1. 向量點乘公式
向量和向量間的運算有兩種:點乘和叉乘。
點乘「·」計算得到的結果是一個標量;
a·b=|a||b|cosw(a、b上有向量標,不便打出。w為兩向量角度)。
叉乘「×」得到的結果是一個垂直於原向量構成平面的向量。
a×b=|a||b|sinw
可以參考一下《高等數學》,一般的工科大學都要學這個!!
2. 向量點乘公式是什麼
公式如下:
向量的點乘a*b公式:a*b=|a|*|b|*sinθ,sin是a,b的夾角,取值[0,π]。向量積|c|=|a×b|=|a||b|sin<a,b>。點乘又叫向量的內積、數量積,是一個向量和它在另一個向量上的投影的長度的乘積;是標量。
簡介:
在數學中,向量(也稱為歐幾里得向量、幾何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長度:代表向量的大小。與向量對應的量叫做數量(物理學中稱標量),數量(或標量)只有大小,沒有方向。
3. 關於向量點乘運算
向量點乘運算是指接受在實數R上的兩個向量並返回一個實數值標量的二元運算,它是歐幾里得空間的標准內積。
兩個向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的點積定義為:
a·b=a1b1+a2b2+……+anbn。
使用矩陣乘法並把(縱列)向量當作n×1矩陣,點積還可以寫為:
a·b=(a^T)*b,這里的a^T指示矩陣a的轉置。
點積的值
u的大小、v的大小、u,v夾角的餘弦。在u,v非零的前提下,點積如果為負,則u,v形成的角大於90度;如果為零,那麼u,v垂直;如果為正,那麼u,v形成的角為銳角。
兩個單位向量的點積得到兩個向量的夾角的cos值,通過它可以知道兩個向量的相似性,利用點積可判斷一個多邊形是面向攝像機還是背向攝像機。
向量的點積與它們夾角的餘弦成正比,因此在聚光燈的效果計算中,可以根據點積來得到光照效果,如果點積越大,說明夾角越小,則物體離光照的軸線越近,光照越強。
4. 向量叉乘與點乘,運演算法則是什麼
分清點乘和叉乘
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos<a,b>
在物理學中,已知力與位移求功,實際上就是求向量F與向量s的內積,即要用點乘。
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin<a,b>
向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此
向量的外積不遵守乘法交換率,因為
向量a×向量b=-向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘
5. 點乘和叉乘運演算法則是什麼
點乘,也叫向量的內積、數量積。運演算法則為向量a·向量b=|a||b|cos<a,b>叉乘,也叫向量的外積、向量積。運演算法則為|向量c|=|向量a×向量b|=|a||b|sin<a,b>。
運演算法則
點乘
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos<a,b>
在物理學中,已知力與位移求功,實際上就是求向量F與向量s的內積,即要用點乘。
叉乘
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin<a,b>。
向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此向量的外積不遵守乘法交換率,因為向量a×向量b=-向量b×向量a在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
6. 點乘和叉乘
點乘是向量的內積,叉乘是向量的外積。
點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。顧名思義,求下來的結果是一個數。
叉乘,也叫向量積。結果是一個和已有兩個向量都垂直的向量。求下來的結果是一個向量。
(6)數字向量點乘的運演算法則擴展閱讀:
線性變換中點積的意義:
根據點積的代數公式:a·b=a1b1+a2b2+……+anbn,假設a為給定權重向量,b為特徵向量,則a·b其實為一種線性組合,函數F(a·b)則可以構建一個基於a·b+c = 0 (c為偏移)的某一超平面的線性分類器,F是個簡單函數,會將超過一定閾值的值對應到第一類,其它的值對應到第二類。
向量的點積與它們夾角的餘弦成正比,因此在聚光燈的效果計算中,可以根據點積來得到光照效果,如果點積越大,說明夾角越小,則物體離光照的軸線越近,光照越強。
7. 向量的乘法運演算法則
向量的乘法運演算法則為點乘。點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。向量a·向量b=|a||b|cos在物理學中,已知力與位移求功,實際上就是求向量F與向量s的內,即要用點乘。
在數學中,向量(也稱為歐幾里得向量、幾何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長度:代表向量的大小。與向量對應的量叫做數量(物理學中稱標量),數量(或標量)只有大小,沒有方向。
8. 點乘怎麼算
點乘,也叫向量的內積、數量積。
運演算法則為向量a·向量b=|a||b|cos<a,b>叉乘,也叫向量的外積、向量積。運演算法則為|向量c|=|向量a×向量b|=|a||b|sin<a,b> 1運演算法則 點乘 點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos<a,b> 在物理學中,已知力與位移求功,實際上就是求向量F與向量s的內積,即要用點乘叉乘 叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin<a,b> 量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此向量的外積不遵守乘法交換率,因為向量a×向量b=-向量b×向量a在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘2幾何意義 點乘的幾何意義 可以用來表徵或計算兩個向量之間的夾角,以及在b向量在a向量方向上的投影。
叉乘的幾何意義 在三維幾何中,向量a和向量b的叉乘結果是一個向量,更為熟知的叫法是法向量,該向量垂直於a和b向量構成的平面。 在3D圖像學中,叉乘的概念非常有用,可以通過兩個向量的叉乘,生成第三個垂直於a,b的法向量,從而構建X、Y、Z坐標系。
9. 向量點乘法則
對於向量點乘的計算
一般就使用如下的兩種計算方法
注意一定是同維的向量才能點乘
10. 向量點乘和叉乘分別滿足哪些規矩(結合律分配律交換律等)
向量叉乘不符合交換律(b×a方向朝下),符合結合律,分配律。
向量點乘符合交換律,結合律,分配律。
點乘經常用在:計算兩向量的夾角;計算一個向量在另一個向量上的投影;通過夾角大小,判斷兩向量朝向的相似度(方向相近/相反/垂直等)。
向量的叉乘會得到一個新的向量,該向量垂直於ab所在平面,符合右手螺旋定則,四根手指從a到b,a×b和大拇指同向。
應用
在生產生活中,點積應用廣泛。利用點積可判斷一個多邊形是否面向攝像機還是背向攝像機。向量的點積與它們夾角的餘弦成正比,因此在聚光燈的效果計算中,可以根據點積來得到光照效果,如果點積越大,說明夾角越小,則物理離光照的軸線越近,光照越強。
物理中,點積可以用來計算合力和功。若b為單位矢量,則點積即為a在方向b的投影,即給出了力在這個方向上的分解。功即是力和位移的點積。
計算機圖形學常用來進行方向性判斷,如兩矢量點積大於0,則它們的方向朝向相近;如果小於0,則方向相反。矢量內積是人工智慧領域中的神經網路技術的數學基礎之一,此方法還被用於動畫渲染。