㈠ 有哪些應用於移動機器人路徑規劃的演算法
機器人家上了解到,在二維二值地圖(FREE or OCCUPIED)場景下進行路徑規劃的方法。我看之前有同學在回答的時候配上了這幅圖:
這幅圖上的演算法羅列的還是很全面的,體現了各個演算法的出生順序。但是並不能很好的對他們進行一個本質的分類。剛剛那位同學說的graph-based和sampling-based的分類方法我感覺有點概念重疊不能夠對規劃演算法進行這樣的分類,下面通過自己這一年多的研究和實踐對規劃演算法進行一個簡單的分類:
這幅圖上的演算法羅列的還是很全面的,體現了各個演算法的出生順序。但是並不能很好的對他們進行一個本質的分類。剛剛那位同學說的graph-based和sampling-based的分類方法我感覺有點概念重疊不能夠對規劃演算法進行這樣的分類,下面通過自己這一年多的研究和實踐對規劃演算法進行一個簡單的分類:
兩大類:
1. 完備的(complete)
2. 基於采樣的(sampling-based)又稱為概率完備的
一 完備的規劃演算法
A*演算法
所謂完備就是要達到一個systematic的標准,即:如果在起始點和目標點間有路徑解存在那麼一定可以得到解,如果得不到解那麼一定說明沒有解存在。
這一大類演算法在移動機器人領域通常直接在occupancy grid網格地圖上進行規劃(可以簡單理解成二值地圖的像素矩陣)以深度優先尋路演算法、廣度優先尋路演算法、Dijkstra(迪傑斯特拉)演算法為始祖,以A*演算法(Dijstra演算法上以減少計算量為目的加上了一個啟發式代價)最為常用,近期的Theta*演算法是在A*演算法的基礎上增加了line-of-sight優化使得規劃出來的路徑不完全依賴於單步的柵格形狀(答主以為這個演算法意義不大,不就是規劃了一條路徑再簡單平滑了一下么)。
完備的演算法的優勢在與它對於解的捕獲能力是完全的,但是由此產生的缺點就是演算法復雜度較大。這種缺點在二維小尺度柵格地圖上並不明顯,但是在大尺度,尤其是多維度規劃問題上,比如機械臂、蛇形機器人的規劃問題將帶來巨大的計算代價。這樣也直接促使了第二大類演算法的產生。
二 基於采樣的規劃演算法
RRT-connect演算法
這種演算法一般是不直接在grid地圖進行最小柵格解析度的規劃,它們採用在地圖上隨機撒一定密度的粒子來抽象實際地圖輔助規劃。如PRM演算法及其變種就是在原始地圖上進行撒點,抽取roadmap在這樣一個拓撲地圖上進行規劃;RRT以及其優秀的變種RRT-connect則是在地圖上每步隨機撒一個點,迭代生長樹的方式,連接起止點為目的,最後在連接的圖上進行規劃。這些基於采樣的演算法速度較快,但是生成的路徑代價(可理解為長度)較完備的演算法高,而且會產生「有解求不出」的情況(PRM的逢Narrow space卒的情況)。這樣的演算法一般在高維度的規劃問題中廣泛運用。
三 其他規劃演算法
除了這兩類之外還有間接的規劃演算法:Experience-based(Experience Graph經驗圖演算法)演算法:基於經驗的規劃演算法,這是一種存儲之前規劃路徑,建立知識庫,依賴之進行規劃的方法,題主有興趣可以閱讀相關文獻。這種方法犧牲了一定的空間代價達到了速度與完備兼得的優勢。此外還有基於廣義Voronoi圖的方法進行的Fast-marching規劃,類似dijkstra規劃和勢場的融合,該方法能夠完備地規劃出位於道路中央,遠離障礙物的路徑。答主最近也在研究此類演算法相關的工作。
APF(人工勢場)演算法
至於D* 、勢場法、DWA(動態窗口法)、SR-PRM屬於在動態環境下為躲避動態障礙物、考慮機器人動力學模型設計的規劃演算法。
㈡ 詳解動態規劃演算法
其實你可以這么去想。
能用動態規劃解決的問題,肯定能用搜索解決。
但是搜素時間復雜度太高了,怎麼優化呢?
