導航:首頁 > 源碼編譯 > sparkmllib演算法示例

sparkmllib演算法示例

發布時間:2022-05-26 03:14:57

❶ 如何解釋spark mllib中ALS演算法的原理

對於一個users-procts-rating的評分數據集,ALS會建立一個user*proct的m*n的矩陣
其中,m為users的數量,n為procts的數量
但是在這個數據集中,並不是每個用戶都對每個產品進行過評分,所以這個矩陣往往是稀疏的,用戶i對產品j的評分往往是空的
ALS所做的事情就是將這個稀疏矩陣通過一定的規律填滿,這樣就可以從矩陣中得到任意一個user對任意一個proct的評分,ALS填充的評分項也稱為用戶i對產品j的預測得分
所以說,ALS演算法的核心就是通過什麼樣子的規律來填滿(預測)這個稀疏矩陣
它是這么做的:
假設m*n的評分矩陣R,可以被近似分解成U*(V)T
U為m*d的用戶特徵向量矩陣
V為n*d的產品特徵向量矩陣((V)T代表V的轉置,原諒我不會打轉置這個符號。。)
d為user/proct的特徵值的數量

關於d這個值的理解,大概可以是這樣的
對於每個產品,可以從d個角度進行評價,以電影為例,可以從主演,導演,特效,劇情4個角度來評價一部電影,那麼d就等於4
可以認為,每部電影在這4個角度上都有一個固定的基準評分值
例如《末日崩塌》這部電影是一個產品,它的特徵向量是由d個特徵值組成的
d=4,有4個特徵值,分別是主演,導演,特效,劇情
每個特徵值的基準評分值分別為(滿分為1.0):
主演:0.9(大光頭還是那麼霸氣)
導演:0.7
特效:0.8
劇情:0.6
矩陣V由n個proct*d個特徵值組成

對於矩陣U,假設對於任意的用戶A,該用戶對一部電影的綜合評分和電影的特徵值存在一定的線性關系,即電影的綜合評分=(a1*d1+a2*d2+a3*d3+a4*d4)
其中a1-4為用戶A的特徵值,d1-4為之前所說的電影的特徵值
參考:
協同過濾中的矩陣分解演算法研究

那麼對於之前ALS演算法的這個假設
m*n的評分矩陣R,可以被近似分解成U*(V)T
就是成立的,某個用戶對某個產品的評分可以通過矩陣U某行和矩陣V(轉置)的某列相乘得到

那麼現在的問題是,如何確定用戶和產品的特徵值?(之前僅僅是舉例子,實際中這兩個都是未知的變數)
採用的是交替的最小二乘法
在上面的公式中,a表示評分數據集中用戶i對產品j的真實評分,另外一部分表示用戶i的特徵向量(轉置)*產品j的特徵向量(這里可以得到預測的i對j的評分)
用真實評分減去預測評分然後求平方,對下一個用戶,下一個產品進行相同的計算,將所有結果累加起來(其中,數據集構成的矩陣是存在大量的空打分,並沒有實際的評分,解決的方法是就只看對已知打分的項)
參考:
ALS 在 Spark MLlib 中的實現
但是這里之前問題還是存在,就是用戶和產品的特徵向量都是未知的,這個式子存在兩個未知變數

解決的辦法是交替的最小二乘法
首先對於上面的公式,以下面的形式顯示:
為了防止過度擬合,加上正則化參數
首先用一個小於1的隨機數初始化V
根據公式(4)求U
此時就可以得到初始的UV矩陣了,計算上面說過的差平方和
根據計算得到的U和公式(5),重新計算並覆蓋V,計算差平方和
反復進行以上兩步的計算,直到差平方和小於一個預設的數,或者迭代次數滿足要求則停止
取得最新的UV矩陣
則原本的稀疏矩陣R就可以用R=U(V)T來表示了
以上公式內容截圖來自:
基於矩陣分解的協同過濾演算法

總結一下:
ALS演算法的核心就是將稀疏評分矩陣分解為用戶特徵向量矩陣和產品特徵向量矩陣的乘積
交替使用最小二乘法逐步計算用戶/產品特徵向量,使得差平方和最小
通過用戶/產品特徵向量的矩陣來預測某個用戶對某個產品的評分

不知道是不是理解正確了

❷ 如何使用Spark MLlib 構建分類模型

1.1 LDA實例 實例步驟: 1)載入數據 返回的數據格式為:documents: RDD[(Long, Vector)],其中:Long為文章ID,Vector為文章分詞後的詞向量;用戶可以讀取指定目錄下的數據,通過分詞以及數據格式的轉換,轉換成RDD[(Long, Vector)]即可。

