
10. Python 基於共現提取《釜山行》人物關系
11. Python 氣象數據分析:《Python 數據分析實戰》
12. NBA常規賽結果預測:利用Python進行比賽數據分析
13. Python 的循環語句和隱含波動率的計算
14. K-近鄰演算法實現手寫數字識別系統
15. 數獨游戲的 Python 實現與破解
16. 基於 Flask 與 MySQL 實現番劇推薦系
17. Python 實現英文新聞摘要自動提取
18. Python 解決哲學家就餐問題
19. Ebay 在線拍賣數據分析
20. 神經網路實現人臉識別任務
21. 使用 Python 解數學方程
22. Python3 實現火車票查詢工具
23. Python 實現埠掃描器
24. Python3 實現可控制肉雞的反向Shell
25. Python 實現 FTP 弱口令掃描器
26. 基於PyQt5 實現地圖中定位相片拍攝位置
27. Python實現網站模擬登陸
28.Python實現簡易區域網視頻聊天工具
29. 基於 TCP 的 python 聊天程序
30. Python3基於Scapy實現DDos
31. 高德API + Python 解決租房問題
32. 基於 Flask 與 RethinkDB 實現TODO List
33. Python3 實現簡單的 Web 伺服器
34. Python 實現 Redis 非同步客戶端
35. 仿 StackOverflow 開發在線問答系統