㈠ 卡爾曼濾波公式 是什麼啊
卡爾曼濾波公式
X(k)=A X(k-1)+B U(k)+W(k)
卡爾曼濾波(Kalman filtering)一種利用線性系統狀態方程,通過系統輸入輸出觀測數據,對系統狀態進行最優估計的演算法。由於觀測數據中包括系統中的雜訊和干擾的影響,所以最優估計也可看作是濾波過程。
斯坦利·施密特(Stanley Schmidt)首次實現了卡爾曼濾波器。卡爾曼在NASA埃姆斯研究中心訪問時,發現他的方法對於解決阿波羅計劃的軌道預測很有用,後來阿波羅飛船的導航電腦使用了這種濾波器。 關於這種濾波器的論文由Swerling (1958), Kalman (1960)與 Kalman and Bucy (1961)發表。
數據濾波是去除雜訊還原真實數據的一種數據處理技術, Kalman濾波在測量方差已知的情況下能夠從一系列存在測量雜訊的數據中,估計動態系統的狀態. 由於, 它便於計算機編程實現, 並能夠對現場採集的數據進行實時的更新和處理, Kalman濾波是目前應用最為廣泛的濾波方法, 在通信, 導航, 制導與控制等多領域得到了較好的應用.
㈡ 濾波器的動態范圍怎麼解釋
只知道動態范圍表徵的是濾波器的最大輸入電平與其背景雜訊電平之間的差值。
㈢ 什麼是濾波演算法
卡爾曼濾波器(Kalman Filter)是一個最優化自回歸數據處理演算法(optimal recursive data processing algorithm)。對於解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機器人導航,控制,感測器數據融合甚至在軍事方面的雷達系統以及導彈追蹤等等。近年來更被應用於計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。
最佳線性濾波理論起源於40年代美國科學家Wiener和前蘇聯科學家Kолмогоров等人的研究工作,後人統稱為維納濾波理論。從理論上說,維納濾波的最大缺點是必須用到無限過去的數據,不適用於實時處理。為了克服這一缺點,60年代Kalman把狀態空間模型引入濾波理論,並導出了一套遞推估計演算法,後人稱之為卡爾曼濾波理論。卡爾曼濾波是以最小均方誤差為估計的最佳准則,來尋求一套遞推估計的演算法,其基本思想是:採用信號與雜訊的狀態空間模型,利用前一時刻地估計值和現時刻的觀測值來更新對狀態變數的估計,求出現時刻的估計值。它適合於實時處理和計算機運算。
現設線性時變系統的離散狀態防城和觀測方程為:
X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)
Y(k) = H(k)·X(k)+N(k)
其中
X(k)和Y(k)分別是k時刻的狀態矢量和觀測矢量
F(k,k-1)為狀態轉移矩陣
U(k)為k時刻動態雜訊
T(k,k-1)為系統控制矩陣
H(k)為k時刻觀測矩陣
N(k)為k時刻觀測雜訊
則卡爾曼濾波的演算法流程為:
預估計X(k)^= F(k,k-1)·X(k-1)
計算預估計協方差矩陣
C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
Q(k) = U(k)×U(k)'
計算卡爾曼增益矩陣
K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
R(k) = N(k)×N(k)'
更新估計
X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]
計算更新後估計協防差矩陣
C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'
X(k+1) = X(k)~
C(k+1) = C(k)~
㈣ kalman濾波原理
卡爾曼(kalman)濾波 卡爾曼濾波是一種高效率的遞歸濾波器(自回歸濾波器), 它能夠從一系列的不完全包含雜訊的測量(英文: measurement)中,估計動態系統的狀態。 應用實例 卡爾曼濾波的一個典型實例是從一組有限的,對物體位置的, 包含雜訊的觀察序列預測出物體的坐標位置及速度. 在很多工程應用(雷達, 計算機視覺)中都可以找到它的身影. 同時, 卡爾曼濾波也是控制理論以及控制系統工程中的一個重要話題. 比如,在雷達中,人們感興趣的是跟蹤目標,但目標的位置,速度, 加速度的測量值往往在任何時候都有雜訊. 卡爾曼濾波利用目標的動態信息,設法去掉雜訊的影響, 得到一個關於目標位置的好的估計。 這個估計可以是對當前目標位置的估計(濾波), 也可以是對於將來位置的估計(預測), 也可以是對過去位置的估計(插值或平滑). 命名 這種濾波方法以它的發明者魯道夫.E.卡爾曼(Rudolf E. Kalman)命名. 雖然Peter Swerling實際上更早提出了一種類似的演算法. 斯坦利.施密特(Stanley Schmidt)首次實現了卡爾曼濾波器. 卡爾曼在NASA埃姆斯研究中心訪問時, 發現他的方法對於解決阿波羅計劃的軌道預測很有用, 後來阿波羅飛船的導航電腦使用了這種濾波器. 關於這種濾波器的論文由Swerling (1958), Kalman (1960)與 Kalman and Bucy (1961)發表. 目前,卡爾曼濾波已經有很多不同的實現. 卡爾曼最初提出的形式現在一般稱為簡單卡爾曼濾波器.除此以外, 還有施密特擴展濾波器,信息濾波器以及很多Bierman, Thornton 開發的平方根濾波器的變種.也行最常見的卡爾曼濾波器是鎖相環, 它在收音機,計算機和幾乎任何視頻或通訊設備中廣泛存在.