❸ 如何運行spark mllib 演算法

LS會建立一個user*proct的m*n的矩陣 其中,m為users的數量

❹ spark mllib機器學習什麼語言

1、機器學習概念

1.1機器學習的定義

在維基網路上對機器學習提出以下幾種定義:

l「機器學習是一門人工智慧的科學,該領域的主要研究對象是人工智慧,特別是如何在經驗學習中改善具體演算法的性能」。

l「機器學習是對能通過經驗自動改進的計算機演算法的研究」。

l「機器學習是用數據或以往的經驗,以此優化計算機程序的性能標准。」一種經常引用的英文定義是:A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E。

可以看出機器學習強調三個關鍵詞:演算法、經驗、性能,其處理過程如下圖所示。

3、Spark MLlib架構解析

❺ 科普Spark,Spark是什麼,如何使用Spark

科普Spark,Spark是什麼,如何使用Spark


1.Spark基於什麼演算法的分布式計算(很簡單)

2.Spark與MapRece不同在什麼地方

3.Spark為什麼比Hadoop靈活

4.Spark局限是什麼

5.什麼情況下適合使用Spark

Spark與Hadoop的對比

Spark的中間數據放到內存中,對於迭代運算效率更高。

Spark更適合於迭代運算比較多的ML和DM運算。因為在Spark裡面,有RDD的抽象概念。

Spark比Hadoop更通用

Spark提供的數據集操作類型有很多種,不像Hadoop只提供了Map和Rece兩種操作。比如map, filter, flatMap, sample, groupByKey, receByKey, union, join, cogroup, mapValues, sort,partionBy等多種操作類型,Spark把這些操作稱為Transformations。同時還提供Count, collect, rece, lookup, save等多種actions操作。

這些多種多樣的數據集操作類型,給給開發上層應用的用戶提供了方便。各個處理節點之間的通信模型不再像Hadoop那樣就是唯一的Data Shuffle一種模式。用戶可以命名,物化,控制中間結果的存儲、分區等。可以說編程模型比Hadoop更靈活。

不過由於RDD的特性,Spark不適用那種非同步細粒度更新狀態的應用,例如web服務的存儲或者是增量的web爬蟲和索引。就是對於那種增量修改的應用模型不適合。

容錯性

在分布式數據集計算時通過checkpoint來實現容錯,而checkpoint有兩種方式,一個是checkpoint data,一個是logging the updates。用戶可以控制採用哪種方式來實現容錯。

可用性

Spark通過提供豐富的Scala, java,Python API及互動式Shell來提高可用性。

Spark與Hadoop的結合

Spark可以直接對HDFS進行數據的讀寫,同樣支持Spark on YARN。Spark可以與MapRece運行於同集群中,共享存儲資源與計算,數據倉庫Shark實現上借用Hive,幾乎與Hive完全兼容。

Spark的適用場景

Spark是基於內存的迭代計算框架,適用於需要多次操作特定數據集的應用場合。需要反復操作的次數越多,所需讀取的數據量越大,受益越大,數據量小但是計算密集度較大的場合,受益就相對較小(大資料庫架構中這是是否考慮使用Spark的重要因素)

由於RDD的特性,Spark不適用那種非同步細粒度更新狀態的應用,例如web服務的存儲或者是增量的web爬蟲和索引。就是對於那種增量修改的應用模型不適合。總的來說Spark的適用面比較廣泛且比較通用。

運行模式

本地模式

Standalone模式

Mesoes模式

yarn模式

Spark生態系統

Shark ( Hive on Spark): Shark基本上就是在Spark的框架基礎上提供和Hive一樣的H iveQL命令介面,為了最大程度的保持和Hive的兼容性,Shark使用了Hive的API來實現query Parsing和 Logic Plan generation,最後的PhysicalPlan execution階段用Spark代替Hadoop MapRece。通過配置Shark參數,Shark可以自動在內存中緩存特定的RDD,實現數據重用,進而加快特定數據集的檢索。同時,Shark通過UDF用戶自定義函數實現特定的數據分析學習演算法,使得SQL數據查詢和運算分析能結合在一起,最大化RDD的重復使用。

Spark streaming: 構建在Spark上處理Stream數據的框架,基本的原理是將Stream數據分成小的時間片斷(幾秒),以類似batch批量處理的方式來處理這小部分數據。Spark Streaming構建在Spark上,一方面是因為Spark的低延遲執行引擎(100ms+)可以用於實時計算,另一方面相比基於Record的其它處理框架(如Storm),RDD數據集更容易做高效的容錯處理。此外小批量處理的方式使得它可以同時兼容批量和實時數據處理的邏輯和演算法。方便了一些需要歷史數據和實時數據聯合分析的特定應用場合。

Bagel: Pregel on Spark,可以用Spark進行圖計算,這是個非常有用的小項目。Bagel自帶了一個例子,實現了Google的PageRank演算法。

End.

