程序員必須掌握的核心演算法
十大排序演算法
簡單排序插入排序、
選擇排序、冒泡排序(必學)
分治排序:快速排序、歸並排序(必學,快速排序還要關注中軸的選取方式)
分配排序桶排序、基數排序
樹狀排序:堆排序(必學)
其他:計數排序(必學)、希爾排序
圖論演算法
圖的表示:鄰接矩陣和鄰接表
遍歷演算法:深度搜索和廣度搜索(必學)
最短路徑演算法:FLOYD,DIJKSTRA(必學)
最小生成樹演算法:PRIM,KRUSKAL(必學)
實際演算法:關鍵路徑、拓抖排序(原理與應用)
二分圖匹配:配對、匈牙利演算法(原理與應用)
拓展:中心性演算法、社區發現演算法(原理與應用)
搜索與回溯演算法
貪心演算法(必學)
信發式搜索演算法:A*尋路演算法(了解)
地圖著色演算法、N皇後問題、最優加工順序旅行商問題
動態規劃
樹形DP:01背包問題
線性DP:最長公共千序列、最長公共子串
區間DP:矩陣最大值(和以及積)
數位DP:數字游戲
狀態壓縮DP:旅行商
字元匹配演算法
正則表達式
模式匹配:KMP、BOYER-MOORE
流相關演算法
最大流:最短增廣路、DINIC演算法
最大流最小割:最大收盆問題、方格取數問題
最小費用最大流:最小費用路、消遣
❷ 演算法解析:哈夫曼(huffman)壓縮演算法
本篇將介紹 哈夫曼壓縮演算法(Huffman compression)
眾所周知,計算機存儲數據時,實際上存儲的是一堆0和1(二進制)。
如果我們存儲一段字元:ABRACADABRA!
那麼計算機會把它們逐一翻譯成二進制,如A:01000001;B: 01000010; !: 00001010.
每個字元佔8個bits, 這一整段字元則至少佔12*8=96 bits。
但如果我們用一些特殊的值來代表這些字元,如:
圖中,0代表A; 1111代表B;等等。此時,存儲這段字元只需30bits,比96bits小多了,達到了壓縮的目的。
我們需要這么一個表格來把原數據翻譯成特別的、占空間較少的數據。同時,我們也可以用這個表格,把特別的數據還原成原數據。
首先,為了避免翻譯歧義,這個表格需滿足一個條件: 任何一個字元用的值都不能是其它字元的前綴 。
我們舉個反例:A: 0; B: 01;這里,A的值是B的值的前綴。如果壓縮後的數據為01xxxxxx,x為0或者1,那麼這個數據應該翻譯成A1xxxxxx, 還是Bxxxxxxx?這樣就會造成歧義。
然後,不同的表格會有不同的壓縮效果,如:
這個表格的壓縮效果更好。
那麼我們如何找到 最好的表格 呢?這個我們稍後再講。
為了方便閱讀,這個表格是可以寫成一棵樹的:
這棵樹的節點左邊是0,右邊是1。任何含有字元的節點都沒有非空子節點。(即上文提及的前綴問題。)
這棵樹是在壓縮的過程中建成的,這個表格是在樹形成後建成的。用這個表格,我們可以很簡單地把一段字元變成壓縮後的數據,如:
原數據:ABRACADABRA!