㈤ 程序控制濾波器的濾波范圍
程序控制濾波器的濾波范圍:只知道動態范圍表徵的是濾波器的最大輸入電平與其背景雜訊電平之間的差值。
低頻率的話比如幾十兆以下,普通的帶通濾波器就可以,要求窄帶的話就用晶體濾波器,如果頻率比較高,比如UHF以上,雖然可以用普通的分立元件濾波器,但是調試起來比較麻煩,這就可以用微帶線來做了。
程序控制濾波器非線性濾波:
前已說明,一般的非線性最優濾波可歸結為求條件期望的問題。對於有限多個觀測值的情形,條件期望原則上可以用貝葉斯公式來計算。但即使在比較簡單的場合,這樣得出的結果也是相當繁雜的,無論對實際應用或理論研究都很不方便。
與卡爾曼濾波類似,人們也希望能給出非線性濾波的某種遞推演算法或它所滿足的隨機微分方程。但一般它們並不存在,因此必須對所討論的過程X與Y加以適當的限制。非線性濾波的研究工作相當活躍,它涉及隨機過程論的許多近代成果,如隨機過程一般理論、鞅、隨機微分方程、點過程等。
㈥ 用Matlab軟體實現變長NLMS自適應濾波器演算法
一種具有雙瞬變因子的LMS自適應濾波演算法
曾召華 劉貴忠 馬社祥
(西安交通大學信息與通信工程研究所 西安710049)
作者在文獻〔4〕中提出了一種改進的瞬變步長SPLMS自適應濾波演算法。本文在SPLMS演算法的基礎上,進一步提出一種基於瞬變步長、瞬變平滑因子的雙瞬變SPLMS演算法—DSPLMS演算法。該演算法除具有常規LMS演算法簡單的優點外,還具有更高的起始收斂速率、更小的權失調雜訊和更大的抑噪能力。文中重點討論瞬變步長、瞬變平滑因子的變化特性。計算機模擬結果支持了理論分析。
自適應濾波器,失調雜訊,收斂速度,最小均方誤差,瞬變因子
1 引言
自適應濾波器及其相應演算法是多年來人們廣泛研究的課題。基於Widrow-Hoff標準的LMS演算法和其相應的自適應濾波器以其演算法和結構簡單,便於實時信號處理等優點,在不同領域得到了最為廣泛的應用。而為克服常規的固定步長LMS或牛頓LMS(Newton LMS,即NLMS)自適應演算法在收斂速率、跟蹤速率與權失調雜訊之間要求上存在的較大矛盾,人們發展了各種各樣的改進型LMS演算法,如基於瞬變步長LMS自適應濾波演算法〔1~6〕、基於正交變換(DCT、FFT、小波變換、子帶濾波)的新型LMS均衡演算法〔7~8〕。基於模糊判斷的自適應LMS系統識別和基於最小四次均方誤差的LMS自適應平穩收斂演算法〔9~10〕。在所有改進型LMS演算法中,瞬變步長LMS自適應濾波演算法是研究最為廣泛的一類LMS自適應濾波演算法。本文演算法也是基於瞬變因子的一種改進LMS自適應濾波演算法。
2 SPLMS演算法分析及問題的提出
在文獻〔4〕中,作者對上述方案進行了大量的計算機模擬和理論分析,結果表明:(1)上述諸種演算法的收斂速率與系統輸入信噪比SNR直接相關,信噪比SNR越高,它們的收斂速率普遍提高;隨著信噪比SNR的降低,它們的收斂速率減慢,甚至出現發散現象,因此它們必須在弱干擾下完成規一化起動,即在起始過程中雜訊要相當小,否則效果不佳。(2)在上述所有演算法中,由於採用瞬時平方誤差性能函數e2k來代替均方誤差性能函數,所以其演算法的權值收斂過程表現為加權矢量的平均值變化規律和由於雜訊引起的隨機起伏項的疊加。因此,雜訊方差越大,則隨機起伏項越大,表現為權值振動也就越大。(3)為了追求更快的收斂性,往往增大μ和M,但濾波器階數越高,步長因子μ和輸入功率越大,就便得失調系數也越大。在有限次數起動迭代過程中,也就很難收斂到較穩態值,所以必須尋求更佳的瞬態步長演算法。