❻ spark mllib能解決什麼問題

MLlib 是構建在 Spark 上的分布式機器學習庫,充分利用了 Spark 的內存計算和適合迭代型計算的優勢,將性能大幅度提升。同時由於 Spark 運算元豐富的表現力, 讓大規模機器學習的演算法開發不再復雜。
MLlib 是 一 些 常 用 的 機 器 學 習 算 法 和 庫 在Spark 平台上的實現。MLlib 是 AMPLab 的在研機器學習項目 MLBase 的底層組件。
MLBase 是一個機器學習平台,詳細見 http://www.cnblogs.com/zlslch/p/5726445.html
MLI 是一個介面層,提供很多結構, MLlib 是底層演算法實現層,
MLlib 中包含分類與回歸、聚類、協同過濾、數據降維組件以及底層的優化庫。

❼ 大數據分析Apache Spark的應用實例

在考慮Hadoop生態系統中的各種引擎時,重要的是要了解每個引擎在某些用例下效果最佳,並且企業可能需要使用多種工具組合才能滿足每個所需的用例。話雖如此,這里是對Apache Spark的一些頂級用例的回顧。

一、流數據

Apache Spark的關鍵用例是其處理流數據的能力。由於每天要處理大量數據,因此對於公司而言,實時流傳輸和分析數據變得至關重要。Spark Streaming具有處理這種額外工作負載的能力。一些專家甚至認為,無論哪種類型,Spark都可以成為流計算應用程序的首選平台。提出此要求的原因是,Spark Streaming統一了不同的數據處理功能,從而使開發人員可以使用單個框架來滿足其所有處理需求。

當今企業使用Spark Streaming的一般方式包括:

1、流式ETL –在數據倉庫環境中用於批處理的傳統ETL(提取,轉換,載入)工具必須讀取數據,將其轉換為資料庫兼容格式,然後再將其寫入目標資料庫。使用Streaming ETL,在將數據推送到數據存儲之前,將對其進行連續的清理和聚合。

2、數據充實 –這種Spark Streaming功能通過將實時數據與靜態數據相結合來充實實時數據,從而使組織能夠進行更完整的實時數據分析。在線廣告商使用數據充實功能將歷史客戶數據與實時客戶行為數據結合起來,並根據客戶的行為實時提供更多個性化和針對性的廣告。

3、觸發事件檢測 – Spark Streaming使組織可以檢測到可能對系統內部潛在嚴重問題的罕見或異常行為(「觸發事件」)並做出快速響應。金融機構使用觸發器來檢測欺詐性交易並阻止其欺詐行為。醫院還使用觸發器來檢測潛在的危險健康變化,同時監視患者的生命體征-向正確的護理人員發送自動警報,然後他們可以立即採取適當的措施。

4、復雜的會話分析 –使用Spark Streaming,與實時會話有關的事件(例如登錄網站或應用程序後的用戶活動)可以組合在一起並進行快速分析。會話信息還可以用於不斷更新機器學習模型。諸如Netflix之類的公司使用此功能可立即了解用戶在其網站上的參與方式,並提供更多實時電影推薦。

二、機器學習

許多Apache Spark用例中的另一個是它的機器學習功能。

Spark帶有用於執行高級分析的集成框架,該框架可幫助用戶對數據集進行重復查詢,這從本質上講就是處理機器學習演算法。在此框架中找到的組件包括Spark的可擴展機器學習庫(MLlib)。MLlib可以在諸如聚類,分類和降維等領域中工作。所有這些使Spark可以用於一些非常常見的大數據功能,例如預測智能,用於營銷目的的客戶細分以及情感分析。使用推薦引擎的公司將發現Spark可以快速完成工作。

網路安全是Spark 機器學習功能的一個很好的商業案例。通過使用Spark堆棧的各種組件,安全提供程序可以對數據包進行實時檢查,以發現惡意活動的痕跡。在前端,Spark Streaming允許安全分析人員在將數據包傳遞到存儲平台之前檢查已知威脅。到達存儲區後,數據包將通過其他堆棧組件(例如MLlib)進行進一步分析。因此,安全提供商可以在不斷發展的過程中了解新的威脅-始終領先於黑客,同時實時保護其客戶。

