㈠ 數據加密技術有哪些
加密技術通常分為兩大類:「對稱式」和「非對稱式」。
對稱式加密就是加密和解密使用同一個密鑰,通常稱之為「Session Key 」這種加密技術目前被廣泛採用,如美國政府所採用的DES加密標准就是一種典型的「對稱式」加密法,它的Session Key長度為56Bits。
非對稱式加密就是加密和解密所使用的不是同一個密鑰,通常有兩個密鑰,稱為「公鑰」和「私鑰」,它們兩個必需配對使用,否則不能打開加密文件。這里的「公鑰」是指可以對外公布的,「私鑰」則不能,只能由持有人一個人知道。它的優越性就在這里,因為對稱式的加密方法如果是在網路上傳輸加密文件就很難把密鑰告訴對方,不管用什麼方法都有可能被別竊聽到。而非對稱式的加密方法有兩個密鑰,且其中的「公鑰」是可以公開的,也就不怕別人知道,收件人解密時只要用自己的私鑰即可以,這樣就很好地避免了密鑰的傳輸安全性問題。
一般的數據加密可以在通信的三個層次來實現:鏈路加密、節點加密和端到端加密。(3)
鏈路加密
對於在兩個網路節點間的某一次通信鏈路,鏈路加密能為網上傳輸的數據提供安全證。對於鏈路加密(又稱在線加密),所有消息在被傳輸之前進行加密,在每一個節點對接收到消息進行解密,然後先使用下一個鏈路的密鑰對消息進行加密,再進行傳輸。在到達目的地之前,一條消息可能要經過許多通信鏈路的傳輸。
由於在每一個中間傳輸節點消息均被解密後重新進行加密,因此,包括路由信息在內的鏈路上的所有數據均以密文形式出現。這樣,鏈路加密就掩蓋了被傳輸消息的源點與終點。由於填充技術的使用以及填充字元在不需要傳輸數據的情況下就可以進行加密,這使得消息的頻率和長度特性得以掩蓋,從而可以防止對通信業務進行分析。
盡管鏈路加密在計算機網路環境中使用得相當普遍,但它並非沒有問題。鏈路加密通常用在點對點的同步或非同步線路上,它要求先對在鏈路兩端的加密設備進行同步,然後使用一種鏈模式對鏈路上傳輸的數據進行加密。這就給網路的性能和可管理性帶來了副作用。
在線路/信號經常不通的海外或衛星網路中,鏈路上的加密設備需要頻繁地進行同步,帶來的後果是數據丟失或重傳。另一方面,即使僅一小部分數據需要進行加密,也會使得所有傳輸數據被加密。
在一個網路節點,鏈路加密僅在通信鏈路上提供安全性,消息以明文形式存在,因此所有節點在物理上必須是安全的,否則就會泄漏明文內容。然而保證每一個節點的安全性需要較高的費用,為每一個節點提供加密硬體設備和一個安全的物理環境所需要的費用由以下幾部分組成:保護節點物理安全的雇員開銷,為確保安全策略和程序的正確執行而進行審計時的費用,以及為防止安全性被破壞時帶來損失而參加保險的費用。
在傳統的加密演算法中,用於解密消息的密鑰與用於加密的密鑰是相同的,該密鑰必須被秘密保存,並按一定規則進行變化。這樣,密鑰分配在鏈路加密系統中就成了一個問題,因為每一個節點必須存儲與其相連接的所有鏈路的加密密鑰,這就需要對密鑰進行物理傳送或者建立專用網路設施。而網路節點地理分布的廣闊性使得這一過程變得復雜,同時增加了密鑰連續分配時的費用。
節點加密
盡管節點加密能給網路數據提供較高的安全性,但它在操作方式上與鏈路加密是類似的:兩者均在通信鏈路上為傳輸的消息提供安全性;都在中間節點先對消息進行解密,然後進行加密。因為要對所有傳輸的數據進行加密,所以加密過程對用戶是透明的。
然而,與鏈路加密不同,節點加密不允許消息在網路節點以明文形式存在,它先把收到的消息進行解密,然後採用另一個不同的密鑰進行加密,這一過程是在節點上的一個安全模塊中進行。
節點加密要求報頭和路由信息以明文形式傳輸,以便中間節點能得到如何處理消息的信息。因此這種方法對於防止攻擊者分析通信業務是脆弱的。
端到端加密
端到端加密允許數據在從源點到終點的傳輸過程中始終以密文形式存在。採用端到端加密,消息在被傳輸時到達終點之前不進行解密,因為消息在整個傳輸過程中均受到保護,所以即使有節點被損壞也不會使消息泄露。
端到端加密系統的價格便宜些,並且與鏈路加密和節點加密相比更可靠,更容易設計、實現和維護。端到端加密還避免了其它加密系統所固有的同步問題,因為每個報文包均是獨立被加密的,所以一個報文包所發生的傳輸錯誤不會影響後續的報文包。此外,從用戶對安全需求的直覺上講,端到端加密更自然些。單個用戶可能會選用這種加密方法,以便不影響網路上的其他用戶,此方法只需要源和目的節點是保密的即可。
端到端加密系統通常不允許對消息的目的地址進行加密,這是因為每一個消息所經過的節點都要用此地址來確定如何傳輸消息。由於這種加密方法不能掩蓋被傳輸消息的源點與終點,因此它對於防止攻擊者分析通信業務是脆弱的。
㈡ 什麼是加密技術
1.什麼是加密技術?