文獻〔4〕在准最小均方(Pseudo-LMS,即PLMS)誤差演算法基礎上通過採用滑動時間窗,減少PLMS演算法起動過程的計算量;同時在權值迭代中加一平滑迭代而使PLMS演算法具備全局較強的抗噪性能,較快速收斂性能而提出了SPLMS演算法,即:
其中rk為M階濾波器輸入信號的功率估值;Wk為濾波器的第k步M維最優權矢量估值;Xk是濾波器輸入信號的M維輸入數據矢量;dk為希望輸出;μk為濾波器第k步瞬態步長。切換條件中,閾值μ類似於LMS演算法的步長因子μL,滿足:
μL<μ<1/trR,R=E〔XkXTk〕(7)
為待定的演算法常數,是μk變化的動態平衡點。而α是一常數為平滑因子,它決定上一次的權值變化對本次權值更新的影響程度。k0是採用式(2)規一化啟動後,演算法收斂到較穩態時的步數。式(4)是μk下降的遞推演算法,式(5)是μk上升的平滑遞推演算法。λ為上升的速度因子,滿足0<λ<1。在實際應用中,考慮到學習過程的啟動速度,一般取較大的λ值,即:
0.9<λ<1,k0=25~35,|α|<0.3(8)
SPLMS演算法的實質是:在開始k0步中,採用啟動速度較快的MLMS(Mend LMS)演算法收斂到相對較穩態的狀態;然後在k≥k0+1過程中,採用瞬態步長μk來訓練演算法。而μk根據不同的切換條件將圍繞μ作升降變化,其迭代計算主要表現為不降即升的動態過程。α主要根據經驗來取值,輸入數據的非平穩性越大,雜訊方差越大時,增大α可明顯抑制振動,從而加速收斂過程;在雜訊小時減小α。
但SPLMS演算法也有一明顯不足,即α主要根據經驗來取值,沒有理論上的確切依據。α取值不當,反而容易造成演算法收斂性能更差,甚至發散的現象。從理論上分析,α與瞬態步長μk和輸出誤差ek(文中定義為:ek=dk-WTk Xk)應有一定關系。在演算法啟動階段,ek較大,為追求啟動速度而常取較大步長μk,但μk越大,權失調系數也就越大,有時反而起不到應有的作用,這時就應相應增加α值來平滑權失調雜訊;在演算法漸趨穩定,步長μk漸趨於常數,ek漸趨於0,此時α也應漸趨於0。綜合起來就是:α應隨步長μk和誤差ek瞬時變化而變化,也應是一瞬變因子。本文重點就是尋求瞬變因子αk的數學表達式以滿足上述分析的要求。
3 改進的雙瞬變因子SPLMS演算法——DSPLMS演算法
3.1 μk的變化特性
從式(4)和式(5)可以看出,在k≥k0+1過程中,μk根據不同的切換條件將圍繞μ作升降變化,μk的迭 代計算主要表現為不降即升的動態過程。對於式(5),設k≥kr時,μk<μ,則在k≥kr>k0+1的上升過程中:
即上升速度按指數衰減,使趨於平衡點μ的上升速度迅速減小。其變化過程類似於一電阻電容串聯電路上電容的充電過程。對式(4),由於μk=μk-1/(1+Rk),Rk>0,即使很小的Rk經過一步迭代就足以使μk<μ,再次切換到上升過程。當rk較大時,下降形成的負脈沖也較大。
綜上所述,在k≥k0+1的收斂過程中,μk的時變特性等價於幅值極不對稱的隨機正負尖脈沖序列組成的瞬態分量和直流分量μ的線性疊加。瞬態分量的負脈沖強度與rk瞬值對應,有利於抑制局部自激或短暫發散,減小權矢量雜訊,提高穩定度。在rk較小、演算法漸趨於穩定時,瞬變分量趨於0,μk~μ。