三、互動分析

Spark最顯著的功能之一就是其互動式分析功能。MapRece是為處理批處理而構建的,而Hive或Pig等SQL-on-Hadoop引擎通常太慢,無法進行互動式分析。但是,Apache Spark足夠快,可以執行探索性查詢而無需采樣。Spark還與包括SQL,R和Python在內的多種開發語言介面。通過將Spark與可視化工具結合使用,可以交互地處理和可視化復雜的數據集。

下一版本的Apache Spark(Spark 2.0)將於今年的4月或5月首次亮相,它將具有一項新功能- 結構化流 -使用戶能夠對實時數據執行互動式查詢。通過將實時流與其他類型的數據分析相結合,預計結構化流將通過允許用戶針對Web訪問者當前會話運行互動式查詢來促進Web分析。它也可以用於將機器學習演算法應用於實時數據。在這種情況下,將對舊數據進行演算法訓練,然後將其重定向以合並新的數據,並在其進入內存時從中學習。

四、霧計算

盡管大數據分析可能會引起廣泛關注,但真正激發技術界想像力的概念是物聯網(IoT)。物聯網通過微型感測器將對象和設備嵌入在一起,這些微型感測器彼此之間以及與用戶進行通信,從而創建了一個完全互連的世界。這個世界收集了大量數據,對其進行處理,並提供革命性的新功能和應用程序供人們在日常生活中使用。但是,隨著物聯網的擴展,對大量,種類繁多的機器和感測器數據進行大規模並行處理的需求也隨之增加。但是,利用雲中的當前分析功能很難管理所有這些處理。

那就是霧計算和Apache Spark出現的地方。

霧計算將數據處理和存儲分散化,而不是在網路邊緣執行這些功能。但是,霧計算為處理分散數據帶來了新的復雜性,因為它越來越需要低延遲,機器學習的大規模並行處理以及極其復雜的圖形分析演算法。幸運的是,有了Spark Streaming等關鍵堆棧組件,互動式實時查詢工具(Shark),機器學習庫(MLib)和圖形分析引擎(GraphX),Spark不僅具有霧計算解決方案的資格。實際上,隨著物聯網行業逐漸不可避免地融合,許多行業專家預測,與其他開源平台相比,Spark有可能成為事實上的霧基礎設施。

現實世界中的火花

如前所述,在線廣告商和諸如Netflix之類的公司正在利用Spark獲得見識和競爭優勢。其他也從Spark受益的著名企業是:

Uber –這家跨國在線計程車調度公司每天都從其移動用戶那裡收集TB級的事件數據。通過使用Kafka,Spark Streaming和HDFS構建連續的ETL管道,Uber可以在收集原始非結構化事件數據時將其轉換為結構化數據,然後將其用於進一步和更復雜的分析。

Pinterest –通過類似的ETL管道,Pinterest可以利用Spark Streaming即時了解世界各地的用戶如何與Pins互動。因此,當人們瀏覽站點並查看相關的圖釘時,Pinterest可以提出更相關的建議,以幫助他們選擇食譜,確定要購買的產品或計劃前往各個目的地的行程。

Conviva –這家流媒體視頻公司每月平均約有400萬個視頻供稿,僅次於YouTube。Conviva使用Spark通過優化視頻流和管理實時視頻流量來減少客戶流失,從而保持一致的流暢,高質量的觀看體驗。

何時不使用Spark

盡管它具有通用性,但這並不一定意味著Apache Spark的內存中功能最適合所有用例。更具體地說,大數據分析Apache Spark的應用實例Spark並非設計為多用戶環境。Spark用戶需要知道他們有權訪問的內存對於數據集是否足夠。添加更多的用戶使此操作變得更加復雜,因為用戶必須協調內存使用量才能同時運行項目。由於無法處理這種類型的並發,用戶將需要為大型批處理項目考慮使用備用引擎,例如Apache Hive。

隨著時間的流逝,Apache Spark將繼續發展自己的生態系統,變得比以前更加通用。在大數據已成為規范的世界中,組織將需要找到最佳方式來利用它。從這些Apache Spark用例可以看出,未來幾年將有很多機會來了解Spark的真正功能。

隨著越來越多的組織認識到從批處理過渡到實時數據分析的好處,Apache Spark的定位是可以在眾多行業中獲得廣泛而快速的採用。

❽ 基於spark的深度學習怎麼實現,具體應用實例

大講台Spark高薪就業課是一套系統且具有很強實戰性的Spark課程,通俗易懂,由淺入深,基於企業項目環境,深度剖析和講解Spark。本課程涵蓋了Spark Core、Spark SQL、Spark Streaming、Spark Mllib以及Spark運維與監控、Spark相關項目等所有Spark核心內容。

