導航:首頁 > 文檔加密 > 凝聚態物理學pdf

凝聚態物理學pdf

發布時間:2022-06-05 21:15:54

1. 凝聚態物理學的研究內容

凝聚態物理學的基本任務在於闡明微觀結構與物性的關系,因而判斷構成凝聚態物質的某些類型微觀粒子的集體是否呈現量子特徵(波粒二象性)是至關緊要的。電子質量小,常溫下明顯地呈現量子特徵;離子或原子則由於質量較重,只有低溫下(約4K)的液氦或極低溫下(μK至nK)的鹼金屬稀薄氣體,原子的量子特徵才突出地表現出來。這也說明為何低溫條件對凝聚態物理學的研究十分重要。微觀粒子分為兩類:一類是費米子,具有半整數的自旋,服從泡利不相容原理;另一類是玻色子,具有整數的自旋,同一能態容許任意數的粒子占據。這兩類粒子的物理行為判然有別。 軟物質又稱為復雜液體,是介於固體與液體之間的物相,液晶、乳膠、聚合物等均屬此類。軟物質大都是有機物質,雖然在原子尺度上是無序的,但在介觀尺度上則可能出現某種規則而有序的結構。如液晶分子是桿狀的,盡管其質心不具有位置序,但桿的取向卻可能是有序的。又如聚合物是由柔軟的長鏈分子所構成,由於長程無序的關聯性,因而遵循了類似於臨界現象的標度律。20世紀70—80年代液晶物理學和聚合物物理學的建立,使凝聚態物理學從傳統的硬物質成功地延拓到軟物質。軟物質在微小的外界刺激(溫度、外場或外力)下有顯著的響應是其物性的特徵,從而產生明顯的實用效果。一顆紐扣電池可驅動液晶手錶數年之久,就是證明。軟物質變化過程中內能變化甚微,熵的變化十分顯著,因而其組織結構的變化主要由熵來驅動,和內能驅動的硬物質迥然有別。熵致有序和熵致形變乃是軟物質自組裝的物理基礎。 有機物質(小分子和聚合物)的電子結構與電子性質也受到廣泛的重視。有機發光器件和電子器件正在研製開發之中。

2. 凝聚態物理學的理論基礎

固體物理學的一個重要的理論基石為能帶理論,它是建立在單電子近似的基礎上的。而凝聚態物理學的概念體系則淵源於相變與臨界現象的理論,植根於相互作用多粒子理論,因而具有更加寬闊的視野:既關注處於相變點一側的有序相,也不忽視處於另一側的無序相,乃至於兩者之間臨界區域中體現標度律與普適性的物理行為。
L.朗道於1937年針對二級相變提出了對稱破缺的重要概念,後來成為凝聚態物理學概念體系的主軸。在某一特定的物態之中,某一對稱元素的存在與否是不能模稜兩可的。當原始相中某一對稱元素在變溫或變壓過程中突然喪失,就意味著發生了相變,出現了有序相。引入序參量用來定性和定量地描述有序相和原始相的偏離。一直降到零溫(0K),有序相達到基態,而非零溫的有序相處於激發態。而激發態有恢復破缺了的對稱性的傾向。低能激發態是非定域的,以波或准粒子的形式出現,被稱為元激發的集合。非線性定域化的激發態則稱「讖緯」拓撲缺陷。元激發與拓撲缺陷均會對不同的物理性質產生影響。
物質處在足夠高的溫度將呈現氣態,它是均勻且各向同性的,就統計意義而言,保持了完整的平移和旋轉對稱性,與統轄它的物理定律的對稱性相同。降溫會使氣體凝結成液體,雖則整體的對稱性仍然保持不變,但出現了短程序。再降溫又使液體凝固成為晶體,平移和旋轉的對稱性都發生破缺,剩下的對稱性屬230個空間群中的一個。固體豐富多彩的物性是和對稱破缺密切相關,而具有誘人興趣物性的液體也多半是液晶或復雜液體,也和某種對稱破缺有關。晶態中的元激發為晶格振動或聲子,是理解固體的熱學性質的關鍵,晶態中的拓撲缺陷為位錯,是理解固體的塑性與強度的關鍵。

