導航:首頁 > 文件處理 > 壓縮感知與稀疏表示

壓縮感知與稀疏表示

發布時間:2022-05-19 05:50:25

壓縮感知的展望

非線性測量的壓縮感知。講壓縮感知解決的線性逆問題推廣到非線性函數參數的求解問題。廣義的講,非線性測量的壓縮感知,可以包括以前的測量矩陣不確定性問題,量化誤差問題,廣義線性模型問題,有損壓縮樣本問題。
壓縮感知在矩陣分解中的推廣應用。主成分分析,表示字典學習,非負矩陣分解,多維度向量估計,低秩或高秩矩陣恢復問題。
確定性測量矩陣的設計問題。 隨機矩陣在實用上存在難點。隨機矩陣滿足的RIP是充分非必要條件。在實際中,稀疏表示矩陣和隨機矩陣相乘的結果才是決定稀疏恢復性能字典。
傳統壓縮感知是以稀疏結構為先驗信息來進行信號恢復。當前最新進展顯示數據中存在的其他的簡單代數結果也作為先驗信息進行信號估計。聯合開發這些信號先驗信息,將進一步提高壓縮感知的性能。

② 如何在壓縮感知中正確使用閾值迭代演算法

如何在壓縮感知中正確使用閾值迭代演算法? 測量[2]。重構演算法是依據對信號的測量和問題的稀疏性重構原始信號的技術。上述過程可以描述為 如下數學模型:設s ∈ RN 為原始信號,該信號在某組基{ψi }N 下具有稀疏表示s = Ψx,其中Ψ = i=1 [ψ1 , ψ2 , . . . , ψN ], = [x1 , x2 , . . . , xN ] ;給定測量矩陣Θ ∈ RM ×N , Θ可得到信號s的觀測值y, x 由 即 y = Θs = ΘΨx 其中Φ = ΘΨ ∈ RM ×N 稱為感測矩陣, 為采樣數;則從觀測數據y來恢復未知的稀疏向量x, M 進而恢 復原始信號s的問題可建模為下述L0 問題: x∈RN min x 0 s.t. y = Φx (1.1) 這里 x 0 為x的非零分量的個數。顯然L0 問題是一個組合優化問題(NP難問題[11]) 通常將其轉化到 , 一個稀疏優化問題求解: x∈RN min S(x) s.t. y = Φx (1.2) 這里S(x)是x的某個稀疏度量[16],例如對給定的q ∈ (0, 1],取S(x) = x q ,其中 x q 是x的q?准范 q 數。L0 問題(1.1)和稀疏優化問題(1.2)通常都納入如下的正則化框架來加以研究: x∈RN min Cλ (x) y ? Φx 2 + P (x; λ) (1.3) 其中λ > 0為正則化參數, (x; λ)為罰函數。 P 不同的罰函數對應不同的壓縮感知模型, 例如, (x; λ) = P 1/2 λ x 0 對應L0 問題; (x; λ) = λ x 1 對應L1 問題[8], (x; λ) = λ x 1/2 對應L1/2 問題[9], P P 等等。正則化 框架提供了壓縮感知研究的一般模型。通常,我們要求罰函數P (x; λ)具有某些特別性質,例如,我們 假設: (i) 非負性: (x; λ) P 0, ?x ∈ RN ; c}有界; 0; (ii) 有界性:對任何正常數c, 集合{x : P (x; λ) (iii) 可分性: (x; λ) = P N i=1 λp(xi ), p(xi ) 且 (iv) 原點奇異性: (x; λ)在x = 0處不可導, P 但在其它點處處可導。 本文目的是:從正則化框架(1.3)出發,研究並回答以下有關壓縮感知應用的四個基本問題:如 何從給定的罰函數導出壓縮感知問題的閾值表示?如何根據閾值表示設計閾值迭代演算法並建立其收 斂性理論? 如何應用閾值迭代演算法到壓縮感知問題? 如何針對不同特徵的壓縮感測問題選擇不同形式 的閾值迭代演算法?所獲結論期望為壓縮感知中如何正確使用閾值迭代演算法提供理論依據。 2 閾值迭代演算法與壓縮感測 本節討論前三個問題。作為預備, 我們首先簡要介紹閾值函數與閾值迭代演算法。 2.1 閾值函數 高效、 快速、 高精度的重構演算法是壓縮感知廣泛應用的前提。 閾值迭代演算法 Thresholding Iterative ( Algorithms)正是這樣一類十分理想的壓縮感知重構演算法,它因迭代簡單、可單分量處理、能有效 2 中國科學 第 40 卷 第 1 期 用於大規模高維問題而得到普遍推崇。Blumensath等[14]提出了求解近似L0 問題的Hard閾值迭代算 法, Daubechies等[15]提出了求解L1 問題的Soft閾值迭代演算法, 徐宗本等[9, 10, 16]提出了求解L1/2 問題 的Half和Chalf閾值迭代演算法。