加密技術是電子商務採取的主要安全保密措施,是最常用的安全保密手段,利用技術手段把重要的數據變為亂碼(加密)傳送,到達目的地後再用相同或不同的手段還原(解密)。加密技術包括兩個元素:演算法和密鑰。演算法是將普通的文本(或者可以理解的信息)與一竄數字(密鑰)的結合,產生不可理解的密文的步驟,密鑰是用來對數據進行編碼和解碼的一種演算法。在安全保密中,可通過適當的密鑰加密技術和管理機制來保證網路的信息通訊安全。密鑰加密技術的密碼體制分為對稱密鑰體制和非對稱密鑰體制兩種。相應地,對數據加密的技術分為兩類,即對稱加密(私人密鑰加密)和非對稱加密(公開密鑰加密)。對稱加密以數據加密標准(DNS,Data Encryption Standard)演算法為典型代表,非對稱加密通常以RSA(Rivest Shamir Ad1eman)演算法為代表。對稱加密的加密密鑰和解密密鑰相同,而非對稱加密的加密密鑰和解密密鑰不同,加密密鑰可以公開而解密密鑰需要保密。
2.什麼是對稱加密技術?
對稱加密採用了對稱密碼編碼技術,它的特點是文件加密和解密使用相同的密鑰,即加密密鑰也可以用作解密密鑰,這種方法在密碼學中叫做對稱加密演算法,對稱加密演算法使用起來簡單快捷,密鑰較短,且破譯困難,除了數據加密標准(DNS),另一個對稱密鑰加密系統是國際數據加密演算法(IDEA),它比DNS的加密性好,而且對計算機功能要求也沒有那麼高。IDEA加密標准由PGP(Pretty Good Privacy)系統使用。
3.什麼是非對稱加密技術?
1976年,美國學者Dime和Henman為解決信息公開傳送和密鑰管理問題,提出一種新的密鑰交換協議,允許在不安全的媒體上的通訊雙方交換信息,安全地達成一致的密鑰,這就是「公開密鑰系統」。相對於「對稱加密演算法」這種方法也叫做「非對稱加密演算法」。與對稱加密演算法不同,非對稱加密演算法需要兩個密鑰:公開密鑰(publickey)和私有密 (privatekey)。公開密鑰與私有密鑰是一對,如果用公開密鑰對數據進行加密,只有用對應的私有密鑰才能解密;如果用私有密鑰對數據進行加密,那麼只有用對應的公開密鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種演算法叫作非對稱加密演算法。
㈢ 數據加密的基本信息
和防火牆配合使用的數據加密技術,是為提高信息系統和數據的安全性和保密性,防止秘密數據被外部破譯而採用的主要技術手段之一。在技術上分別從軟體和硬體兩方面採取措施。按照作用的不同,數據加密技術可分為數據傳輸加密技術、數據存儲加密技術、數據完整性的鑒別技術和密鑰管理技術。
數據傳輸加密技術的目的是對傳輸中的數據流加密,通常有線路加密與端—端加密兩種。線路加密側重在線路上而不考慮信源與信宿,是對保密信息通過各線路採用不同的加密密鑰提供安全保護。端—端加密指信息由發送端自動加密,並且由TCP/IP進行數據包封裝,然後作為不可閱讀和不可識別的數據穿過互聯網,當這些信息到達目的地,將被自動重組、解密,而成為可讀的數據。
數據存儲加密技術的目的是防止在存儲環節上的數據失密,數據存儲加密技術可分為密文存儲和存取控制兩種。前者一般是通過加密演算法轉換、附加密碼、加密模塊等方法實現;後者則是對用戶資格、許可權加以審查和限制,防止非法用戶存取數據或合法用戶越權存取數據。
數據完整性鑒別技術的目的是對介入信息傳送、存取和處理的人的身份和相關數據內容進行驗證,一般包括口令、密鑰、身份、數據等項的鑒別。系統通過對比驗證對象輸入的特徵值是否符合預先設定的參數,實現對數據的安全保護。
密鑰管理技術包括密鑰的產生、分配、保存、更換和銷毀等各個環節上的保密措施。 數據加密的術語有 :
明文,即原始的或未加密的數據。通過加密演算法對其進行加密,加密演算法的輸入信息為明文和密鑰;