3.2 αk的變化特性
定義:ΔWk=Wk+1-Wk為自適應濾波器的權系數增量;ξ為均方誤差性能函數,ξ=E〔ek〕2,ek=dk-WTk Xk為輸出誤差,則SPLMS演算法的權系數更新公式由式(1)可重寫為:
Wk+1=Wk-μk^Wξk+αΔWk-1(10)
其中Wξ為ξ的梯度函數,^W為Wξ的第k步估計。由式(10)的系數更新公式,我們可寫出均方誤差性能函數的表達式:
式中上標T表示矢量的轉置。若用一矢量^Wζk+1去左乘式(10),則可得到:
^Wξk+1Wk+1=^Wζk+1Wk-μk^Wζk+1^Wζk+^Wζk+1αΔWk-1(13)
利用式(12)的結論,可將式(13)化簡為:
^TWζk+1ΔWk=0(14)
由於參量μk和α均為實的標量因子,故式(14)又可寫成:
(μk^TWζk+1)(αΔWk)=0(15)
式(15)清楚地表明:在SPLMS演算法中,自適應濾波器的權系數在迭代過程中,其均方誤差性能函數的梯度估值與權系數增量始終存在一個正交關系。ΔWk-1對ΔWk的調節作用是在當前梯度估值方向上,給出與梯度估值方向正交矢量,並以這兩個矢量所構成的合矢量來改變權系數空間的權重。
對於FIR結構的LMS自適應系統而言,其均方誤差性能函數在平穩輸入時為一個二次型函數,在收斂點附近仍可視為一個二次型函數,故有:
ξ(Wk+1)=WTk RWk-2WTk P+C(16)
式中R=E〔XTk Xk〕為輸入信號的自相關矩陣,P=E〔dkXk〕為所需信號與輸入信號的互相關矢量,C=E〔d2k〕,則由式(16)可得:
將式(17)代入式(18),則式(18)可變形為:
式(19)就是本文給出的瞬變平滑因子αk的數學表達式。顯然,它滿足前面分析時所提出的要求,且在演算法達到穩態收斂時,滿足:
limk→∞αk=0(20)
3.3 改進的雙瞬變SPLMS演算法——DSPLMS演算法
用式(19)中αk的表達式替換式(1)中的α,就得到本文提出的具有雙瞬變因子的LMS演算法——DSPLMS演算法,即
Wk+1=Wk+2μk(dk-WTk Xk)Xk+αk(Wk-Wk-1)(21)
μk=λ/(1+2λrk),0≤k≤k0(22)
由式(19)、(20)可知,αk是一個與μk成正比且具有衰減性的瞬變因子,從而使本文提出的DSPLMS演算法比SPLMS演算法更能快速穩定收斂;與常規LMS演算法相比,其性能有極大的提高,為實時信號處理提供了一個較好的演算法。
4 計算機模擬
模擬實驗的結構如圖1所示,其中dk為隨機輸入信號,nk為高斯白雜訊,ek為輸出誤差,xk為自適應濾波器的輸入,yk為濾波器輸出,此時xk=dk+nk。
在圖2中,dk是均值為0、方差為1的高斯白雜訊;nk是與dk不相關的均值為0、方差為1的高斯白雜訊;濾波器參數:M=32,λ=0.9,μL=0.005,μ=0.01,α=0.1。在圖3中,nk為均值為0、方差為0.1的高斯白雜訊,其它參數同圖2。圖2、3為分別採用LMS、SPLMS和DSPLMS演算法進行濾波的學習曲線比較圖。