你想到了記憶化搜索,就是搜完某個解之後把它保存起來,下一次搜到這個地方的時候,調用上一次的搜索出來的結果。這樣就解決了處理重復狀態的問題。
動態規劃之所以速度快是因為解決了重復處理某個狀態的問題。
記憶化搜索是動態規劃的一種實現方法。
搜索到i狀態,首先確定要解決i首先要解決什麼狀態。
那麼那些狀態必然可以轉移給i狀態。
於是你就確定了狀態轉移方程。
然後你需要確定邊界條件。
將邊界條件賦予初值。
此時就可以從前往後枚舉狀態進行狀態轉移拉。
㈢ 速度的計算公式是什麼
速度的計算公式:V=S/t。
科學上用速度來表示物體運動的快慢。速度在數值上等於單位時間內通過的路程,單位是m/s和km/h。
速度表徵動點在某瞬時運動快慢和運動方向的矢量。在最簡單的勻速直線運動中,速度的大小等於單位時間內經過的路程。速度的常用單位有:厘米/秒,米/秒。千米/小時等。速度的大小也稱速率。
(3)速度規劃常用演算法擴展閱讀
速度與速率的區別:
1、速率是路程與時間的比值,速度是位移與時間的比值;速度是矢量,有大小有方向,它描述物體運動的快慢,和反映物體運動的方向;速率是標量,有大小沒有方向。
2、平均速率描述一段時間內物體運動的平均快慢程度。計算方法是v=△S/△t。平均速度:v=x/t。
3、平均速率並不是「平均速度的絕對值」。不能為零。
㈣ 求解:圖論中常見的最短路徑演算法有幾種都是什麼
主要是有三種、、
第一種是最直接的貪心dijkstra演算法、、可以利用堆數據結構進行優化、、缺點就是不能求有負權的最短路與判斷負環、、
第二種是bellman-ford演算法、、根據鬆弛操作的性質是可以來判斷負環的、、時間復雜度是O(nm)的、、
第三種是SPFA演算法、、把他單獨拿出來作為一種演算法並不是非常好的、、他的實質應該是上面的bellman-ford演算法的隊列優化時間復雜度更低、O(KE)、K的值約等於2、、
㈤ 多目標線性規劃的常用求解演算法有哪些
多目標決策主要有以下幾種方法:
(1)化多為少法:將多目標問題化成只有一個或二個目標的問題,然後用簡單的決策方法求解,最常用的是線性加權和法。
(2)分層序列法:將所有目標按其重要性程度依次排序,先求出第一個最重要的目標的最優解,然後在保證前一目標最優解的前提下依次求下一目標的最優解,一直求到最後一個目標為止。
(3)直接求非劣解法:先求出一組非劣解,然後按事先確定好的評價標准從中找出一個滿意的解。
(4)目標規劃法:對於每一個目標都事先給定一個期望值,然後在滿足系統一定約束條件下,找出與目標期望值最近的解。
(5)多屬性效用法:各個目標均用表示效用程度大小的效用函數表示,通過效用函數構成多目標的綜合效用函數,以此來評價各個可行方案的優劣。
(6)層次分析法:把目標體系結構予以展開,求得目標與決策方案的計量關系。
(7)重排序法:把原來的不好比較的非劣解通過其他辦法使其排出優劣次序來。
(8)多目標群決策和多目標模糊決策等
㈥ 幾種常用的演算法簡介
1、窮舉法窮舉法是最基本的演算法設計策略,其思想是列舉出問題所有的可能解,逐一進行判別,找出滿足條件的解。
窮舉法的運用關鍵在於解決兩個問題:
在運用窮舉法時,容易出現的問題是可能解過多,導致演算法效率很低,這就需要對列舉可能解的方法進行優化。
以題1041--純素數問題為例,從1000到9999都可以看作是可能解,可以通過對所有這些可能解逐一進行判別,找出其中的純素數,但只要稍作分析,就會發現其實可以大幅度地降低可能解的范圍。根據題意易知,個位只可能是3、5、7,再根據題意可知,可以在3、5、7的基礎上,先找出所有的二位純素數,再在二位純素數基礎上找出三位純素數,最後在三位純素數的基礎上找出所有的四位純素數。
2、分治法分治法也是應用非常廣泛的一種演算法設計策略,其思想是將問題分解為若乾子問題,從而可以遞歸地求解各子問題,再綜合出問題的解。
分治法的運用關鍵在於解決三個問題:
我們熟知的如漢諾塔問題、折半查找演算法、快速排序演算法等都是分治法運用的典型案例。
以題1045--Square
Coins為例,先對題意進行分析,可設一個函數f(m,
n)等於用面值不超過n2的貨幣構成總值為m的方案數,則容易推導出:
f(m,
n)
=
f(m-0*n*n,
n-1)+f(m-1*n*n,
n-1)+f(m-2*n*n,
n-1)+...+f(m-k*n*n,
n-1)
這里的k是幣值為n2的貨幣最多可以用多少枚,即k=m/(n*n)。
也很容易分析出,f(m,
1)
=
f(1,
n)
=
1
對於這樣的題目,一旦分析出了遞推公式,程序就非常好寫了。所以在動手開始寫程序之前,分析工作做得越徹底,邏輯描述越准確、簡潔,寫起程序來就會越容易。
3、動態規劃法
動態規劃法多用來計算最優問題,動態規劃法與分治法的基本思想是一致的,但處理的手法不同。動態規劃法在運用時,要先對問題的分治規律進行分析,找出終結子問題,以及子問題向父問題歸納的規則,而演算法則直接從終結子問題開始求解,逐層向上歸納,直到歸納出原問題的解。