密文,明文加密後的格式,是加密演算法的輸出信息。加密演算法是公開的,而密鑰則是不公開的。密文不應為無密鑰的用戶理解,用於數據的存儲以及傳輸;
密鑰,是由數字、字母或特殊符號組成的字元串,用它控制數據加密、解密的過程;
加密,把明文轉換為密文的過程;
加密演算法,加密所採用的變換方法;
解密,對密文實施與加密相逆的變換,從而獲得明文的過程;
解密演算法,解密所採用的變換方法。
加密技術是一種防止信息泄露的技術。它的核心技術是密碼學,密碼學是研究密碼系統或通信安全的一門學科,它又分為密碼編碼學和密碼分析學。
任何一個加密系統都是由明文、密文、演算法和密鑰組成。發送方通過加密設備或加密演算法,用加密密鑰將數據加密後發送出去。接收方在收到密文後,用解密密鑰將密文解密,恢復為明文。在傳輸過程中,即使密文被非法分子偷竊獲取,得到的也只是無法識別的密文,從而起到數據保密的作用。
例:明文為字元串:
AS KINGFISHERS CATCH FIRE
(為簡便起見,假定所處理的數據字元僅為大寫字母和空格符)。假定密鑰為字元串:
ELIOT
加密演算法為:
1) 將明文劃分成多個密鑰字元串長度大小的塊(空格符以+表示)
AS+KI NGFIS HERS+ CATCH +FIRE
2) 用0~26范圍的整數取代明文的每個字元,空格符=00,A=01,...,Z=26:
3) 與步驟2一樣對密鑰的每個字元進行取代:
0512091520
4) 對明文的每個塊,將其每個字元用對應的整數編碼與密鑰中相應位置的字元的整數編碼的和模27後的值(整數編碼)取代:
舉例:第一個整數編碼為 (01+05)%27=06
5) 將步驟4的結果中的整數編碼再用其等價字元替換:
FDIZB SSOXL MQ+GT HMBRA ERRFY
如果給出密鑰,該例的解密過程很簡單。問題是對於一個惡意攻擊者來說,在不知道密鑰的情況下,利用相匹配的明文和密文獲得密鑰究竟有多困難?對於上面的簡單例子,答案是相當容易的,不是一般的容易,但是,復雜的加密模式同樣很容易設計出。理想的情況是採用的加密模式使得攻擊者為了破解所付出的代價應遠遠超過其所獲得的利益。實際上,該目的適用於所有的安全性措施。這種加密模式的可接受的最終目標是:即使是該模式的發明者也無法通過相匹配的明文和密文獲得密鑰,從而也無法破解密文。 傳統加密方法有兩種,替換和置換。上面的例子採用的就是替換的方法:使用密鑰將明文中的每一個字元轉換為密文中的一個字元。而置換僅將明文的字元按不同的順序重新排列。單獨使用這兩種方法的任意一種都是不夠安全的,但是將這兩種方法結合起來就能提供相當高的安全程度。數據加密標准(Data Encryption Standard,簡稱DES)就採用了這種結合演算法,它由IBM制定,並在1977年成為美國官方加密標准。
DES的工作原理為:將明文分割成許多64位大小的塊,每個塊用64位密鑰進行加密,實際上,密鑰由56位數據位和8位奇偶校驗位組成,因此只有56個可能的密碼而不是64個。每塊先用初始置換方法進行加密,再連續進行16次復雜的替換,最後再對其施用初始置換的逆。第i步的替換並不是直接利用原始的密鑰K,而是由K與i計算出的密鑰Ki。
DES具有這樣的特性,其解密演算法與加密演算法相同,除了密鑰Ki的施加順序相反以外。 多年來,許多人都認為DES並不是真的很安全。事實上,即使不採用智能的方法,隨著快速、高度並行的處理器的出現,強制破解DES也是可能的。公開密鑰加密方法使得DES以及類似的傳統加密技術過時了。公開密鑰加密方法中,加密演算法和加密密鑰都是公開的,任何人都可將明文轉換成密文。但是相應的解密密鑰是保密的(公開密鑰方法包括兩個密鑰,分別用於加密和解密),而且無法從加密密鑰推導出,因此,即使是加密者若未被授權也無法執行相應的解密。