從圖2(強干擾啟動)和圖3(較弱干擾啟動)中可以看出:在強干擾下,DSPL MS 具有比SPLMS好、比LMS好得多的啟動速度和收斂速度;而在弱干擾下,DSPLMS仍具有比SPLMS快、比LMS快得多的啟動速度。從圖中同時還可看出:DSPLMS與SPLM S具有幾乎相同的收斂速度,它們的收斂速度比LMS快得多。
5 結語
加進瞬變平滑項的規一化起動,使DSPLMS具有更高的起始收斂速度、更小的權失調雜訊和更大的抑噪能力;在平穩連接之後的穩態過程中,該演算法趨於步長為μ的LMS演算法性能,但由於瞬變分量負脈沖的作用,在相近的權失調量下可按式(7)取較大的μ值,增強演算法對時變參數過程的跟蹤處理能力;輸入數據的非平穩性越大,雜訊方差越大時,加進的瞬變平滑項使權失調雜訊減小,從而使本文提出的DSPLMS演算法比SPLMS演算法更能快速穩定地收斂;與常規LMS演算法相比,其性能有極大的提高,可以明顯抑制振動,從而加速收斂過程。
網址:
㈦ 濾波的濾波問題及分類
對於濾波器,增益幅度不為零的頻率范圍叫做通頻帶,簡稱通帶,增益幅度為零的頻率范圍叫做阻帶。例如對於LP,從-w1到w1之間,叫做LP的通帶,其他頻率部分叫做阻帶。通帶所表示的是能夠通過濾波器而不會產生衰減的信號頻率成分,阻帶所表示的是被濾波器衰減掉的信號頻率成分。通帶內信號所獲得的增益,叫做通帶增益,阻帶中信號所得到的衰減,叫做阻帶衰減。在工程實際中,一般使用dB作為濾波器的幅度增益單位。
按照濾波是在一整段時間上進行或只是在某些采樣點上進行,可分為連續時間濾波與離散時間濾波。前者的時間參數集T可取為實半軸【0,∞)或實軸(-∞,∞);後者的T可取為非負整數集{0,1,2,…}或整數集{…,-2,-1,0,1,2,…}。設X={X,t∈T={Y,t∈T)有窮,即其中X為被估計過程,它不能被直接觀測;Y為被觀測過程,它包含了X的某些信息。用表示到時刻t為止的觀測數據全體,如果能找到中諸元的一個函數?(),使其均方誤差達到極小,就稱為Xt的最優濾波;如果取極小值的范圍限於線性函數, 就稱為Xt的線性最優濾波。可以證明,最優濾波與線性最優濾波都以概率1惟一存在。對於前者,憫t就是Xt關於σ()(生成的σ域)的條件期望,記作對於後者,若進一步設均值EXt呏EYt呏0,則憫t就是Xt在所張成的希爾伯特空間上的投影,記作如果 (X,Y)是二維正態過程,則最優濾波與線性最優濾波是一致的。
為了應用和敘述的方便,有時還把上面的定義更細致地加以分類。設τ 為一確定的實數或整數,且考慮被估計過程。按照τ=0、τ>0、τ<0,分別稱為最優濾波、(τ步)預測或外推、(τ步)平滑或內插,分別為對應的誤差與均方誤差,而統稱這類問題為濾波問題。濾波問題的主要課題是研究對哪些類型的隨機過程X和Y,可以並且如何用觀測結果的某種解析表示式,或微分方程,或遞推公式等形式,表達出並進而研究它們的種種性質。此外,上面所指的一維隨機過程X、Y,都可以推廣為多維隨機過程。 歷史上最先考慮的是寬平穩過程(見平穩過程)的線性預測和濾波問題,它的一般模型是Yt=Xt+Nt,其中(X,N)為二維寬平穩過程或序列,其譜分布函數已知,其均值為零。設從-∞到時刻t為止的全部Y的值都已被觀測到,求X的τ步線性預測及其均方誤差。如果限於考慮N=0、τ>0的情形,則變成在無誤差觀測條件下X本身的線性預測問題;如果N≠0、τ≤0,則變成從受到雜訊N干擾的接收信號Y中提取有用信號X的濾波問題。1939~1941年,Α。Η.