❾ spark mllib演算法介面源碼在什麼地方查看

1.1LDA實例實例步驟:1)載入數據返回的數據格式為:documents:RDD[(Long,Vector)],其中:Long為文章ID,Vector為文章分詞後的詞向量;用戶可以讀取指定目錄下的數據,通過分詞以及數據格式的轉換,轉換成RDD[(Long,Vector)]即可。2)建立模型模型參數設置說明:k:主題數,或者聚類中心數DocConcentration:文章分布的超參數(Dirichlet分布的參數),必需>1.0TopicConcentration:主題分布的超參數(Dirichlet分布的參數),必需>1.0MaxIterations:迭代次數setSeed:隨機種子CheckpointInterval:迭代計算時檢查點的間隔Optimizer:優化計算方法,目前支持"em","online"3)結果輸出topicsMatrix以及topics(word,topic))輸出。實例代碼如下:[java]viewplainimportorg.apache.log4j.{Level,Logger}importorg.apache.spark.{SparkConf,SparkContext}importorg.apache.spark.mllib.clustering.LDAimportorg.apache.spark.mllib.linalg.Vectorsobjectlda{defmain(args:Array[String]){//0構建Spark對象valconf=newSparkConf().setAppName("lda")valsc=newSparkContext(conf)Logger.getRootLogger.setLevel(Level.WARN)//1載入數據,返回的數據格式為:documents:RDD[(Long,Vector)]//其中:Long為文章ID,Vector為文章分詞後的詞向量//可以讀取指定目錄下的數據,通過分詞以及數據格式的轉換,轉換成RDD[(Long,Vector)]即可valdata=sc.textFile("data/mllib/sample_lda_data.txt")valparsedData=data.map(s=>Vectors.dense(s.trim.split('').map(_.toDouble)))//=parsedData.zipWithIndex.map(_.swap).cache()//2建立模型,設置訓練參數,訓練模型/***k:主題數,或者聚類中心數*DocConcentration:文章分布的超參數(Dirichlet分布的參數),必需>1.0*TopicConcentration:主題分布的超參數(Dirichlet分布的參數),必需>1.0*MaxIterations:迭代次數*setSeed:隨機種子*CheckpointInterval:迭代計算時檢查點的間隔*Optimizer:優化計算方法,目前支持"em","online"*/valldaModel=newLDA().setK(3).setDocConcentration(5).setTopicConcentration(5).setMaxIterations(20).setSeed(0L).setCheckpointInterval(10).setOptimizer("em").run(corpus)//3模型輸出,模型參數輸出,結果輸出//Outputtopics.Eachisadistributionoverwords(matchingwordcountvectors)println("Learnedtopics(asdistributionsovervocabof"+ldaModel.vocabSize+"words):")valtopics=ldaModel.topicsMatrixfor(topic<-Range(0,3)){print("Topic"+topic+":")for(word<-Range(0,ldaModel.vocabSize)){print(""+topics(word,topic));}println()}}}

❿ Spark mllib ALS 例子報錯,求幫助

在ml中常見的優化演算法基本都是: sgd 這種對每個單變數進行同步更新 als(交替最小二乘)/smo(序列最小優化)這種交替(固定一個單變數,優化另一個單變數)思路。如果你熟悉smo,那麼als就也可以理解了。

閱讀全文

與sparkmllib演算法示例相關的資料

熱點內容
linux調用shell命令 瀏覽:733
樓梯工程量演算法 瀏覽:652
php偽靜態是啥意思 瀏覽:375
it程序員去外企可以鍍金嗎 瀏覽:782
雲端伺服器都有什麼 瀏覽:240
linux快播 瀏覽:568
查公司伺服器能說明什麼問題 瀏覽:310
蘋果手機怎麼給我的電話加密碼 瀏覽:671
程序反編譯教學 瀏覽:658
ecc加密演算法c語言代碼 瀏覽:881
nvr預覽提示碼流已加密 瀏覽:745
編程怎麼讓飛鏢掉落下來 瀏覽:595
如何在伺服器上運行後台代碼 瀏覽:773
安卓手機編譯時間 瀏覽:326
php插入資料庫代碼 瀏覽:394
明日之後怎麼搜索別的伺服器的人 瀏覽:828
思迅加密鎖驅動未能正常升級 瀏覽:143
文件夾哪個是相冊跟視頻 瀏覽:170
用函數編譯計算器程序 瀏覽:705
保賣數碼是哪個app 瀏覽:135