③ 稀疏表示和壓縮感知有何異同

只有一個信號能夠稀疏表示的時候,才能實現壓縮感知。

④ 稀疏矩陣與壓縮感知應該如何理解

壓縮感知就是壓縮,進行壓縮的對象是稀疏矩陣。

⑤ 壓縮感知的主要應用

認知無線電方向:寬頻譜感知技術是認識無線電應用中一個難點和重點。它通過快速尋找監測頻段中沒有利用的無線頻譜,從而為認知無線電用戶提供頻譜接入機會。傳統的濾波器組的寬頻檢測需要大量的射頻前端器件,並且不能靈活調整系統參數。普通的寬頻接收電路要求很高的采樣率,它給模數轉換器帶來挑戰,並且獲得的大量數據處理給數字信號處理器帶來負擔。針對寬頻譜感知的難題,將壓縮感知方法應用到寬頻譜感知中:採用一個寬頻數字電路,以較低的頻譜獲得欠采樣的隨機樣本,然後在數字信號處理器中採用稀疏信號估計演算法得到寬頻譜感知結果。
信道編碼:壓縮感測理論中關於稀疏性、隨機性和凸最優化的結論可以直接應用於設計快速誤差校正編碼, 這種編碼方式在實時傳輸過程中不受誤差的影響。在壓縮編碼過程中, 稀疏表示所需的基對於編碼器可能是未知的. 然而在壓縮感測編碼過程中, 它只在解碼和重構原信號時需要, 因此不需考慮它的結構, 所以可以用通用的編碼策略進行編碼. Haupt等通過實驗表明如果圖像是高度可壓縮的或者SNR充分大, 即使測量過程存在雜訊, 壓縮感測方法仍可以准確重構圖像。 波達方向估計:目標出現的角度在整個掃描空間來看,是極少數。波達方向估計問題在空間譜估計觀點來看是一個欠定的線性逆問題。通過對角度個數的稀疏限制,可以完成壓縮感知的波達方向估計。
波束形成:傳統的 自適應波束形成因其高解析度和抗干擾能力強等優點而被廣泛採用。但同時它的高旁瓣水平和角度失匹配敏感度高問題將大大降低接收性能。為了改進Capon 波束形成的性能,這些通過稀疏波束圖整形的方法限制波束圖中陣列增益較大的元素個數,同時鼓勵較大的陣列增益集中在波束主瓣中,從而達到降低旁瓣水平同時,提高主瓣中陣列增益水平,降低角度失匹配的影響。例如,最大主瓣旁瓣能量比,混合范數法,最小全變差。 運用壓縮感測原理, RICE大學成功研製了單像素壓縮數碼照相機。 設計原理首先是通過光路系統將成像目標投影到一個數字微鏡器件(DMD)上, 其反射光由透鏡聚焦到單個光敏二極體上, 光敏二極體兩端的電壓值即為一個測量值y, 將此投影操作重復M次, 得到測量向量 , 然後用最小全變分演算法構建的數字信號處理器重構原始圖像。數字微鏡器件由數字電壓信號控制微鏡片的機械運動以實現對入射光線的調整。 由於該相機直接獲取的是M次隨機線性測量值而不是獲取原始信號的N(M,N)個像素值, 為低像素相機拍攝高質量圖像提供了可能.。
壓縮感測技術也可以應用於雷達成像領域, 與傳統雷達成像技術相比壓縮感測雷達成像實現了兩個重要改進: 在接收端省去脈沖壓縮匹配濾波器; 同時由於避開了對原始信號的直接采樣, 降低了接收端對模數轉換器件帶寬的要求. 設計重點由傳統的設計昂貴的接收端硬體轉化為設計新穎的信號恢復演算法, 從而簡化了雷達成像系統。 生物感測中的傳統DNA晶元能平行測量多個有機體, 但是只能識別有限種類的有機體, Sheikh等人運用壓縮感測和群組檢測原理設計的壓縮感測DNA晶元克服了這個缺點。 壓縮感測DNA晶元中的每個探測點都能識別一組目標, 從而明顯減少了所需探測點數量. 此外基於生物體基因序列稀疏特性, Sheikh等人驗證了可以通過置信傳播的方法實現壓縮感測DNA晶元中的信號重構。

⑥ 壓縮感知稀疏表示中離散小波變換要求必須是2的n次方並且是方陣,可是我的圖像是640*480的怎麼辦呢

不懂壓縮感知啥滴,但DWT不會要求信號滴大小,只有SWT才有2滴n次方滴要求,且也不要求是方陣。但這些要求通常都會用擴邊延展處理,DWT和SWT通常為了解決卷積邊界效應等都會做此處理,然後在結果中再裁剪便可。所以不管原始數據如何都不影響小波變換滴實現。

⑦ 壓縮感知和矩陣分解的異同

UbiComp 不是機器學習的會議。沒經過嚴格證明的就不能說他倆是等價的,雖然長得有點像。
壓縮感知是個很大的toppic,你問的這個我更願意稱之為 sparse coding。強行問兩樣東西的異同沒啥意義,因為是兩個不同的東西。
1. 矩陣填充的目標函數原本是