動態規劃法多用於在分治過程中,子問題可能重復出現的情況,在這種情況下,如果按照常規的分治法,自上向下分治求解,則重復出現的子問題就會被重復地求解,從而增大了冗餘計算量,降低了求解效率。而採用動態規劃法,自底向上求解,每個子問題只計算一次,就可以避免這種重復的求解了。
動態規劃法還有另外一種實現形式,即備忘錄法。備忘錄的基本思想是設立一個稱為備忘錄的容器,記錄已經求得解的子問題及其解。仍然採用與分治法相同的自上向下分治求解的策略,只是對每一個分解出的子問題,先在備忘錄中查找該子問題,如果備忘錄中已經存在該子問題,則不須再求解,可以從備忘錄中直接得到解,否則,對子問題遞歸求解,且每求得一個子問題的解,都將子問題及解存入備忘錄中。
例如,在題1045--Square
Coins中,可以採用分治法求解,也可以採用動態規劃法求解,即從f(m,
1)和f(1,
n)出發,逐層向上計算,直到求得f(m,
n)。
在競賽中,動態規劃和備忘錄的思想還可以有另一種用法。有些題目中的可能問題數是有限的,而在一次運行中可能需要計算多個測試用例,可以採用備忘錄的方法,預先將所有的問題的解記錄下來,然後輸入一個測試用例,就查備忘錄,直接找到答案輸出。這在各問題之間存在父子關系的情況下,會更有效。例如,在題1045--Square
Coins中,題目中已經指出了最大的目標幣值不超過300,也就是說問題數只有300個,而且各問題的計算中存在重疊的子問題,可以採用動態規劃法,將所有問題的解先全部計算出來,再依次輸入測試用例數據,並直接輸出答案。
4、回溯法回溯法是基於問題狀態樹搜索的求解法,其可適用范圍很廣。從某種角度上說,可以把回溯法看作是優化了的窮舉法。回溯法的基本思想是逐步構造問題的可能解,一邊構造,一邊用約束條件進行判別,一旦發現已經不可能構造出滿足條件的解了,則退回上一步構造過程,重新進行構造。這個退回的過程,就稱之為回溯。
回溯法在運用時,要解決的關鍵問題在於:
回溯法的經典案例也很多,例如全排列問題、N後問題等。
5、貪心法貪心法也是求解最優問題的常用演算法策略,利用貪心法策略所設計的演算法,通常效率較高,演算法簡單。貪心法的基本思想是對問題做出目前看來最好的選擇,即貪心選擇,並使問題轉化為規模更小的子問題。如此迭代,直到子問題可以直接求解。
基於貪心法的經典演算法例如:哈夫曼演算法、最小生成樹演算法、最短路徑演算法等。
㈦ 常見的路徑規劃方法有那些
最速下降法、部分貪婪演算法, Dijkstra演算法、Floyed演算法、SPFA演算法(Bellman_Ford的改進演算法)、A*演算法、D*演算法、圖論最短演算法,遺傳演算法、元胞自動機、免疫演算法、禁忌搜索、模擬退火、人工神經網路、蟻群演算法、粒子群演算法等
㈧ 平均速度的兩種演算法
1.△ s÷△t = 平均速度 定義式
2.(V0+Vt)/2 = 平均速度 勻變速直線運動 適用
.3.變化的位移除以變化的時間=平均速度.即1
4.2×V1×V2/(V1+V2)=平均速度.僅僅適用於前一半位移v1 .後一半位移V2的直線變速運動
㈨ 速度規劃
跡規劃任務:接收基準路點、車輛信息、紅綠燈檢測信息,發布車將要行駛的200個路點(位置/速度)
1秒鍾發布5次,局部路徑規劃是200ms
cruise_speed = 40/decel_limit = -5/accel_limit =1
定義路點個數、停止距離、停止餘量、加速度因子、減速度因子
㈩ 公路道路設計中 如何確定設計車速(計算行車速度)
計算行車速度是指行車條件良好、公路設計特徵均起控製作用的情況下,在公路上能保持的最高安全速度,其作用為基礎參數,以規定最低設計標准,是一個設定值。
運行車速是在特定路段長度上車輛實際行駛的速度。由於不同的車輛在行駛過程中可能採用不同的速度,因此通常採用第85個百分點上的車輛行駛速度作為運行速度。
運行速度與計算行車速度的區別在於前者是車輛的實際運行速度,後者為用來確定設計參數的一個規定車速。國外研究表明,當計算行車速度為80km/h以下時,第85%個百分點上的車輛實際行駛速度一般比計算行車速度高10km/h,當運行速度與計算行車速度之差達到10km/h以上時,就很容易發生交通事故。
(10)速度規劃常用演算法擴展閱讀:
注意事項:
1、在設計路線的各個環節,對路線方案必須選用各種先進手段進行深層次地調查與探究,在多方案論證、比較的前提下,進行最佳路線方案的選擇。
2、應在確保行車安全、舒適、迅速的基礎上進行路線設計,確保公路工程具有較低造價、高效率等特點,並確保設計對施工與後期養護十分有利。
3、公路工程選線應配合農田的基礎建設,做到盡可能佔用較少的農田,並做到盡可能不佔用高產地、經濟作物田等。
4、如公路建設必須在名勝古跡、風景園林等地通過時,必須協調其附近的環境或景觀,並對原有自然環境或歷史文物進行保護。
5、應提前深入勘察公路工程所建位置的地質情況及水文條件,避免對公路工程質量造成嚴重影響。