表格如上圖。
令壓縮後的數據為S;
第一個字元是A,根據表格,A:11,故S=11;
第二個字元是B,根據表格,B:00,故S=1100;
第三個字元是R,根據表格,R:011,故S=1100011;
如此類推,讀完所有字元為止。
壓縮搞定了,那解壓呢?很簡單,跟著這棵樹讀就行了:
壓縮後的數據S=11000111101011100110001111101
記住,讀到1時,往右走,讀到0時,往左走。
令解壓後的字元串為D;
從根節點出發,第一個數是1,往右走:
第二個數是1,往右走:
讀到有字元的節點,返回此字元,加到字元串D里。D:A;
返回根節點,繼續讀。
第三個數是0,往左走:
第四個數是0,往左走:
讀到有字元的節點,返回此字元,加到字元串D里。D:AB;
返回根節點,繼續讀。
第五個數是0,往左走:
第六個數是1,往右走:
第七個數是1,往右走:
讀到有字元的節點,返回此字元,加到字元串D里。D:ABR;
返回根節點,繼續讀。
如此類推,直到讀完所有壓縮後的數據S為止。
壓縮與解壓都搞定了之後 我們需要先把原數據讀一遍,並把每個字元出現的次數記錄下來。如:
ABRACADABRA!中,A出現了5次;B出現了2次;C出現了1次;D出現了1次;R出現了2次;!出現了1次。
理論上,出現頻率越高的字元,我們給它一個佔用空間越小的值,這樣,我們就可以有最佳的壓縮率
由於哈夫曼壓縮演算法這塊涉及內容較多 ,文章篇幅很長;全文全方面講解了Compose布局的各方面知識。更多Android前言技術進階,我自薦一套《 完整的Android的資料,以及一些視頻課講解 》 現在私信發送「進階」或者「筆記」即可免費獲取
最後我想說:
對於程序員來說,要學習的知識內容、技術有太多太多,要想不被環境淘汰就只有不斷提升自己,從來都是我們去適應環境,而不是環境來適應我們
技術是無止境的,你需要對自己提交的每一行代碼、使用的每一個工具負責,不斷挖掘其底層原理,才能使自己的技術升華到更高的層面
Android 架構師之路還很漫長,與君共勉
❸ 程序員必須掌握哪些演算法
A搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的最佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是最佳優先搜索的範例。
集束搜索(又名定向搜索,BeamSearch)——最佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。
二分查找(BinarySearch)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。
分支界定演算法(BranchandBound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。
Buchberger演算法——一種數學演算法,可將其視為針對單變數最大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。
數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。
Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。
Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。
離散微分演算法(Discretedifferentiation)
動態規劃演算法(DynamicProgramming)——展示互相覆蓋的子問題和最優子架構演算法
歐幾里得演算法(Euclideanalgorithm)——計算兩個整數的最大公約數。最古老的演算法之一,出現在公元前300前歐幾里得的《幾何原本》。
期望-最大演算法(Expectation-maximizationalgorithm,又名EM-Training)——在統計計算中,期望-最大演算法在概率模型中尋找可能性最大的參數估算值,其中模型依賴於未發現的潛在變數。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變數的現有估計值,計算其最大可能估計值;第二步是最大化,最大化在第一步上求得的最大可能值來計算參數的值。
快速傅里葉變換(FastFouriertransform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該演算法應用范圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。
梯度下降(Gradientdescent)——一種數學上的最優化演算法。
哈希演算法(Hashing)
堆排序(Heaps)
Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該演算法發現於1962年。
LLL演算法(Lenstra-Lenstra-Lovaszlatticerection)——以格規約(lattice)基數為輸入,輸出短正交向量基數。LLL演算法在以下公共密鑰加密方法中有大量使用:背包加密系統(knapsack)、有特定設置的RSA加密等等。
最大流量演算法(Maximumflow)——該演算法試圖從一個流量網路中找到最大的流。它優勢被定義為找到這樣一個流的值。最大流問題可以看作更復雜的網路流問題的特定情況。最大流與網路中的界面有關,這就是最大流-最小截定理(Max-flowmin-cuttheorem)。Ford-Fulkerson能找到一個流網路中的最大流。
合並排序(MergeSort)