公開密鑰加密思想最初是由Diffie和Hellman提出的,最著名的是Rivest、Shamir以及Adleman提出的,通常稱為RSA(以三個發明者的首位字母命名)的方法,該方法基於下面的兩個事實:
1) 已有確定一個數是不是質數的快速演算法;
2) 尚未找到確定一個合數的質因子的快速演算法。
RSA方法的工作原理如下:
1) 任意選取兩個不同的大質數p和q,計算乘積r=p*q;
2) 任意選取一個大整數e,e與(p-1)*(q-1)互質,整數e用做加密密鑰。注意:e的選取是很容易的,例如,所有大於p和q的質數都可用。
3) 確定解密密鑰d:
(d * e) molo(p - 1)*(q - 1) = 1
根據e、p和q可以容易地計算出d。
4) 公開整數r和e,但是不公開d;
5) 將明文P (假設P是一個小於r的整數)加密為密文C,計算方法為:
C = P^e molo r
6) 將密文C解密為明文P,計算方法為:
P = C^d molo r
然而只根據r和e(不是p和q)要計算出d是不可能的。因此,任何人都可對明文進行加密,但只有授權用戶(知道d)才可對密文解密。
下面舉一簡單的例子對上述過程進行說明,顯然我們只能選取很小的數字。
例:選取p=3, q=5,則r=15,(p-1)*(q-1)=8。選取e=11(大於p和q的質數),通過(d*11)molo(8) = 1。
計算出d =3。
假定明文為整數13。則密文C為
C = P^e molo r
= 13^11 molo 15
= 1,792,160,394,037 molo 15
= 7
復原明文P為:
P = C^d molo r
= 7^3 molo 15
= 343 molo 15
= 13
因為e和d互逆,公開密鑰加密方法也允許採用這樣的方式對加密信息進行簽名,以便接收方能確定簽名不是偽造的。假設A和B希望通過公開密鑰加密方法進行數據傳輸,A和B分別公開加密演算法和相應的密鑰,但不公開解密演算法和相應的密鑰。A和B的加密演算法分別是ECA和ECB,解密演算法分別是DCA和DCB,ECA和DCA互逆,ECB和DCB互逆。若A要向B發送明文P,不是簡單地發送ECB(P),而是先對P施以其解密演算法DCA,再用加密演算法ECB對結果加密後發送出去。
密文C為:
C = ECB(DCA(P))
B收到C後,先後施以其解密演算法DCB和加密演算法ECA,得到明文P:
ECA(DCB(C))
= ECA(DCB(ECB(DCA(P))))
= ECA(DCA(P)) /*DCB和ECB相互抵消*/
= P /*DCB和ECB相互抵消*/
這樣B就確定報文確實是從A發出的,因為只有當加密過程利用了DCA演算法,用ECA才能獲得P,只有A才知道DCA演算法,沒
有人,即使是B也不能偽造A的簽名。 前言
隨著信息化的高速發展,人們對信息安全的需求接踵而至,人才競爭、市場競爭、金融危機、敵特機構等都給企事業單位的發展帶來巨大風險,內部竊密、黑客攻擊、無意識泄密等竊密手段成為了人與人之間、企業與企業之間、國與國之間的安全隱患。
市場的需求、人的安全意識、環境的諸多因素促使著我國的信息安全高速發展,信息安全經歷了從傳統的單一防護如防火牆到信息安全整體解決方案、從傳統的老三樣防火牆、入侵檢測、殺毒軟體到多元化的信息安全防護、從傳統的外部網路防護到內網安全、主機安全等。
傳統數據加密技術分析
信息安全傳統的老三樣(防火牆、入侵檢測、防病毒)成為了企事業單位網路建設的基礎架構,已經遠遠不能滿足用戶的安全需求,新型的安全防護手段逐步成為了信息安全發展的主力軍。例如主機監控、文檔加密等技術。
在新型安全產品的隊列中,主機監控主要採用外圍圍追堵截的技術方案,雖然對信息安全有一定的提高,但是因為產品自身依賴於操作系統,對數據自身沒有有效的安全防護,所以存在著諸多安全漏洞,例如:最基礎的手段拆拔硬碟、winpe光碟引導、USB引導等方式即可將數據盜走,而且不留任何痕跡;此技術更多的可以理解為企業資產管理軟體,單一的產品無法滿足用戶對信息安全的要求。
