⑴ 如何理解壓縮感知
壓縮感知的幾個看似稀鬆平常,但是很關鍵的理論基礎如下: 壓縮感知最初提出時,是針對稀疏信號x,給出觀測模型y=Φ*x時,要有怎麼樣的Φ,通過什麼樣的方式可以從y中恢復出x。(PS:稀疏信號,是指在這個信號x中非零元素的個數遠小於其中零元素的個數。) 然而,很多信號本身並非稀疏的,比如圖像信號。此時可以通過正交變換Ψ』,將信號投影到另外一個空間,而在這個空間中,信號a=Ψ'*x(analysis model)變得稀疏了。然後我們可以由模型y=Φ*a,即y=Φ*Ψ'*x,來恢復原始信號x。 後來,人們發現不僅僅能夠通過正交變換,得到稀疏的信號;還可以通過一個字典D,得到稀疏信號x=D*a(synthesis model),a是稀疏的,為了增強變換後信號的稀疏性,通常D是過完備的。即模型y=Φ*x=Φ*D*a,此時記A^{CS}=Φ*D,即為感知矩陣。這個模型,是我們現在最常用的。
⑵ 如何在壓縮感知中正確使用閾值迭代演算法
如何在壓縮感知中正確使用閾值迭代演算法? 測量[2]。重構演算法是依據對信號的測量和問題的稀疏性重構原始信號的技術。上述過程可以描述為 如下數學模型:設s ∈ RN 為原始信號,該信號在某組基{ψi }N 下具有稀疏表示s = Ψx,其中Ψ = i=1 [ψ1 , ψ2 , . . . , ψN ], = [x1 , x2 , . . . , xN ] ;給定測量矩陣Θ ∈ RM ×N , Θ可得到信號s的觀測值y, x 由 即 y = Θs = ΘΨx 其中Φ = ΘΨ ∈ RM ×N 稱為感測矩陣, 為采樣數;則從觀測數據y來恢復未知的稀疏向量x, M 進而恢 復原始信號s的問題可建模為下述L0 問題: x∈RN min x 0 s.t. y = Φx (1.1) 這里 x 0 為x的非零分量的個數。顯然L0 問題是一個組合優化問題(NP難問題[11]) 通常將其轉化到 , 一個稀疏優化問題求解: x∈RN min S(x) s.t. y = Φx (1.2) 這里S(x)是x的某個稀疏度量[16],例如對給定的q ∈ (0, 1],取S(x) = x q ,其中 x q 是x的q?准范 q 數。L0 問題(1.1)和稀疏優化問題(1.2)通常都納入如下的正則化框架來加以研究: x∈RN min Cλ (x) y ? Φx 2 + P (x; λ) (1.3) 其中λ > 0為正則化參數, (x; λ)為罰函數。 P 不同的罰函數對應不同的壓縮感知模型, 例如, (x; λ) = P 1/2 λ x 0 對應L0 問題; (x; λ) = λ x 1 對應L1 問題[8], (x; λ) = λ x 1/2 對應L1/2 問題[9], P P 等等。正則化 框架提供了壓縮感知研究的一般模型。通常,我們要求罰函數P (x; λ)具有某些特別性質,例如,我們 假設: (i) 非負性: (x; λ) P 0, ?x ∈ RN ; c}有界; 0; (ii) 有界性:對任何正常數c, 集合{x : P (x; λ) (iii) 可分性: (x; λ) = P N i=1 λp(xi ), p(xi ) 且 (iv) 原點奇異性: (x; λ)在x = 0處不可導, P 但在其它點處處可導。 本文目的是:從正則化框架(1.3)出發,研究並回答以下有關壓縮感知應用的四個基本問題:如 何從給定的罰函數導出壓縮感知問題的閾值表示?如何根據閾值表示設計閾值迭代演算法並建立其收 斂性理論? 如何應用閾值迭代演算法到壓縮感知問題? 