牛頓法(Newton'smethod)——求非線性方程(組)零點的一種重要的迭代法。
Q-learning學習演算法——這是一種通過學習動作值函數(action-valuefunction)完成的強化學習演算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。
兩次篩法(QuadraticSieve)——現代整數因子分解演算法,在實踐中,是目前已知第二快的此類演算法(僅次於數域篩法NumberFieldSieve)。對於110位以下的十位整數,它仍是最快的,而且都認為它比數域篩法更簡單。
RANSAC——是「RANdomSAmpleConsensus」的縮寫。該演算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。
RSA——公鑰加密演算法。首個適用於以簽名作為加密的演算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。
Schönhage-Strassen演算法——在數學中,Schönhage-Strassen演算法是用來完成大整數的乘法的快速漸近演算法。其演算法復雜度為:O(Nlog(N)log(log(N))),該演算法使用了傅里葉變換。
單純型演算法(SimplexAlgorithm)——在數學的優化理論中,單純型演算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變數上的一系列線性不等式組,以及一個等待最大化(或最小化)的固定線性函數。
奇異值分解(Singularvaluedecomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或復數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的偽逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdeterminedlinearsystems)、矩陣逼近、數值天氣預報等等。
求解線性方程組()——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordanelimination),或是柯列斯基分解(Choleskydecomposition)。
Strukturtensor演算法——應用於模式識別領域,為所有像素找出一種計算方法,看看該像素是否處於同質區域(homogenousregion),看看它是否屬於邊緣,還是是一個頂點。
合並查找演算法(Union-find)——給定一組元素,該演算法常常用來把這些元素分為多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合並查找演算法可以在此種數據結構上完成兩個有用的操作:
查找:判斷某特定元素屬於哪個組。
合並:聯合或合並兩個組為一個組。
維特比演算法(Viterbialgorithm)——尋找隱藏狀態最有可能序列的動態規劃演算法,這種序列被稱為維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。
❹ LZSS演算法名稱的由來
LZSS是一種由LZ77改進的基於字典壓縮的編碼,LZSS編碼的原理是搜索目前未壓縮的數據是否在前面出現過,如果出現過則利用前面出現的位置和長度代替現在的未壓縮數據。
LZ77演算法是由 Lempel-Ziv 在1977發明的。LZ77演算法有許多變種演算法,LZSS演算法是LZ77其中一種變形,雖然LZ77有多種變形演算法,但是這些基於LZ77變形的演算法背後的原理都是一樣的。
請原諒我復制了上面倆段
我只是想告訴你 加上我自己的認知和我在網上能搜索到的所有內容來告訴你
LZSS 後SS是一種演算法 不代表意義
不是人名 就象LZ77一樣
它是演變過來的 區別LZ77 以LZSS演算法的形式
後面SS 是代表這種演算法的規律和變化
所以就象加減乘除 它僅代表一種運算方式
看到LZSS你就想到了這 LZ77又是另一種
不知道我的淺薄解釋您滿意不?
❺ 程序員必須掌握的核心演算法
程序員掌握核心演算法,還不收錄
1、十大排序演算法
(1)簡單排序:插入排序、選擇排序、冒泡排序(必學)。
(2)分治排序:快速排序、歸並排序(必學,快速排序還要關注中軸的選取方式)。
(3)分配排序:桶排序、基數排序。
(4)樹狀排序:堆排序(必學)。
(5)其他:計數排序(必學)、希爾排序。
對干十大演算法的學習,假如你不大懂的話,那麼推薦你去看書,因為看了書,你可能不僅僅知道這個演算法怎麼寫,還能知道他是怎麼來的。推薦書籍是《演算法第四版》,這本書講的很詳細,而且配了很多圖演示,還是挺好懂的。
2、搜索與回溯演算法
(1)貪心演算法(必學);
(2)啟發式搜索演算法:A*尋路演算法(了解);
(3)地圖著色演算法、N 皇後問題、最優加工順序;
(4)旅行商問題。
這方便的只是都是一些演算法相關的,像貪心演算法的思想,就必須學的了。建議通過刷題來學習,leetcode 直接專題刷。
3、動態規劃
(1)樹形DP:01背包問題;
(2)線性DP:最長公共子序列、最長公共子串;
(3)區間DP:矩陣最大值(和以及積);
(4)數位DP:數字游戲;
(5)狀態壓縮DP:旅行商。
這里建議先了解動態規劃是什麼,之後 leetcode專題刷,反正就一般上面這幾種題型。
4、字元匹配演算法
(1)正則表達式;
(2)模式匹配:KMP、Boyer-Moore。
5、流相關演算法
(1)最大流:最短增廣路、Dinic 演算法。
(2)最大流最小割:最大收益問題、方格取數問題。
(3)最小費用最大流:最小費用路、消遣。