文檔加密是現今信息安全防護的主力軍,採用透明加解密技術,對數據進行強制加密,不改變用戶原有的使用習慣;此技術對數據自身加密,不管是脫離操作系統,還是非法脫離安全環境,用戶數據自身都是安全的,對環境的依賴性比較小。市面上的文檔加密主要的技術分為磁碟加密、應用層加密、驅動級加密等幾種技術,應用層加密因為對應用程序的依賴性比較強,存在諸多兼容性和二次開發的問題,逐步被各信息安全廠商所淘汰。
當今主流的兩大數據加密技術
我們所能常見到的主要就是磁碟加密和驅動級解密技術:
全盤加密技術是主要是對磁碟進行全盤加密,並且採用主機監控、防水牆等其他防護手段進行整體防護,磁碟加密主要為用戶提供一個安全的運行環境,數據自身未進行加密,操作系統一旦啟動完畢,數據自身在硬碟上以明文形式存在,主要靠防水牆的圍追堵截等方式進行保護。磁碟加密技術的主要弊端是對磁碟進行加密的時間周期較長,造成項目的實施周期也較長,用戶一般無法忍耐;磁碟加密技術是對磁碟進行全盤加密,一旦操作系統出現問題。需要對數據進行恢復也是一件讓用戶比較頭痛的事情,正常一塊500G的硬碟解密一次所需時間需要3-4個小時;市面上的主要做法是對系統盤不做加密防護,而是採用外圍技術進行安全訪問控制,大家知道操作系統的版本不斷升級,微軟自身的安全機制越來越高,人們對系統的控制力度越來越低,尤其黑客技術層層攀高,一旦防護體系被打破,所有一切將暴露無疑。另外,磁碟加密技術是對全盤的信息進行安全管控,其中包括系統文件,對系統的效率性能將大大影響。
驅動級技術是信息加密的主流技術,採用進程+後綴的方式進行安全防護,用戶可以根據企事業單位的實際情況靈活配置,對重要的數據進行強制加密,大大提高了系統的運行效率。驅動級加密技術與磁碟加密技術的最大區別就是驅動級技術會對用戶的數據自身進行保護,驅動級加密採用透明加解密技術,用戶感覺不到系統的存在,不改變用戶的原有操作,數據一旦脫離安全環境,用戶將無法使用,有效提高了數據的安全性;另外驅動級加密技術比磁碟加密技術管理可以更加細粒度,有效實現數據的全生命周期管理,可以控制文件的使用時間、次數、復制、截屏、錄像等操作,並且可以對文件的內部進行細粒度的授權管理和數據的外出訪問控制,做到數據的全方位管理。驅動級加密技術在給用戶的數據帶來安全的同時,也給用戶的使用便利性帶來一定的問題,驅動級加密採用進程加密技術,對同類文件進行全部加密,無法有效區別個人文件與企業文件數據的分類管理,個人電腦與企業辦公的並行運行等問題。
㈣ 什麼叫加密技術
以某種特殊的演算法改變原有的信息數據,使得未授權的用戶即使獲得了已加密的信號,但因不知解密的方法,仍然無法了解信息的內容。
加密建立在對信息進行數學編碼和解碼的基礎上。加密類型分為兩種,對稱加密與非對稱加密,對稱加密雙方採用共同密鑰,(當然這個密鑰是需要對外保密的),這里講一下非對稱加密,這種加密方式存在兩個密鑰,密鑰 -- 一種是公共密鑰(正如其名,這是一個可以公開的密鑰值),一種是私人密鑰(對外保密)。 您發送信息給我們時,使用公共密鑰加密信息。 一旦我們收到您的加密信息,我們則使用私人密鑰破譯信息密碼(被我們的公鑰加密的信息,只有我們的唯一的私鑰可以解密,這樣,就在技術上保證了這封信只有我們才能解讀——因為別人沒有我們的私鑰)。 使用私人密鑰加密的信息只能使用公共密鑰解密(這一功能應用與數字簽名領域,我的私鑰加密的數據,只有我的公鑰可以解讀,具體內容參考數字簽名的信息)反之亦然,以確保您的信息安全。
舉例如下:
代碼如下:
/* Secure.c
Copyright (c) 2002, 2006 by ctu_85
All Rights Reserved.
