導航:首頁 > 源碼編譯 > 基於興趣推薦演算法

基於興趣推薦演算法

發布時間:2022-05-29 21:45:11

⑴ 今日頭條的個性化推薦是基於哪些具體數據

今日頭條的slogan很清楚的告訴了我們,它的文章推薦機制是個性化推薦機制,最大化保證推送的精準度,盡量保證對的文章推薦給對的人,歸根到底這個推薦演算法關鍵是還在於對海量用戶行為的數據分析與挖掘,個性化推薦的平台有很多,也許各家演算法略有不同,但最終目的都是殊途同歸,為實現最精準的內容推薦。

今日頭條的文章個性化推薦機制主要是:
相似文章主題相似性的推薦:通過獲取與用戶閱讀過文章的相似文章來進行推薦。
基於相同城市的新聞:對於擁有相同地理信息的用戶,會推薦與之相匹配的城市的熱門文章。
基於文章關鍵詞的推薦:對於每篇文章,提取關鍵詞,作為描述文章內容的一種特徵。然後與用戶動作歷史的文章關鍵詞進行匹配推薦。
基於站內熱門文章的普適性推薦:根據站內用戶閱讀習慣,找出熱門文章,對所有沒有閱讀過該文章的用戶進行推薦。
基於社交好友關系的閱讀習慣推薦:根據用戶的站外好友,獲取站外好友轉發評論或發表過的文章進行推薦。
基於用戶長期興趣關鍵詞的推薦:通過比較用戶短期和長期的閱讀興趣主題和關鍵詞進行推薦。
基於相似用戶閱讀習慣的列表推薦:計算一定時期內的用戶動作相似性,進行閱讀內容的交叉性推薦。
基於站點分布來源的內容推薦:通過用戶閱讀的文章來源分布為用戶計算出20個用戶喜歡的新聞來源進行推薦。
麻煩請採納,謝謝。

⑵ 推薦系統演算法

基 於內容的推薦(Content-based Recommendation)是信息過濾技術的延續與發展,它是建立在項目的內容信息上作出推薦的,而不需要依據用戶對項目的評價意見,更多地需要用機 器學習的方法從關於內容的特徵描述的事例中得到用戶的興趣資料。
在基於內容的推薦系統中,項目或對象是通過相關的特徵的屬性來定義,系統基於用戶評價對象 的特徵,學慣用戶的興趣,考察用戶資料與待預測項目的相匹配程度。用戶的資料模型取決於所用學習方法,常用的有決策樹、神經網路和基於向量的表示方法等。 基於內容的用戶資料是需要有用戶的歷史數據,用戶資料模型可能隨著用戶的偏好改變而發生變化。

⑶ 社交網路核心,推薦演算法有哪些


對好友推薦演算法非常熟悉,有些積累。好友推薦演算法一般可以分為下面幾類:
1、基於關系的推薦
基於關系的推薦,最近寫了一個專欄文章,具體介紹了常用演算法,可以看下有沒有幫助,傳送門:http://zhuanlan.hu.com/gongwenjia/20533434
簡介:
a.社會網路中,三元閉包理論,以及常用推薦演算法
b.Facebook中的推薦演算法是如何做的
2、基於用戶資料的推薦
3、基於興趣的推薦
剩下兩個方面有時間再寫。
近來學習聚類,發現聚類中有一個非常有趣的方向—社交網路分析,分享一下我的大致了解。這篇只是一篇概況,並沒有太多的公式推導和代碼,基本是用人話解釋社交網路分析中的常用的幾種演算法。詳細到每個演算法的以後有空再把詳細的公式和代碼補上。
社區發現演算法,GN演算法,Louvain演算法,LPA與SLPA
Louvain演算法思想
1.不斷遍歷網路中的節點,嘗試把單個節點加入能使模塊度提升最大的社區,直到所有節點不再改變
2.將第一階段形成的一個個小的社區並為一個節點,重新構造網路。這時邊的權重為兩個節點內所有原始節點的邊權重之和。
3.重復以上兩步
LPA演算法思想:
1.初始化每個節點,並賦予唯一標簽
2.根據鄰居節點最常見的標簽更新每個節點的標簽
3.最終收斂後標簽一致的節點屬於同一社區
SLPA演算法思想:
SLPA是LPA的擴展。
1.給每個節點設置一個list存儲歷史標簽
2.每個speaker節點帶概率選擇自己標簽列表中標簽傳播給listener節點。(兩個節點互為鄰居節點)
3.節點將最熱門的標簽更新到標簽列表中
4.使用閥值去除低頻標簽,產出標簽一致的節點為社區。