柯爾莫哥洛夫利用平穩序列的沃爾德分解(見平穩過程),給出了線性預測的一般理論與處理辦法,隨即被推廣到連續時間的平穩過程。N.維納則在1942年對於平穩序列與過程的譜密度存在且滿足某種正則條件的情形,利用譜分解導出了線性最優預測和濾波的明顯表達式,即維納濾波公式,並在防空火力控制、電子工程等部門獲得了應用。上述模型在50年代被推廣到僅在有限時間區間內進行觀測的平穩過程以及某些特殊的非平穩過程,其應用范圍也擴充到更多的領域。至今它仍是處理各種動態數據(如氣象、水文、地震勘探等)及預測未來的有力工具之一。
維納濾波公式是通過平穩過程的譜分解導出的,難以推廣到較一般的非平穩過程和多維情形,因而應用范圍受到限制。另一方面,在不斷增加觀測結果時,不易從已算出的濾波值及新的觀測值較簡單地求出新的濾波值,特別是不能滿足在電子計算機上快速處理大量數據的需要。 由於高速電子計算機的發展以及測定人造衛星軌道和導航等技術問題的需要,R.E.卡爾曼與R.S.布西於20世紀60年代初期提出了一類新的線性濾波的模型與方法,通稱為卡爾曼濾波。其基本假設是,被估計過程X為隨機雜訊影響下的有限階多維線性動態系統的輸出,而被觀測的Yt則是Xt的部分分量或其線性函數與量測雜訊的疊加,這里並不要求平穩性,但要求不同時刻的雜訊值是不相關的。此外,觀測只需從某一確定時刻開始,而不必是無窮長的觀測區間。更重要的是,適應電子計算機的特點,卡爾曼濾波公式不是將估計值表成觀測值的明顯的函數形式,而是給出它的一種遞推演算法(即實時演算法)。具體地說,對於離散時間濾波,只要適當增大X的維數,就可以將t時刻的濾波值表成為前一時刻的濾波值與本時刻的觀測值Yt的某種線性組合。對於連續時間濾波,則可以給出與Yt所應滿足的線性隨機微分方程。在需要不斷增加觀測結果和輸出濾波值的情形,這樣的演算法加快了處理數據的速度,而且減少了數據存貯量。卡爾曼還證明,如果所考慮的線性系統滿足某種「可控性」和「可觀測性」(這是現代控制理論中由卡爾曼提出的兩個重要概念),那麼最優濾波一定是「漸近穩定」的。大致說來,就是由初始誤差、舍入誤差及其他的不準確性所引起的效應,將隨著濾波時間的延長而逐漸消失或趨於穩定, 不致形成誤差的積累。這在實際應用上是很重要的。
卡爾曼濾波也有多種形式的推廣,例如放寬對雜訊不相關性的限制,用線性系統逼近非線性系統,以及所謂「自適應濾波」,等等,並獲得了日益廣泛的應用。 前已說明,一般的非線性最優濾波可歸結為求條件期望的問題。對於有限多個觀測值的情形,條件期望原則上可以用貝葉斯公式來計算。但即使在比較簡單的場合,這樣得出的結果也是相當繁雜的,無論對實際應用或理論研究都很不方便。與卡爾曼濾波類似,人們也希望能給出非線性濾波的某種遞推演算法或它所滿足的隨機微分方程。但一般它們並不存在,因此必須對所討論的過程X與Y加以適當的限制。非線性濾波的研究工作相當活躍,它涉及隨機過程論的許多近代成果,如隨機過程一般理論、鞅、隨機微分方程、點過程等。其中一個十分重要的問題,是研究在什麼條件下,存在一個鞅M,使得在任何時刻,M和Y都包含同樣的信息;這樣的M稱為Y的新息過程。對於一類所謂「條件正態過程」,已經給出了非線性最優濾波的可嚴格實現的遞推算式。在實際應用上,對非線性濾波問題往往採用各種線性近似的方法。
㈧ 卡爾曼濾波,求大神用點通俗易懂的方式解釋一下,越詳細越好!