*/
#include "stdio.h"
#include "string.h"
#define right 5
void Create();
void Load();
char secure(char);
char desecure(char);
void main()
{
int choice;
printf("Please enter your choice:\n");
printf("0:To quit;\n");
printf("1:To create a security file;\n");
printf("2:To load a security file .\n");
cir:
printf("Your choice:");
scanf("%d",&choice);
if(choice==0)
return;
if(choice==1)
{
Create();
printf("\n");
goto cir;
}
else
if(choice==2)
{
Load();
printf("\n");
goto cir;
}
else
{
printf("Invalid input!\n");
goto cir;
}
}
void Create()
{
FILE *fp;
char *p,ch,*s;
recre:
printf("Please enter the path where you wanna the file to be:");
scanf("%s",p);
if(*p<'C'||*p>'F'||*(p+1)!=':'||*(p+2)!=92||strlen(p)>30||strlen(p)<4)
{
printf("Invalid input!\n");
goto recre;
}
if((fp=fopen(p,"wb"))==NULL)
{
printf("Error!");
return;
}
an:
printf("Please set the password:");
scanf("%s",s);
if(strlen(s)>16||strlen(s)<6)
{
printf("The password is too long or too short,please reinput!\n");
goto an;
}
while(*s!='')
{
ch=*s;
ch=secure(ch);
s++;
fputc(ch,fp);
}
ch='\n';
ch=secure(ch);
fputc(ch,fp);
printf("Please enter the information,end with char '#':");
ch=getchar();
ch=getchar();
while(ch!='#')
{
ch=secure(ch);
fputc(ch,fp);
ch=getchar();
}
ch=secure(ch);
fputc(ch,fp);
fclose(fp);
}
void Load()
{
FILE *fp;
char *p,ch,*s,temp[18],pass[18],sign=secure('\n');
int i=0,t=0,lenth=0;
rece:
printf("Please enter the path where you wanna to load:");
scanf("%s",p);
if(*p<'C'||*p>'F'||*(p+1)!=':'||*(p+2)!=92||strlen(p)>30||strlen(p)<4)
{
printf("Invalid input!\n");
goto rece;
}
if((fp=fopen(p,"rb"))==NULL)
{
printf("Error!");
return;
}
ant:
printf("Please input the password:");
scanf("%s",s);
lenth=strlen(s);
if(lenth>16||lenth<6)
{
printf("The password is obviously incorrect!\n");
goto ant;
}
while(*s!='')
{
temp=secure(*s);
s++;
i++;
}
temp='';
ch=fgetc(fp);
while(ch!=sign)
{
pass[t]=ch;
t++;
ch=fgetc(fp);
}
pass[t]='';
ch=desecure(ch);
if(!strcmp(temp,pass))