⑷ 推薦演算法中有哪些常用排序演算法

外排序、內排序、插入類排序、直接插入排序、希爾排序、選擇類排序。

推薦演算法是計算機專業中的一種演算法,通過一些數學演算法,推測出用戶可能喜歡的東西,應用推薦演算法比較好的地方主要是網路。所謂推薦演算法就是利用用戶的一些行為,通過一些數學演算法,推測出用戶可能喜歡的東西。

在基於內容的推薦系統中,項目或對象是通過相關特徵的屬性來定義的,系統基於用戶評價對象的特徵、學慣用戶的興趣,考察用戶資料與待預測項目的匹配程度。用戶的資料模型取決於所用的學習方法,常用的有決策樹、神經網路和基於向量的表示方法等。基於內容的用戶資料需要有用戶的歷史數據,用戶資料模型可能隨著用戶的偏好改變而發生變化。

基於內容的推薦與基於人口統計學的推薦有類似的地方,只不過系統評估的中心轉到了物品本身,使用物品本身的相似度而不是用戶的相似度來進行推薦。



⑸ 推薦演算法有哪些

這種形式一般可以按推薦引擎的演算法分,主要有基於協同過濾、基於內容推薦等演算法。 「買過此商品的人,百分之多少還買過其他啥啥商品」:協同過濾item-based filtering 「和你興趣相似的人,還買過其他啥啥商品」:協同過濾 user-based filtering 「相關商品推薦」:基於內容推薦content-based 「猜你喜歡」 一般混合使用推薦演算法。

⑹ 推薦演算法的主要推薦方法的對比

各種推薦方法都有其各自的優點和缺點,見表1。 表1 主要推薦方法對比 推薦方法優點缺點基於內容推薦推薦結果直觀,容易解釋;不需要領域知識 新用戶問題;復雜屬性不好處理;
要有足夠數據構造分類器 協同過濾推薦新異興趣發現、不需要領域知識;隨著時間推移性能提高;
推薦個性化、自動化程度高;
能處理復雜的非結構化對象 稀疏問題;可擴展性問題;
新用戶問題;
質量取決於歷史數據集;
系統開始時推薦質量差; 基於規則推薦能發現新興趣點;不要領域知識 規則抽取難、耗時;產品名同義性問題;
個性化程度低; 基於效用推薦無冷開始和稀疏問題;對用戶偏好變化敏感;
能考慮非產品特性 用戶必須輸入效用函數;推薦是靜態的,靈活性差;
屬性重疊問題; 基於知識推薦能把用戶需求映射到產品上;能考慮非產品屬性 知識難獲得;推薦是靜態的

⑺ 3分鍾輕鬆了解個性化推薦演算法

推薦這種體驗除了電商網站,還有新聞推薦、電台音樂推薦、搜索相關內容及廣告推薦,基於數據的個性化推薦也越來越普遍了。今天就針對場景來說說這些不同的個性化推薦演算法吧。
說個性化之前,先提一下非個性化。 非個性化的推薦也是很常見的,畢竟人嘛都有從眾心理,總想知道大家都在看什麼。非個性化推薦的方式主要就是以比較單一的維度加上半衰期去看全局排名,比如,30天內點擊排名,一周熱門排名。

但是只靠非個性化推薦有個弊端,就是馬太效應,點的人越多的,經過推薦點得人有更多。。。強者越強,弱者機會越少就越弱,可能導致兩級分化嚴重,一些比較優質素材就被埋沒了。

所以,為了解決一部分馬太效應的問題,也主要是順應數據化和自動化的模式,就需要增加個性化的推薦(可算說到正題了。。。)個性化的優點是不僅體驗好,而且也大大增加了效率,讓你更快找到你感興趣的東西。YouTube也曾做過實驗測試個性化和非個性化的效果,最終結果顯示個性化推薦的點擊率是同期熱門視頻的兩倍。

1.新聞、視頻、資訊和電台(基於內容推薦)

一般來說,如果是推薦資訊類的都會採用基於內容的推薦,甚至早期的郵件過濾也採用這種方式。

基於內容的推薦方法就是根據用戶過去的行為記錄來向用戶推薦相似額推薦品。簡單來說就是你常常瀏覽科技新聞,那就更多的給你推薦科技類的新聞。

復雜來說,根據行為設計權重,根據不同維度屬性區分推薦品都是麻煩的事,常用的判斷用戶可能會喜歡推薦品程度的餘弦向量公式長這樣,我就不解釋了(已經勾起了我關於高數不好的回憶)。。。

