導航:首頁 > 文檔加密 > 雙隨機相位編碼的加密和解密

雙隨機相位編碼的加密和解密

發布時間:2022-04-22 11:33:28

❶ 雙位元組編碼如何加密,如何解密。有沒有這樣的軟體可以直接加解密

加密和雙位元組編碼沒什麼關系,不要把它做字元串處理,做BYTE就可以了,至於加密模塊挨餓是aes,des模塊代碼網上到處都是

❷ 加密和解密使用相同的密鑰的是____;加密和解密使用不同的密鑰的是____。

這個使用的密室鑰匙就是根據你自己的英文,還有你自己的口訣來進行編輯的

❸ rsa加密和解密的理論依據是什麼

以前也接觸過RSA加密演算法,感覺這個東西太神秘了,是數學家的事,和我無關。但是,看了很多關於RSA加密演算法原理的資料之後,我發現其實原理並不是我們想像中那麼復雜,弄懂之後發現原來就只是這樣而已..
學過演算法的朋友都知道,計算機中的演算法其實就是數學運算。所以,再講解RSA加密演算法之前,有必要了解一下一些必備的數學知識。我們就從數學知識開始講解。
必備數學知識
RSA加密演算法中,只用到素數、互質數、指數運算、模運算等幾個簡單的數學知識。所以,我們也需要了解這幾個概念即可。
素數
素數又稱質數,指在一個大於1的自然數中,除了1和此整數自身外,不能被其他自然數整除的數。這個概念,我們在上初中,甚至小學的時候都學過了,這里就不再過多解釋了。
互質數
網路上的解釋是:公因數只有1的兩個數,叫做互質數。;維基網路上的解釋是:互質,又稱互素。若N個整數的最大公因子是1,則稱這N個整數互質。
常見的互質數判斷方法主要有以下幾種:
兩個不同的質數一定是互質數。例如,2與7、13與19。
一個質數,另一個不為它的倍數,這兩個數為互質數。例如,3與10、5與 26。
相鄰的兩個自然數是互質數。如 15與 16。
相鄰的兩個奇數是互質數。如 49與 51。
較大數是質數的兩個數是互質數。如97與88。
小數是質數,大數不是小數的倍數的兩個數是互質數。例如 7和 16。
2和任何奇數是互質數。例如2和87。
1不是質數也不是合數,它和任何一個自然數在一起都是互質數。如1和9908。
輾轉相除法。
指數運算
指數運算又稱乘方計算,計算結果稱為冪。nm指將n自乘m次。把nm看作乘方的結果,叫做」n的m次冪」或」n的m次方」。其中,n稱為「底數」,m稱為「指數」。
模運算
模運算即求余運算。「模」是「Mod」的音譯。和模運算緊密相關的一個概念是「同餘」。數學上,當兩個整數除以同一個正整數,若得相同餘數,則二整數同餘。
兩個整數a,b,若它們除以正整數m所得的余數相等,則稱a,b對於模m同餘,記作: a ≡ b (mod m);讀作:a同餘於b模m,或者,a與b關於模m同餘。例如:26 ≡ 14 (mod 12)。
RSA加密演算法
RSA加密演算法簡史
RSA是1977年由羅納德·李維斯特(Ron Rivest)、阿迪·薩莫爾(Adi Shamir)和倫納德·阿德曼(Leonard Adleman)一起提出的。當時他們三人都在麻省理工學院工作。RSA就是他們三人姓氏開頭字母拼在一起組成的。
公鑰與密鑰的產生
假設Alice想要通過一個不可靠的媒體接收Bob的一條私人訊息。她可以用以下的方式來產生一個公鑰和一個私鑰:
隨意選擇兩個大的質數p和q,p不等於q,計算N=pq。
根據歐拉函數,求得r = (p-1)(q-1)
選擇一個小於 r 的整數 e,求得 e 關於模 r 的模反元素,命名為d。(模反元素存在,當且僅當e與r互質)
將 p 和 q 的記錄銷毀。
(N,e)是公鑰,(N,d)是私鑰。Alice將她的公鑰(N,e)傳給Bob,而將她的私鑰(N,d)藏起來。
加密消息
假設Bob想給Alice送一個消息m,他知道Alice產生的N和e。他使用起先與Alice約好的格式將m轉換為一個小於N的整數n,比如他可以將每一個字轉換為這個字的Unicode碼,然後將這些數字連在一起組成一個數字。假如他的信息非常長的話,他可以將這個信息分為幾段,然後將每一段轉換為n。用下面這個公式他可以將n加密為c:

ne ≡ c (mod N)
計算c並不復雜。Bob算出c後就可以將它傳遞給Alice。
解密消息
Alice得到Bob的消息c後就可以利用她的密鑰d來解碼。她可以用以下這個公式來將c轉換為n:
cd ≡ n (mod N)
得到n後,她可以將原來的信息m重新復原。
解碼的原理是:
cd ≡ n e·d(mod N)
以及ed ≡ 1 (mod p-1)和ed ≡ 1 (mod q-1)。由費馬小定理可證明(因為p和q是質數)
n e·d ≡ n (mod p) 和 n e·d ≡ n (mod q)
這說明(因為p和q是不同的質數,所以p和q互質)
n e·d ≡ n (mod pq)
簽名消息
RSA也可以用來為一個消息署名。假如甲想給乙傳遞一個署名的消息的話,那麼她可以為她的消息計算一個散列值(Message digest),然後用她的密鑰(private key)加密這個散列值並將這個「署名」加在消息的後面。這個消息只有用她的公鑰才能被解密。乙獲得這個消息後可以用甲的公鑰解密這個散列值,然後將這個數據與他自己為這個消息計算的散列值相比較。假如兩者相符的話,那麼他就可以知道發信人持有甲的密鑰,以及這個消息在傳播路徑上沒有被篡改過。

RSA加密演算法的安全性

當p和q是一個大素數的時候,從它們的積pq去分解因子p和q,這是一個公認的數學難題。然而,雖然RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。
1994年彼得·秀爾(Peter Shor)證明一台量子計算機可以在多項式時間內進行因數分解。假如量子計算機有朝一日可以成為一種可行的技術的話,那麼秀爾的演算法可以淘汰RSA和相關的衍生演算法。(即依賴於分解大整數困難性的加密演算法)
另外,假如N的長度小於或等於256位,那麼用一台個人電腦在幾個小時內就可以分解它的因子了。1999年,數百台電腦合作分解了一個512位長的N。1997年後開發的系統,用戶應使用1024位密鑰,證書認證機構應用2048位或以上。
RSA加密演算法的缺點

雖然RSA加密演算法作為目前最優秀的公鑰方案之一,在發表三十多年的時間里,經歷了各種攻擊的考驗,逐漸為人們接受。但是,也不是說RSA沒有任何缺點。由於沒有從理論上證明破譯RSA的難度與大數分解難度的等價性。所以,RSA的重大缺陷是無法從理論上把握它的保密性能如何。在實踐上,RSA也有一些缺點:
產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密;
分組長度太大,為保證安全性,n 至少也要 600 bits 以上,使運算代價很高,尤其是速度較慢,。

❹ 簡述RSA演算法中密鑰的產生,數據加密和解密的過程,並簡單說明RSA演算法安全性的原理。

RSA演算法的數學原理

RSA演算法的數學原理:
先來找出三個數, p, q, r,

其中 p, q 是兩個相異的質數, r 是與 (p-1)(q-1) 互質的數。

p, q, r 這三個數便是 private key。接著, 找出m, 使得 rm == 1 mod (p-1)(q-1)..... 這個 m 一定存在, 因為 r 與 (p-1)(q-1) 互質, 用輾轉相除法就可以得到了..... 再來, 計算 n = pq....... m, n 這兩個數便是 public key。

編碼過程是, 若資料為 a, 將其看成是一個大整數, 假設 a < n.... 如果 a >= n 的話, 就將 a 表成 s 進位 (s <= n, 通常取 s = 2^t), 則每一位數均小於 n, 然後分段編碼...... 接下來, 計算 b == a^m mod n, (0 <= b < n), b 就是編碼後的資料...... 解碼的過程是, 計算 c == b^r mod pq (0 <= c < pq), 於是乎, 解碼完畢...... 等會會證明 c 和 a 其實是相等的 :) 如果第三者進行竊聽時, 他會得到幾個數: m, n(=pq), b...... 他如果要解碼的話, 必須想辦法得到 r...... 所以, 他必須先對 n 作質因數分解......... 要防止他分解, 最有效的方法是找兩個非常的大質數 p, q, 使第三者作因數分解時發生困難......... <定理> 若 p, q 是相異質數, rm == 1 mod (p-1)(q-1), a 是任意一個正整數, b == a^m mod pq, c == b^r mod pq, 則 c == a mod pq 證明的過程, 會用到費馬小定理, 敘述如下: m 是任一質數, n 是任一整數, 則 n^m == n mod m (換另一句話說, 如果 n 和 m 互質, 則 n^(m-1) == 1 mod m) 運用一些基本的群論的知識, 就可以很容易地證出費馬小定理的........ <證明> 因為 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整數 因為在 molo 中是 preserve 乘法的 (x == y mod z and u == v mod z => xu == yv mod z), 所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq 1. 如果 a 不是 p 的倍數, 也不是 q 的倍數時, 則 a^(p-1) == 1 mod p (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod p a^(q-1) == 1 mod q (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod q 所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1 即 a^(k(p-1)(q-1)) == 1 mod pq => c == a^(k(p-1)(q-1)+1) == a mod pq 2. 如果 a 是 p 的倍數, 但不是 q 的倍數時, 則 a^(q-1) == 1 mod q (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod q => c == a^(k(p-1)(q-1)+1) == a mod q => q | c - a 因 p | a => c == a^(k(p-1)(q-1)+1) == 0 mod p => p | c - a 所以, pq | c - a => c == a mod pq 3. 如果 a 是 q 的倍數, 但不是 p 的倍數時, 證明同上 4. 如果 a 同時是 p 和 q 的倍數時, 則 pq | a => c == a^(k(p-1)(q-1)+1) == 0 mod pq => pq | c - a => c == a mod pq Q.E.D. 這個定理說明 a 經過編碼為 b 再經過解碼為 c 時, a == c mod n (n = pq).... 但我們在做編碼解碼時, 限制 0 <= a < n, 0 <= c < n, 所以這就是說 a 等於 c, 所以這個過程確實能做到編碼解碼的功能.....