{
while(ch!='#')
{
ch=fgetc(fp);
ch=desecure(ch);
if(ch!='#')
putchar(ch);
}
}
else
printf("The password is incorrect!\n");
fclose(fp);
}
char secure(char c)
{
if(c+right>254)
return c-255+right;
else
return c+right;
}
char desecure(char c)
{
if(c<right)
return 255-right;
else
return c-right;
}
㈤ 加密技術分為哪兩類
加密技術分為:
1、對稱加密
對稱加密採用了對稱密碼編碼技術,它的特點是文件加密和解密使用相同的密鑰,即加密密鑰也可以用作解密密鑰,這種方法在密碼學中叫做對稱加密演算法,對稱加密演算法使用起來簡單快捷,密鑰較短,且破譯困難
2、非對稱
1976年,美國學者Dime和Henman為解決信息公開傳送和密鑰管理問題,提出一種新的密鑰交換協議,允許在不安全的媒體上的通訊雙方交換信息,安全地達成一致的密鑰,這就是「公開密鑰系統」。
加密技術的功能:
原有的單密鑰加密技術採用特定加密密鑰加密數據,而解密時用於解密的密鑰與加密密鑰相同,這稱之為對稱型加密演算法。採用此加密技術的理論基礎的加密方法如果用於網路傳輸數據加密,則不可避免地出現安全漏洞。
區別於原有的單密鑰加密技術,PKI採用非對稱的加密演算法,即由原文加密成密文的密鑰不同於由密文解密為原文的密鑰,以避免第三方獲取密鑰後將密文解密。
以上內容參考:網路—加密技術
㈥ 請問什麼是文件加密技術
加密技術是電子商務採取的主要安全保密措施,是最常用的安全保密手段,利用技術手段把重要的數據變為亂碼(加密)傳送,到達目的地後再用相同或不同的手段還原(解密)。加密技術包括兩個元素:演算法和密鑰。演算法是將普通的文本(或者可以理解的信息)與一竄數字(密鑰)的結合,產生不可理解的密文的步驟,密鑰是用來對數據進行編碼和解碼的一種演算法。在安全保密中,可通過適當的密鑰加密技術和管理機制來保證網路的信息通訊安全。密鑰加密技術的密碼體制分為對稱密鑰體制和非對稱密鑰體制兩種。相應地,對數據加密的技術分為兩類,即對稱加密(私人密鑰加密)和非對稱加密(公開密鑰加密)。對稱加密以數據加密標准(DNS,Data Encryption Standard)演算法為典型代表,非對稱加密通常以RSA(Rivest Shamir Ad1eman)演算法為代表。對稱加密的加密密鑰和解密密鑰相同,而非對稱加密的加密密鑰和解密密鑰不同,加密密鑰可以公開而解密密鑰需要保密。
㈦ 加密技術是指什麼
加密技術是最常用的安全保密手段,利用技術手段把重要的數據變為亂碼(加密)傳送,到達目的地後再用相同或不同的手段還原(解密)。
加密技術包括兩個元素:演算法和密鑰。演算法是將普通的信息或者可以理解的信息與一串數字(密鑰)結合,產生不可理解的密文的步驟,密鑰是用來對數據進行編碼和解密的一種演算法。在安全保密中,可通過適當的鑰加密技術和管理機制來保證網路的信息通信安全。
㈧ 加密技術有哪幾種
採用密碼技術對信息加密,是最常用的安全交易手段。在電子商務中獲得廣泛應用的加密技術有以下兩種:
(1)公共密鑰和私用密鑰(public key and private key)
這一加密方法亦稱為RSA編碼法,是由Rivest、Shamir和Adlernan三人所研究發明的。它利用兩個很大的質數相乘所產生的乘積來加密。這兩個質數無論哪一個先與原文件編碼相乘,對文件加密,均可由另一個質數再相乘來解密。但要用一個質數來求出另一個質數,則是十分困難的。因此將這一對質數稱為密鑰對(Key Pair)。在加密應用時,某個用戶總是將一個密鑰公開,讓需發信的人員將信息用其公共密鑰加密後發給該用戶,而一旦信息加密後,只有用該用戶一個人知道的私用密鑰才能解密。具有數字憑證身份的人員的公共密鑰可在網上查到,亦可在請對方發信息時主動將公共密鑰傳給對方,這樣保證在Internet上傳輸信息的保密和安全。
(2)數字摘要(digital digest)
這一加密方法亦稱安全Hash編碼法(SHA:Secure Hash Algorithm)或MD5(MD Standards for Message Digest),由Ron Rivest所設計。該編碼法採用單向Hash函數將需加密的明文「摘要」成一串128bit的密文,這一串密文亦稱為數字指紋(Finger Print),它有固定的長度,且不同的明文摘要成密文,其結果總是不同的,而同樣的明文其摘要必定一致。這樣這摘要便可成為驗證明文是否是「真身」的「指紋」了。