卡爾曼濾波(Kalman filtering)一種利用線性系統狀態方程,通過系統輸入輸出觀測數據,對系統狀態進行最優估計的演算法。由於觀測數據中包括系統中的雜訊和干擾的影響,所以最優估計也可看作是濾波過程。
斯坦利·施密特(Stanley Schmidt)首次實現了卡爾曼濾波器。卡爾曼在NASA埃姆斯研究中心訪問時,發現他的方法對於解決阿波羅計劃的軌道預測很有用,後來阿波羅飛船的導航電腦使用了這種濾波器。 關於這種濾波器的論文由Swerling (1958), Kalman (1960)與 Kalman and Bucy (1961)發表。
數據濾波是去除雜訊還原真實數據的一種數據處理技術, Kalman濾波在測量方差已知的情況下能夠從一系列存在測量雜訊的數據中,估計動態系統的狀態. 由於, 它便於計算機編程實現, 並能夠對現場採集的數據進行實時的更新和處理, Kalman濾波是目前應用最為廣泛的濾波方法, 在通信, 導航, 制導與控制等多領域得到了較好的應用.
㈨ 卡爾曼濾波演算法的發展歷史如何
全球定位系統(GPS)是新一代的精密衛星導航定位系統。由於其全球性、全天候以及連續實時三維定位等特點,在軍事和民用領域得到了廣泛的發展。近年來,隨著科學技術的發展,GPS導航和定位技術已向高精度、高動態的方向發展。但是由於GPS定位包含許多誤差源,尤其是測量隨機誤差和衛星的幾何位置誤差,使定位精度受到影響。利用傳統的方法很難消除。而GPS動態濾波是消除GPS定位隨機誤差的重要方法,即利用特定的濾波方法消除各種隨機誤差,從而提高GPS導航定位精度。 經典的最優濾波包括:Wiener濾波和Kalman濾波。由於Wiener濾波採用頻域法,作用受到限制;而Kalman濾波採用時域狀態空間法,適合於多變數系統和時變系統及非平穩隨機過程,且由於其遞推特點容易在計算機上實現,因此得到了廣泛的應用。為此,本文對Kalman濾波方法進行了深入的研究,並取得了一些成果。 本文首先概述了GPS的組成、應用及最新動態。在此基礎上介紹了GPS的導航定位原理,給出了衛星可見性演算法、選星演算法及定位演算法。然後介紹了卡爾曼濾波的基本原理,在此基礎上對動態用戶的飛行軌跡進行了模擬,對「singer」模型下的8狀態和11狀態卡爾曼濾波演算法進行了模擬分析,同時對「當前」統計模型下11狀態卡爾曼濾波演算法進行了模擬分析,並對濾波前後的定位精度進行了比較。在此基礎上,就如何提高濾波器的動態性能作者提出了改進演算法,即自適應卡爾曼濾波演算法、帶漸消因子的優化演算法及改進的優化演算法,並分別進行了模擬分析。最後作者將卡爾曼濾波演算法分別應用於GPS/DR和GPS/INS組合導航定位系統中,並分別對這兩種系統進行了建模和模擬分析,取得了較理想的結果。 本文的研究工作,對改進傳統的濾波方法有一定的參考和應用價值,並對卡爾曼濾波方法在提高GPS動態導航定位精度方面的應用起到積極的促進作用。
㈩ 什麼叫卡爾曼濾波演算法其序貫演算法
卡爾曼濾波演算法(Kalman filtering)一種利用線性系統狀態方程,通過系統輸入輸出觀測數據,對系統狀態進行最優估計的演算法。由於觀測數據中包括系統中的雜訊和干擾的影響,所以最優估計也可看作是濾波過程。
序貫演算法又叫序貫相似性檢測演算法,是指圖像匹配技術是根據已知的圖像模塊(模板圖)在另一幅圖像(搜索圖)中尋找相應或相近模塊的過程,它是計算機視覺和模式識別中的基本手段。已在衛星遙感、空間飛行器的自動導航、機器人視覺、氣象雲圖分析及醫學x射線圖片處理等許多領域中得到了廣泛的應用。研究表明,圖像匹配的速度主要取決於匹配演算法的搜索策略。
數據濾波是去除雜訊還原真實數據的一種數據處理技術, Kalman濾波在測量方差已知的情況下能夠從一系列存在測量雜訊的數據中,估計動態系統的狀態. 由於, 它便於計算機編程實現, 並能夠對現場採集的數據進行實時的更新和處理, Kalman濾波是目前應用最為廣泛的濾波方法, 在通信, 導航, 制導與控制等多領域得到了較好的應用。