但是由於有 rank 的約束這個問題不是凸的,於是用 trace norm 來代替,但是還是不好算,於是用 以及 來代替trace norm。
矩陣分解也是個很大的topic,分解之後形成的矩陣有可能有特殊某些意義。
2. spase coding 是為了從數據中學一組過完備的基來稀疏表示原先的樣本。一般要求基 的第i列 。 它的目標是稀疏表示。
所以矩陣分解和sparse coding的目標並不一樣,是兩個不同的東西,彼此聯系很少。

⑧ 稀疏表達是什麼意思

信號稀疏表示(稀疏表達也可以叫為稀疏表示)是過去近20年來信號處理界一個非常引人關注的研究領域,眾多研究論文和專題研討會表明了該領域的蓬勃發展。信號稀疏表示的目的就是在給定的超完備字典中用盡可能少的原子來表示信號,可以獲得信號更為簡潔的表示方式,從而使我們更容易地獲取信號中所蘊含的信息,更方便進一步對信號進行加工處理,如壓縮、編碼等 。

(8)壓縮感知與稀疏表示擴展閱讀:

應用:

1,壓縮感知

為了有效重構原信號,傳統方式下需要基於奈奎斯特采樣定理實現對信號的采樣。近年來,隨著稀疏表示的興起為重構原信號提出了一種新的理論-壓縮感知。

2,目標跟蹤

近年來,稀疏表示在目標跟蹤領域也得到的廣泛應用。針對紅外圖像序列中目標與背景對比度低、灰度特徵易受雜訊影響等問題,提出了一種基於稀疏表示模型的紅外目標跟蹤演算法。提出了一個新的基於稀疏表示的目標跟蹤方法,通過L1 范數最小化求解,實驗結果表明,該方法比現有的基於 L1 范數最小化的跟蹤方法性能更穩定、計算效率更高。

為了有效解決跟蹤過程中的目標遮擋問題,提出了一種基於局部稀疏表示模型的跟蹤方法。實驗結果表明,該方法比各種流行跟蹤方法穩定可靠且具有良好的抗遮擋性,並對海上紅外目標跟蹤取得良好效果。

參考資料:網路-稀疏表示

⑨ 如何理解壓縮感知

同壓縮感知一樣,矩陣填補也是一個類似的反問題——能否預測矩陣中缺失的元素。對於這個問題,Candies給出的答案是:對一個N*N的矩陣進行隨機的下采樣,得到C*NlogN個樣本並保證每一行每一列至少保留一個元素。如果原始矩陣時低秩的,那麼可以通過求解矩陣的奇異值最小化問題(又稱核范數規劃)精確恢復原始矩陣。發現了吧?這個結論里沒有稀疏性,沒有字典,取而代之的是低秩這個條件——換句話說,我們不需要再去尋找可以稀疏表示信號的字典了,只需要知道信號組成的矩陣時低秩的即可。另外一個好處就是,觀測矩陣的約束條件也得到了放鬆,不再需要去考慮和字典的非相關性——因為已經沒有字典了。單純的隨機采樣就足以滿足條件,模擬端的積分器(電信號處理用),運動或反射模塊(光信號處理用)都可以下崗了——世界從此和諧了。

⑩ 壓縮感知中信號重構之前必須先進行稀疏表示嗎

當然可以。

  1. 將主信號端的波形設置為「方波」;

  2. 2. 將輸出信號的幅度低電平設置為0V,高電平設置為3.3V(如果你要5V TTL就設置為5V);

  3. 這樣輸出不就是TTL信號了,不過不知道你要輸出什麼樣的信號,以上方法只能輸出簡單的時鍾,或通過任意波的方式輸出某種碼型的周期數字信號。Agilent的信號發生器支持偽隨機碼輸出,基本可以認為是非周期的。

閱讀全文

與壓縮感知與稀疏表示相關的資料

熱點內容
c語言javaphp 瀏覽:804
程序員技術不分高低嗎 瀏覽:619
dos不是內部或外部命令 瀏覽:708
PC機與單片機通訊 瀏覽:674
二級加密圖 瀏覽:113
壓縮機異音影響製冷嗎 瀏覽:711
德斯蘭壓縮機 瀏覽:490
程序員太極拳視頻 瀏覽:531
網上購買加密鎖 瀏覽:825
安卓為什麼軟體要隱私 瀏覽:83
虛擬主機管理源碼 瀏覽:811
java圖形圖像 瀏覽:230
單片機輸出口電平 瀏覽:486
java配置資料庫連接 瀏覽:479
java多態的體現 瀏覽:554
java的split分隔符 瀏覽:128
跪著敲代碼的程序員 瀏覽:238
web和php有什麼區別 瀏覽:120
加密的電梯卡怎麼復制蘋果手機 瀏覽:218
warez壓縮 瀏覽:137