❺ 加密和解密密鑰不同的密碼體制稱為什麼

對稱和不對稱密碼體制。。
如果加密操作和解密操作採用的是相同的密鑰,或者從一個密鑰易於得出另一個密鑰,這樣的系統就叫做「對稱密碼系統」,也稱為「密鑰密碼體制」。如果加密使用的密鑰和解密使用的密鑰不相同,且從一個密鑰難以推出另一個密鑰,這樣的密碼系統稱為「非對稱密碼系統」,也稱為「公鑰密碼體制」。

❻ 理論分析和舉例說明RSA的加密和解密是互逆的

由於沒有辦法打出fai這個希臘字母 n的歐拉函數我用@(n)來表示
^ 代表冪的意思
e*d=1(mod @(n))
m為明文 c為密文
加密:c=m^e(mod n)
解密:m=c^d(mod n)
證明加密解密互逆也就是證明:
m=(m^e)^d(mod n) //把加密式子過程的c 帶到解密過程那個式子中
也就是證明 m=m^(e*d) (mod n)

因為 e*d=1(mod @(n)) 可以推導出 e*d=k*@(n)+1
所以m=m*(k*@(n)+1) (mod n)
也就可以寫出m=m*m^(k*@(n)) (mod n)
因為根據費馬定理 m^(@(n))=1 (mod n)
所以m^(k*@(n)) =1^k(mod n)=1(mod n)
m*m^(k*@(n)) (mod n)=m*1 (mod n)=m(mod n)證明就ok了

主要把握2點: 費馬定理
公私鑰關於@(n)互逆 就鬆鬆搞定

❼ 對稱秘解密碼體系要求加密和解密雙方使用不同的秘書

1、相同
2、公鑰和私鑰
具體原因我就不回了,自己去看對稱密碼體系和非對稱密碼體系的區別.

❽ 對於下列值。使用RSA演算法進行加密和解密

RSA演算法很簡單,就是基於歐拉定理的簡單演算法
M=5是明文,計算過程如下:
n=p*q=33;
(p-1)*(q-1)=20;
加密:y=密文,x=明文=5;
y=x^e mod n = 5^7 mod 33 = 14;
解密:
x=y^d mod n;
d*e= 1 [mod(p-1)*(q-1)];
7d=1(mod 20)所以d=3;
所以x=y^d mod n= 14^3 mod 33 = 5;解完
加密由5~14,解密由14~5,實現了RSA演算法的加密解密過程,證明了計算的正確性。
其他2題同理,自己做吧。

❾ 請問一下這個換位加密演算法的加密和解密 麻煩了!

這個不難,做相反的操作就行了。

樓主看得懂C代碼的話可以參考網頁鏈接

不懂的話,可以繼續問我

閱讀全文

與雙隨機相位編碼的加密和解密相關的資料

熱點內容
連通路徑演算法 瀏覽:349
phpemptynull 瀏覽:366
安卓手機伺服器地址在哪裡 瀏覽:428
基於單片機的多路控制器課程設計 瀏覽:65
pythonimportsys作用 瀏覽:276
騰訊雲拼團雲伺服器 瀏覽:364
海南離島將加貼溯源碼銷售嗎 瀏覽:244
linux分區讀取 瀏覽:794
單片機液晶顯示屏出現雪花 瀏覽:890
解壓器用哪個好一點 瀏覽:771
什麼app看小說全免費 瀏覽:503
sha和ras加密 瀏覽:823
韓順平php視頻筆記 瀏覽:636
阿里雲ecs伺服器如何設置自動重啟 瀏覽:596
三星電視怎麼卸掉app 瀏覽:317
如何將pdf轉換成docx文件 瀏覽:33
dos命令批量改名 瀏覽:376
centosphp環境包 瀏覽:603
mfipdf 瀏覽:535
電腦解壓後電腦藍屏 瀏覽:295