但是,這種演算法缺點是由於內容高度匹配,導致推薦結果的驚喜度較差,而且有冷啟動的問題,對新用戶不能提供可靠的推薦結果。並且,只有維度增加才能增加推薦的精度,但是維度一旦增加計算量也成指數型增長。如果是非實體的推薦品,定義風格也不是一件容易的事,同一個作者的文風和曲風也會發生改變。

2.電商零售類(協同過濾推薦和關聯規則推薦)

說電商推薦那不可能不講到亞馬遜,傳言亞馬遜有三成的銷售額都來自個性化的商品推薦系統。實際上,我自己也常常在這里找到喜歡的書,也願意主動的去看他到底給我推薦了什麼。

一般,電商主流推薦演算法是基於一個這樣的假設,「跟你喜好相似的人喜歡的東西你也很有可能喜歡。」即協同過濾過濾演算法。主要的任務就是找出和你品味最相近的用戶,從而根據最近他的喜好預測你也可能喜歡什麼。

這種方法可以推薦一些內容上差異較大但是又是用戶感興趣的物品,很好的支持用戶發現潛在的興趣偏好。也不需要領域知識,並且隨著時間推移性能提高。但是也存在無法向新用戶推薦的問題,系統剛剛開始時推薦質可能較量差。

電商行業也常常會使用到基於關聯規則的推薦。即以關聯規則為基礎,把已購商品作為規則頭,規則體為推薦對象。比如,你購買了羽毛球拍,那我相應的會向你推薦羽毛球周邊用品。關聯規則挖掘可以發現不同商品在銷售過程中的相關性,在零售業中已經得到了成功的應用。

3.廣告行業(基於知識推薦)

自從可以瀏覽器讀取cookies,甚至獲得年齡屬性等信息,廣告的個性化投放就也可以根據不同場景使用了。

當用戶的行為數據較少時,基於知識的推薦可以幫助我們解決這類問題。用戶必須指定需求,然後系統設法給出解決方式。假設,你的廣告需要指定某地區某年齡段的投放,系統就根據這條規則進行計算。基於知識的推薦在某種程度是可以看成是一種推理技術。這種方法不需要用戶行為數據就能推薦,所以不存在冷啟動問題。推薦結果主要依賴兩種形式,基於約束推薦和基於實例推薦。

4.組合推薦

由於各種推薦方法都有優缺點,所以在實際中,並不像上文講的那樣採用單一的方法進行建模和推薦(我真的只是為了解釋清楚演算法)。。。

在組合方式上,也有多種思路:加權、變換、混合、特徵組合、層疊、特徵擴充、元級別。 並且,為了解決冷啟動的問題,還會相應的增加補足策略,比如根據用戶模型的數據,結合挖掘的各種榜單進行補足,如全局熱門、分類熱門等。 還有一些開放性的問題,比如,需不需要幫助用戶有品味的提升,引導人去更好的生活。

最後,我總想,最好的推薦效果是像一個了解你的朋友一樣跟你推薦,因為他知道你喜歡什麼,最近對什麼感興趣,也總能發現一些有趣的新東西。這讓我想到有一些朋友總會興致勃勃的過來說,嘿,給你推薦個東西,你肯定喜歡,光是聽到這句話我好像就開心起來,也許這就是我喜歡這個功能的原因。