上述兩種方法可結合起來使用,數字簽名就是上述兩法結合使用的實例。
3.2數字簽名(digital signature)
在書面文件上簽名是確認文件的一種手段,簽名的作用有兩點,一是因為自己的簽名難以否認,從而確認了文件已簽署這一事實;二是因為簽名不易仿冒,從而確定了文件是真的這一事實。數字簽名與書面文件簽名有相同之處,採用數字簽名,也能確認以下兩點:
a. 信息是由簽名者發送的。
b. 信息在傳輸過程中未曾作過任何修改。
這樣數字簽名就可用來防止電子信息因易被修改而有人作偽;或冒用別人名義發送信息;或發出(收到)信件後又加以否認等情況發生。
數字簽名採用了雙重加密的方法來實現防偽、防賴。其原理為:
(1) 被發送文件用SHA編碼加密產生128bit的數字摘要(見上節)。
(2) 發送方用自己的私用密鑰對摘要再加密,這就形成了數字簽名。
(3) 將原文和加密的摘要同時傳給對方。
(4) 對方用發送方的公共密鑰對摘要解密,同時對收到的文件用SHA編碼加密產生又一摘要。
(5) 將解密後的摘要和收到的文件在接收方重新加密產生的摘要相互對比。如兩者一致,則說明傳送過程中信息沒有被破壞或篡改過。否則不然。
3.3數字時間戳(digital time-stamp)
交易文件中,時間是十分重要的信息。在書面合同中,文件簽署的日期和簽名一樣均是十分重要的防止文件被偽造和篡改的關鍵性內容。
在電子交易中,同樣需對交易文件的日期和時間信息採取安全措施,而數字時間戳服務(DTS:digital time-stamp service)就能提供電子文件發表時間的安全保護。
數字時間戳服務(DTS)是網上安全服務項目,由專門的機構提供。時間戳(time-stamp)是一個經加密後形成的憑證文檔,它包括三個部分:1)需加時間戳的文件的摘要(digest),2)DTS收到文件的日期和時間,3)DTS的數字簽名。
時間戳產生的過程為:用戶首先將需要加時間戳的文件用HASH編碼加密形成摘要,然後將該摘要發送到DTS,DTS在加入了收到文件摘要的日期和時間信息後再對該文件加密(數字簽名),然後送回用戶。由Bellcore創造的DTS採用如下的過程:加密時將摘要信息歸並到二叉樹的數據結構;再將二叉樹的根值發表在報紙上,這樣更有效地為文件發表時間提供了佐證。注意,書面簽署文件的時間是由簽署人自己寫上的,而數字時間戳則不然,它是由認證單位DTS來加的,以DTS收到文件的時間為依據。因此,時間戳也可作為科學家的科學發明文獻的時間認證。
3.4數字憑證(digital certificate, digital ID)
數字憑證又稱為數字證書,是用電子手段來證實一個用戶的身份和對網路資源的訪問的許可權。在網上的電子交易中,如雙方出示了各自的數字憑證,並用它來進行交易操作,那麼雙方都可不必為對方身份的真偽擔心。數字憑證可用於電子郵件、電子商務、群件、電子基金轉移等各種用途。
數字憑證的內部格式是由CCITT X.509國際標准所規定的,它包含了以下幾點:
(1) 憑證擁有者的姓名,
(2) 憑證擁有者的公共密鑰,
(3) 公共密鑰的有效期,
(4) 頒發數字憑證的單位,
(5) 數字憑證的序列號(Serial number),
(6) 頒發數字憑證單位的數字簽名。
數字憑證有三種類型:
(1) 個人憑證(Personal Digital ID):它僅僅為某一個用戶提供憑證,以幫助其個人在網上進行安全交易操作。個人身份的數字憑證通常是安裝在客戶端的瀏覽器內的。並通過安全的電子郵件(S/MIME)來進行交易操作。
(2) 企業(伺服器)憑證(Server ID):它通常為網上的某個Web伺服器提供憑證,擁有Web伺服器的企業就可以用具有憑證的萬維網站點(Web Site)來進行安全電子交易。有憑證的Web伺服器會自動地將其與客戶端Web瀏覽器通信的信息加密。
(3) 軟體(開發者)憑證(Developer ID):它通常為Internet中被下載的軟體提供憑證,該憑證用於和微軟公司Authenticode技術(合法化軟體)結合的軟體,以使用戶在下載軟體時能獲得所需的信息。
上述三類憑證中前二類是常用的憑證,第三類則用於較特殊的場合,大部分認證中心提供前兩類憑證,能提供各類憑證的認證中心並不普遍
㈨ 加密技術幾個術語間的關系
信息安全、加密技術、消息摘要、數字簽名、數字信封、數字證書這幾個概念有著密切的關系,他們都是四個字的,而PKI顯然與其他無關,因為他不但只有三個字,而且還是外國字