如何針對不同特徵的壓縮感測問題選擇不同形式 的閾值迭代演算法?所獲結論期望為壓縮感知中如何正確使用閾值迭代演算法提供理論依據。 2 閾值迭代演算法與壓縮感測 本節討論前三個問題。作為預備, 我們首先簡要介紹閾值函數與閾值迭代演算法。 2.1 閾值函數 高效、 快速、 高精度的重構演算法是壓縮感知廣泛應用的前提。 閾值迭代演算法 Thresholding Iterative ( Algorithms)正是這樣一類十分理想的壓縮感知重構演算法,它因迭代簡單、可單分量處理、能有效 2 中國科學 第 40 卷 第 1 期 用於大規模高維問題而得到普遍推崇。Blumensath等[14]提出了求解近似L0 問題的Hard閾值迭代算 法, Daubechies等[15]提出了求解L1 問題的Soft閾值迭代演算法, 徐宗本等[9, 10, 16]提出了求解L1/2 問題 的Half和Chalf閾值迭代演算法。
⑶ 壓縮感知的展望
非線性測量的壓縮感知。講壓縮感知解決的線性逆問題推廣到非線性函數參數的求解問題。廣義的講,非線性測量的壓縮感知,可以包括以前的測量矩陣不確定性問題,量化誤差問題,廣義線性模型問題,有損壓縮樣本問題。
壓縮感知在矩陣分解中的推廣應用。主成分分析,表示字典學習,非負矩陣分解,多維度向量估計,低秩或高秩矩陣恢復問題。
確定性測量矩陣的設計問題。 隨機矩陣在實用上存在難點。隨機矩陣滿足的RIP是充分非必要條件。在實際中,稀疏表示矩陣和隨機矩陣相乘的結果才是決定稀疏恢復性能字典。
傳統壓縮感知是以稀疏結構為先驗信息來進行信號恢復。當前最新進展顯示數據中存在的其他的簡單代數結果也作為先驗信息進行信號估計。聯合開發這些信號先驗信息,將進一步提高壓縮感知的性能。
⑷ 有人在學壓縮感知嗎誰知道怎麼用0范數或者L1范數最小化重構原始信號或者給我文獻也行
用0范數或1范數解決cs重構歸屬一個數學問題,猶如給定你一個公式,利用這個公式或者說原理去做出很多的演算法,cs重構本歸屬與對0范數的求解問題上的。
但0范數屬於數學上一個NP_hard問題,是無法解決的,所以不能直接用求0范數的理論去做演算法,從而提出一系列基於求0范數最小的貪婪類演算法。如MP,OMP等演算法。,這類演算法中,最為基礎的算是MP演算法了。貪婪演算法的速度較快,但是重構效果相對較差,需要的測量數也較多,不能高效地壓縮信號,並且對測量矩陣的要求更高。但總的來說,應用范圍廣。
數學家同時發現,求解L1范數也可以逼近與0范數的效果,即把NP_hard問題轉化為線性規劃問題。所以現在有很多用求L1范數原理而創造了各類演算法,最典型的是BP(基追蹤)演算法和梯度投影稀疏重構演算法。這種演算法重構效果很好,但是運算量大,復雜,應用於實際上可能不大。至少得改進其演算法。
還有一大類演算法,我不關注,不說了。
具體那些演算法怎麼實現,自己去網上下程序模擬一下吧。。。。
⑸ 壓縮感測的原理
核心思想是將壓縮與采樣合並進行,首先採集信號的非自適應線性投影 (測量值),然後根據相應重構演算法由測量值重構原始信號。壓縮感測的優點在於信號的投影測量數據量遠遠小於傳統采樣方法所獲的數據量,突破了香農采樣定理的瓶頸,使得高解析度信號的採集成為可能。