3. 凝聚態物理學的學科介紹

凝聚態物理學是當今物理學最大也是最重要的分支學科之一。其研究層次,從宏觀、介觀到微觀,進一步從微觀層次統一認識各種凝聚態物理現象;物質維數從三維到低維和分數維;結構從周期到非周期和准周期,完整到不完整和近完整;外界環境從常規條件到極端條件和多種極端條件交叉作用,等等,形成了比固體物理學更深刻更普遍的理論體系。經過半個世紀多的發展,凝聚態物理學已成為物理學中最重要、最豐富和最活躍的學科,在諸如半導體、磁學、超導體等許多學科領域中的重大成就已在當代高新科學技術領域中起關鍵性作用,為發展新材料、新器件和新工藝提供了科學基礎。前沿研究熱點層出不窮,新興交叉分支學科不斷出現是凝聚態物理學的一個重要特點;與生產實踐密切聯系是它的另一重要特點,許多研究課題經常同時兼有基礎研究和開發應用研究的性質,研究成果可望迅速轉化為生產力。

4. 什麼是凝聚態物理學什麼·是·分數量子霍爾效應什麼是量子

本來每個原子的運動狀態各不相同(廢話),但當達接近絕對零度是,它們的運動狀態居然相同了,更重要的是他們的波函數也相同了(波函數是量子力學里的概念,用於描述粒子的狀態)

分數量子霍爾效應看網路,我暫時還沒看懂

科學家阿發現能量不是連續的,而是一份一份的,他們把這一份一份的能量稱為量子(就是能量子的意思)

就像水流,看起來是連續的,但實際上卻是無數的水分子組成的,是一份一份的

5. 凝聚態物理專業

凝聚態物理是近年來物理學中不斷發現新現象、新成果的重要分支。該專業以凝聚態物質的物理現象和物理規律為研究對象,主要研究內容包括:高溫超導物理、巨磁阻材料物理、磁性物理與材料、新型超導材料的探索、低維強關聯體系物理、自旋電子學、納米團簇及介觀物理,人工微結構及表面物理等。
凝聚態物理學是當今物理學最大也是最重要的分支學科之一。研究由大量微觀粒子(原子、分子、離子、電子)組成的凝聚態物質的微觀結構、粒子間的相互作用、運動規律及其物質性質與應用的科學。它是以固體物理學為主幹,進一步拓寬研究對象,深化研究層次形成的學科。其研究對象除了晶體、非晶體與准晶體等固體物質外,還包括稠密氣體、液體以及介於液體與固體之間的各種凝聚態物質,內容十分廣泛。其研究層次,從宏觀、介觀到微觀,進一步從微觀層次統一認識各種凝聚態物理現象;物質維數,從三維到低維和分數維;結構從周期到非周期和准周期,完整到不完整和近完整;外界環境從常規條件到極端條件和多種極端條件交叉作用,等等,形成了比固體物理學更深刻更普遍的理論體系。經過半個世紀的發展,凝聚態物理學已成為物理學中最重要、最豐富和最活躍的分支學科,在諸如半導體、磁學、超導體等許多學科領域中的重大成就已在當代高新科學技術領域中起關鍵性作用,為發展新材料、新器件和新工藝提供了科學基礎。前沿研究熱點層出不窮,新興交叉分支學科不斷出現,是凝聚態物理學科的一個重要特點;與生產實踐密切聯系是它的另一重要特點,許多研究課題經常同時兼有基礎研究和開發應用研究的性質,研究成果可望迅速轉化為生產力。

6. 求凝聚態物理 下卷 馮瑞 金國鈞 PDF

閱讀全文

與凝聚態物理學pdf相關的資料

熱點內容
pdf掃描轉文字 瀏覽:530
微機室裡面的雲伺服器 瀏覽:106
excel能編程嗎 瀏覽:929
android系統框架的介紹 瀏覽:945
無盤系統伺服器如何配置 瀏覽:836
背負貸款如何緩解壓力 瀏覽:82
linux獲取日期時間 瀏覽:881
搬磚問題最合適的演算法 瀏覽:446
小米安卓機密碼忘記了如何解鎖 瀏覽:910
產電plc編程手冊 瀏覽:761
vscodephp 瀏覽:535
阿里雲linux桌面 瀏覽:754
php二維數組搜索 瀏覽:116
ps快捷命令工具箱 瀏覽:253
c4d教程pdf 瀏覽:462
linux集群安裝配置 瀏覽:154
stc單片機介紹 瀏覽:902
如何解壓失戀的人 瀏覽:493
安卓微信滯後怎麼辦 瀏覽:942
手機編程跟電腦編程一樣嗎 瀏覽:624