⑻ 個性化推薦演算法——協同過濾

電子商務推薦系統的一種主要演算法。
協同過濾推薦(Collaborative Filtering recommendation)是在信息過濾和信息系統中正迅速成為一項很受歡迎的技術。與傳統的基於內容過濾直接分析內容進行推薦不同,協同過濾分析用戶興趣,在用戶群中找到指定用戶的相似(興趣)用戶,綜合這些相似用戶對某一信息的評價,形成系統對該指定用戶對此信息的喜好程度預測。
與傳統文本過濾相比,協同過濾有下列優點:
(1)能夠過濾難以進行機器自動基於內容分析的信息。如藝術品、音樂;
(2)能夠基於一些復雜的,難以表達的概念(信息質量、品位)進行過濾;
(3)推薦的新穎性。
正因為如此,協同過濾在商業應用上也取得了不錯的成績。Amazon,CDNow,MovieFinder,都採用了協同過濾的技術來提高服務質量。
缺點是:
(1)用戶對商品的評價非常稀疏,這樣基於用戶的評價所得到的用戶間的相似性可能不準確(即稀疏性問題);
(2)隨著用戶和商品的增多,系統的性能會越來越低;
(3)如果從來沒有用戶對某一商品加以評價,則這個商品就不可能被推薦(即最初評價問題)。
因此,現在的電子商務推薦系統都採用了幾種技術相結合的推薦技術。
案例: AMAZON 個性化推薦系統先驅 (基於協同過濾)
AMAZON是一個虛擬的網上書店,它沒有自己的店面,而是在網上進行在線銷售. 它提供了高質量的綜合節目資料庫和檢索系統,用戶可以在網上查詢有關圖書的信息.如果用戶需要購買的化,可以把選擇的書放在虛擬購書籃中,最後查看購書籃中的商品,選擇合適的服務方式並且提交訂單,這樣讀者所選購的書在幾天後就可以送到家.
AMAZON書店還提供先進的個性化推薦功能,能為不同興趣偏好的用戶自動推薦符合其興趣需要的書籍. AMAZON使用推薦軟體對讀者曾經購買過的書以及該讀者對其他書的評價進行分析後,將向讀者推薦他可能喜歡的新書,只要滑鼠點一下,就可以買到該書了;AMAZON能對顧客購買過的東西進行自動分析,然後因人而異的提出合適的建議. 讀者的信息將被再次保存.這樣顧客下次來時就能更容易的買到想要的書. 此外,完善的售後服務也是AMAZON的優勢,讀者可以在拿到書籍的30天內,將完好無損的書和音樂光碟退回AMAZON, AMAZON將原價退款. 當然AMAZON的成功還不止於此, 如果一位顧客在AMAZON購買一本書,下次他再次訪問時,映入眼簾的首先是這位顧客的名字和歡迎的字樣.

⑼ 基於用戶的系統過濾 什麼是推薦演算法

什麼是推薦演算法 推薦演算法最早在1992年就提出來了,但是火起來實際上是最近這些年的事情,因為互聯網的爆發,有了更大的數據量可以供我們使用,推薦演算法才有了很大的用武之地。 最開始,所以我們在網上找資料,都是進yahoo,然後分門別類的點進去,找到你想要的東西,這是一個人工過程,到後來,我們用google,直接搜索自己需要的內容,這些都可以比較精準的找到你想要的東西,但是,如果我自己都不知道自己要找什麼腫么辦?最典型的例子就是,如果我打開豆瓣找電影,或者我去買說,我實際上不知道我想要買什麼或者看什麼,這時候推薦系統就可以派上用場了。 推薦演算法的條件 推薦演算法從92年開始,發展到現在也有20年了,當然,也出了各種各樣的推薦演算法,但是不管怎麼樣,都繞不開幾個條件,這是推薦的基本條件 根據和你共同喜好的人來給你推薦 根據你喜歡的物品找出和它相似的來給你推薦 根據你給出的關鍵字來給你推薦,這實際上就退化成搜索演算法了 根據上面的幾種條件組合起來給你推薦 實際上,現有的條件就這些啦,至於怎麼發揮這些條件就是八仙過海各顯神通了,這么多年沉澱了一些好的演算法,今天這篇文章要講的基於用戶的協同過濾演算法就是其中的一個,這也是最早出現的推薦演算法,並且發展到今天,基本思想沒有什麼變化,無非就是在處理速度上,計算相似度的演算法上出現了一些差別而已。 基於用戶的協同過濾演算法 我們先做個詞法分析基於用戶說明這個演算法是以用戶為主體的演算法,這種以用戶為主體的演算法比較強調的是社會性的屬性,也就是說這類演算法更加強調把和你有相似愛好的其他的用戶的物品推薦給你,與之對應的是基於物品的推薦演算法,這種更加強調把和你你喜歡的物品相似的物品推薦給你。 然後就是協同過濾了,所謂協同就是大家一起幫助你啦,然後後面跟個過濾,就是大家是商量過後才把結果告訴你的,不然信息量太大了。。 所以,綜合起來說就是這么一個演算法,那些和你有相似愛好的小夥伴們一起來商量一下,然後告訴你什麼東西你會喜歡。 演算法描述 相似性計算 我們盡量不使用復雜的數學公式,一是怕大家看不懂,難理解,二是我是用mac寫的blog,公式不好畫,太麻煩了。。 所謂計算相似度,有兩個比較經典的演算法 Jaccard演算法,就是交集除以並集,詳細可以看看我這篇文章。 餘弦距離相似性演算法,這個演算法應用很廣,一般用來計算向量間的相似度,具體公式大家google一下吧,或者看看這里 各種其他演算法,比如歐氏距離演算法等等。 不管使用Jaccard還是用餘弦演算法,本質上需要做的還是求兩個向量的相似程度,使用哪種演算法完全取決於現實情況。 我們在本文中用的是餘弦距離相似性來計算兩個用戶之間的相似度。 與目標用戶最相鄰的K個用戶 我們知道,在找和你興趣愛好相似的小夥伴的時候,我們可能可以找到幾百個,但是有些是好基友,但有些只是普通朋友,那麼一般的,我們會定一個數K,和你最相似的K個小夥伴就是你的好基友了,他們的愛好可能和你的愛好相差不大,讓他們來推薦東西給你(比如肥皂)是最好不過了。