信號的稀疏表示就是將信號投影到正交變換基時,絕大部分變換系數的絕對值很小,所得到的變換向量是稀疏或者近似稀疏的,以將其看作原始信號的一種簡潔表達,這是壓縮感測的先驗條件,即信號必須在某種變換下可以稀疏表示。 通常變換基可以根據信號本身的特點靈活選取, 常用的有離散餘弦變換基、快速傅里葉變換基、離散小波變換基、Curvelet基、Gabor 基 以及冗餘字典等。 在編碼測量中, 首先選擇穩定的投影矩陣,為了確保信號的線性投影能夠保持信號的原始結構, 投影矩陣必須滿足約束等距性 (Restricted isometry property, RIP)條件, 然後通過原始信號與測量矩陣的乘積獲得原始信號的線性投影測量。最後,運用重構演算法由測量值及投影矩陣重構原始信號。信號重構過程一般轉換為一個最小L0范數的優化問題,求解方法主要有最小L1 范數法、匹配追蹤系列演算法、最小全變分方法、迭代閾值演算法等。
采樣定理(又稱取樣定理、抽樣定理)是采樣帶限信號過程所遵循的規律,1928年由美國電信工程師H.奈奎斯特首先提出來的,因此稱為奈奎斯特采樣定理。1948年資訊理論的創始人C.E.香農對這一定理加以明確說明並正式作為定理引用,因此在許多文獻中又稱為香農采樣定理。該理論支配著幾乎所有的信號/圖像等的獲取、處理、存儲、傳輸等,即:采樣率不小於最高頻率的兩倍(該采樣率稱作Nyquist采樣率)。該理論指導下的信息獲取、存儲、融合、處理及傳輸等成為信息領域進一步發展的主要瓶頸之一,主要表現在兩個方面:
(1)數據獲取和處理方面。對於單個(幅)信號/圖像,在許多實際應用中(例如,超寬頻通信,超寬頻信號處理,THz成像,核磁共振,空間探測,等等), Nyquist采樣硬體成本昂貴、獲取效率低下,在某些情況甚至無法實現。為突破Nyquist采樣定理的限制,已發展了一些理論,其中典型的例子為Landau理論, Papoulis等的非均勻采樣理論,M. Vetterli等的 finite rate of innovation信號采樣理論,等。對於多道(或多模式)數據(例如,感測器網路,波束合成,無線通信,空間探測,等),硬體成本昂貴、信息冗餘及有效信息提取的效率低下,等等。
(2)數據存儲和傳輸方面。通常的做法是先按照Nyquist方式獲取數據,然後將獲得的數據進行壓縮,最後將壓縮後的數據進行存儲或傳輸,顯然,這樣的方式造成很大程度的資源浪費。另外,為保證信息的安全傳輸,通常的加密技術是用某種方式對信號進行編碼,這給信息的安全傳輸和接受帶來一定程度的麻煩。
綜上所述:Nyquist-Shannon理論並不是唯一、最優的采樣理論,研究如何突破以Nyquist-Shannon采樣理論為支撐的信息獲取、處理、融合、存儲及傳輸等的方式是推動信息領域進一步往前發展的關鍵。眾所周知:(1)Nyquist采樣率是信號精確復原的充分條件,但絕不是必要條件。(2)除帶寬可作為先驗信息外,實際應用中的大多數信號/圖像中擁有大量的structure。由貝葉斯理論可知:利用該structure信息可大大降低數據採集量。(3) Johnson-Lindenstrauss理論表明:以overwhelming性概率,K+1次測量足以精確復原N維空間的K-稀疏信號。
由D. Donoho(美國科學院院士)、E. Candes(Ridgelet, Curvelet創始人)及華裔科學家T. Tao(2006年菲爾茲獎獲得者,2008年被評為世界上最聰明的科學家)等人提出了一種新的信息獲取指導理論,即,壓縮感知或壓縮感測(Compressive Sensing(CS) or Compressed Sensing、Compressed Sampling)。該理論指出:對可壓縮的信號可通過遠低於Nyquist標準的方式進行采樣數據,仍能夠精確地恢復出原始信號。