⑽ 推薦演算法有哪些

推薦演算法大致可以分為三類:基於內容的推薦演算法、協同過濾推薦演算法和基於知識的推薦演算法。 基於內容的推薦演算法,原理是用戶喜歡和自己關注過的Item在內容上類似的Item,比如你看了哈利波特I,基於內容的推薦演算法發現哈利波特II-VI,與你以前觀看的在內容上面(共有很多關鍵詞)有很大關聯性,就把後者推薦給你,這種方法可以避免Item的冷啟動問題(冷啟動:如果一個Item從沒有被關注過,其他推薦演算法則很少會去推薦,但是基於內容的推薦演算法可以分析Item之間的關系,實現推薦),弊端在於推薦的Item可能會重復,典型的就是新聞推薦,如果你看了一則關於MH370的新聞,很可能推薦的新聞和你瀏覽過的,內容一致;另外一個弊端則是對於一些多媒體的推薦(比如音樂、電影、圖片等)由於很難提內容特徵,則很難進行推薦,一種解決方式則是人工給這些Item打標簽。 協同過濾演算法,原理是用戶喜歡那些具有相似興趣的用戶喜歡過的商品,比如你的朋友喜歡電影哈利波特I,那麼就會推薦給你,這是最簡單的基於用戶的協同過濾演算法(user-based collaboratIve filtering),還有一種是基於Item的協同過濾演算法(item-based collaborative filtering),這兩種方法都是將用戶的所有數據讀入到內存中進行運算的,因此成為Memory-based Collaborative Filtering,另一種則是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚類,SVD,Matrix Factorization等,這種方法訓練過程比較長,但是訓練完成後,推薦過程比較快。 最後一種方法是基於知識的推薦演算法,也有人將這種方法歸為基於內容的推薦,這種方法比較典型的是構建領域本體,或者是建立一定的規則,進行推薦。 混合推薦演算法,則會融合以上方法,以加權或者串聯、並聯等方式盡心融合。 當然,推薦系統還包括很多方法,其實機器學習或者數據挖掘裡面的方法,很多都可以應用在推薦系統中,比如說LR、GBDT、RF(這三種方法在一些電商推薦裡面經常用到),社交網路裡面的圖結構等,都可以說是推薦方法。

閱讀全文

與基於興趣推薦演算法相關的資料

熱點內容
php前補零 瀏覽:731
演算法推薦廣告倫理問題 瀏覽:921
亞馬遜雲伺服器的選擇 瀏覽:810
單片機頻率發生器 瀏覽:732
備份與加密 瀏覽:623
用什麼app可以看論壇 瀏覽:52
javajdbcmysql連接 瀏覽:473
製作linux交叉編譯工具鏈 瀏覽:751
編程負數除以正數 瀏覽:512
app和aso有什麼區別 瀏覽:326
手機vmap是什麼文件夾 瀏覽:36
塔科夫鎖服如何選擇伺服器 瀏覽:290
消費者生產者問題java 瀏覽:61
程序員筱柒顧默結婚的時候 瀏覽:578
安卓截長屏怎麼弄 瀏覽:475
優信辦理解壓手續怎麼那麼慢 瀏覽:605
私有雲伺服器一體機安全嗎 瀏覽:430
python的tk界面禁用滑鼠 瀏覽:186
怎麼看伺服器mac地址 瀏覽:291
安卓如何將圖鏡像翻轉 瀏覽:325