該理論一經提出,就在資訊理論、信號/圖像處理、醫療成像、模式識別、地質勘探、光學/雷達成像、無線通信等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。CS理論的研究尚屬於起步階段,但已表現出了強大的生命力,並已發展了分布CS理論(Baron等提出),1-BIT CS理論(Baraniuk等提出),Bayesian CS理論(Carin等提出),無限維CS理論(Elad等提出),變形CS理論(Meyer等提出),等等,已成為數學領域和工程應用領域的一大研究熱點。
⑹ 壓縮感知和矩陣分解的異同
UbiComp 不是機器學習的會議。沒經過嚴格證明的就不能說他倆是等價的,雖然長得有點像。
壓縮感知是個很大的toppic,你問的這個我更願意稱之為 sparse coding。強行問兩樣東西的異同沒啥意義,因為是兩個不同的東西。
1. 矩陣填充的目標函數原本是
但是由於有 rank 的約束這個問題不是凸的,於是用 trace norm 來代替,但是還是不好算,於是用 以及 來代替trace norm。
矩陣分解也是個很大的topic,分解之後形成的矩陣有可能有特殊某些意義。
2. spase coding 是為了從數據中學一組過完備的基來稀疏表示原先的樣本。一般要求基 的第i列 。 它的目標是稀疏表示。
所以矩陣分解和sparse coding的目標並不一樣,是兩個不同的東西,彼此聯系很少。
⑺ 壓縮感知的歷史背景
盡管壓縮感知是由 E. J. Candes、J. Romberg、T. Tao 和D. L. Donoho 等科學家於2004 年提出的。但是早在上個世紀,相關領域已經有相當的理論和應用鋪墊,包括圖像處理、地球物理、醫學成像、計算機科學、信號處理、應用數學等。
可能第一個與稀疏信號恢復有關的演算法由法國數學家Prony 提出。這個被稱為的Prony 方法的稀疏信號恢復方法可以通過解一個特徵值問題,從一小部分等間隔采樣的樣本中估計一個稀疏三角多項式的非零幅度和對應的頻率。而最早採用基於L1范數最小化的稀疏約束的人是B. Logan。他發現在數據足夠稀疏的情況下,通過L1范數最小化可以從欠采樣樣本中有效的恢復頻率稀疏信號。D. Donoho和B.Logan 是信號處理領域採用L1范數最小化稀疏約束的先驅。但是地球物理學家早在20 世紀七八十年代就開始利用L1范數最小化來分析地震反射信號了。上世紀90 年代,核磁共振譜處理方面提出採用稀疏重建方法從欠采樣非等間隔樣本中恢復稀疏Fourier 譜。同一時期,圖像處理方面也開始引入稀疏信號處理方法進行圖像處理。在統計學方面,使用L1范數的模型選擇問題和相關的方法也在同期開始展開。
壓縮感知理論在上述理論的基礎上,創造性的將L1范數最小化稀疏約束與隨機矩陣結合,得到一個稀疏信號重建性能的最佳結果。
壓縮感知基於信號的可壓縮性, 通過低維空間、低解析度、欠Nyquist采樣數據的非相關觀測來實現高維信號的感知,豐富了關於信號恢復的優化策略,極大的促進了數學理論和工程應用的結合 。它是傳統資訊理論的一個延伸,但是又超越了傳統的壓縮理論,成為了一門嶄新的子分支。它從誕生之日起到現在不過五年時間,其影響卻已經席捲了大半個應用科學。
⑻ 壓縮感知理論中,投影矩陣是指觀測矩陣還是指稀疏化表示矩陣
應該是觀測矩陣
⑼ 壓縮感知高斯測量矩陣不能精確重構怎麼辦
觀測矩陣的設計是壓縮感知的關鍵部分,
針對隨機高斯觀測矩陣進行研究分析。
針對觀測矩陣的設計原則,
對觀測矩陣的不同部分設計不同的權值,
並且運用奇異值分解方法