導航:首頁 > 編程語言 > python車間數據可視化

python車間數據可視化

發布時間:2022-06-14 23:34:30

『壹』 python怎麼可視化

利用 Python 可視化數據並不是很麻煩,因為 Python 中有兩個專用於可視化的庫 matplotlib 和 seaborn 能讓我們很容易的完成任務。

Matplotlib:基於Python的繪圖庫,提供完全的 2D 支持和部分 3D 圖像支持。在跨平台和互動式環境中生成高質量數據時,matplotlib 會很有幫助。也可以用作製作動畫。
Seaborn:該 Python 庫能夠創建富含信息量和美觀的統計圖形。Seaborn 基於 matplotlib,具有多種特性,比如內置主題、調色板、可以可視化單變數數據、雙變數數據,線性回歸數據和數據矩陣以及統計型時序數據等,能讓我們創建復雜的可視化圖形。

『貳』 Python基礎知識學習之如何實現數據可視化

Matplotlib是一個Python的2D繪圖庫,它以各種硬拷貝格式和跨平台的互動式環境生成出版質量級別的圖形。Matplotlib可用於Python腳本,Python和IPython
shell,jupyter筆記本,Web應用程序伺服器和四個圖形用戶界面工具包。通過
Matplotlib,開發者可以僅需要幾行代碼,便可以生成繪圖,直方圖,功率譜,條形圖,錯誤圖,散點圖等。

『叄』 數據可視化展示用pyhton如何實現

Python數據可視化的工具不少,Matplotlib、Pyecharts、Seaborn、Plotly、Bokeh這幾個都可以用,具體看自己的展示需求來進行選擇。
1、Pyecharts
網路開源的可視化工具,支持30+種圖表,網上有詳細的中文文檔與demo,操作很簡單,遇到問題也很好找答案。
2、Matplotlib
Matplotlib應該是最廣泛使用的Python可視化工具,支持的圖形種類非常多,對於數據展示可以很自由地進行表達。
3、Plotly
Plotly也是一款非常強大的Python可視化庫,內置完整的交互能力及編輯工具,支持在線和離線模式,提供穩定的API以便與現有應用集成,很好用,但是想要好,要先學好。
4、Bokeh
Bokeh是一個專門針對Web瀏覽器的呈現功能的互動式可視化Python庫。它可以做出像D3.js簡潔漂亮的交互可視化效果,但是使用難度低於D3.js。
5、Seaborn
Seaborn是為了統計圖表設計的,它是一種基於matplotlib的圖形可視化庫,也就是在matplotlib的基礎上進行了更高級的API封裝。

『肆』 怎樣用python進行數據可視化

用python進行數據可視化的方法:可以利用可視化的專屬庫matplotlib和seaborn來實現。基於python的繪圖庫為matplotlib提供了完整的2D和有限3D圖形支持。
我們只需藉助可視化的兩個專屬庫(libraries),俗稱matplotlib和seaborn即可。
(推薦教程:Python入門教程)
下面我們來詳細介紹下:
Matplotlib:基於Python的繪圖庫為matplotlib提供了完整的2D和有限3D圖形支持。這對在跨平台互動環境中發布高質量圖片很有用。它也可用於動畫。
Seaborn:Seaborn是一個Python中用於創建信息豐富和有吸引力的統計圖形庫。這個庫是基於matplotlib的。Seaborn提供多種功能,如內置主題、調色板、函數和工具,來實現單因素、雙因素、線性回歸、數據矩陣、統計時間序列等的可視化,以讓我們來進一步構建復雜的可視化。

『伍』 Python數據可視化 箱線圖

Python數據可視化:箱線圖
一、箱線圖概念
箱形圖(Box-plot)又稱為盒須圖、盒式圖或箱線圖,是一種用作顯示一組數據分散情況資料的統計圖。
計算過程:

(1)計算上四分位數(Q3),中位數,下四分位數(Q1)
(2)計算上四分位數和下四分位數之間的差值,即四分位數差(IQR,interquartile range)Q3-Q1
(3)繪制箱線圖的上下范圍,上限為上四分位數,下限為下四分位數。在箱子內部中位數的位置繪制橫線。
(4)大於上四分位數1.5倍四分位數差的值,或者小於下四分位數1.5倍四分位數差的值,劃為異常值(outliers)。
(5)異常值之外,最靠近上邊緣和下邊緣的兩個值處,畫橫線,作為箱線圖的觸須。
(6)極端異常值,即超出四分位數差3倍距離的異常值,用實心點表示;較為溫和的異常值,即處於1.5倍-3倍四分位數差之間的異常值,用空心點表示。
(7)為箱線圖添加名稱,數軸等

二、四分位數的計算

分位數根據其將數列等分的形式不同可以分為中位數,四分位數,十分位數、百分位數等等。四分位數作為分位數的一種形式,在統計中有著十分重要的意義和作用,而大多數的統計學原理教材只介紹其基本含義,對其具體計算,尤其是由組距數列計算都不作介紹,成為統計學原理教材中的空白。那麼,如何根據數列計算四分位數呢?一般來講,視資料是否分組而定。

1、根據未分組的資料計算四分位數

第一步:確定四分位數的位置

四分位數是將數列等分成四個部分的數,一個數列有三個四分位數,設下分位數、中分位數和上分位式中n表示資料的項數

第二步:根據第一步所確定的四分位數的位置,確定其相應的四分位數。
例1:某車間某月份的工人生產某產品的數量分別為13、13.5、13.8、13.9、14、14.6、14.8、15、15.2、15.4、15.7公斤,則三個四分位數的位置分別為:

即變數數列中的第三個、第六個、第九個工人的某種產品產量分別為下四分位數、中位 數和上四分位數。即:
Q1 =13.8公斤、Q2=14.6公斤、Q3=15.2公斤
上例中(n+1)恰好為4的倍數,所以確定四分數較簡單,如果(n+1)不為4的整數倍數,按上述分式計算出來的四分位數位置就帶有小數,這時,有關的四分位數就應該是與該小數相鄰的兩個整數位置上的標志值的平均數,權數的大小取決於兩個整數位置距離的遠近,距離越近,權數越大,距離越遠,權數越小,權數之和等於1。
例2:某車間某月份的工人生產某產品的數量分別為13、13.5、13.8、13.9、14、14.6、14.8、15、15.2、15.4公斤,則三個四分位數的位置分別為:

即變數數列中的第2.75項、第5.5項、第8.25項工人的某種產品產量分別為下四分位 數、中位數和上四分位數。即:

在實際資料中,由於標志值序列中的相鄰標志值往往是相同的,因而不一定要通過計算才能得到有關的四分位數。

2、由組距式數列確定四分位數

第一步,向上或向下累計次數.
第二步,根據累計次數確定四分位數的位置.
(1)、當採用向上累計次數的資料確定四分位數時,四分位數位置的公式是:

(2)、當採用向下累計次數的資料確定四分位數時,四分位數位置的公式是:

第三步,根據四分位數的位置算出各四分位數.
(1)、當累計次數是向上累計時,按下限公式計算各四分位數.

(2)、當累計次數是向下累計時,按上限公式計算各四分位數.

例3:某企業職工按月工資的分組資料如下:

根據上述資料確定某企業職工的月工資的三個四分位數如下:
(1)、採用向上累計職工人數的資料得月工資四分位數的位置為:
(2)、採用向下累計職工人數的資料得月工資四分位數的位置為:

3、異常值

異常值:限制線以外的數據全部為異常值
三、畫圖

# Python
import plotly.plotly
import plotly.graph_objs as go

data = [
go.Box(
y=[0, 1, 1, 2, 3, 5, 8, 13, 21] # 9個數據
)
]
plotly.offline.plot(data) # 離線繪圖

『陸』 如何評價利用python製作數據採集,計算,可視化界面呢

先來設置兩個url地址,第一個用於第一次訪問,這樣可以獲得網站伺服器發來的cookie,第二個網址是用於登陸的地址
引入兩個模塊,cookielib和urllib2
接著,我們安裝一個cookie處理器,代碼如下,這個代碼很多人不太能讀懂,其實你會用就可以了,他們就是這個固定的形式,頂多改改變數的名字。你復制下來以後自己用就可以了,用多了,你再去看代碼的意義,你就都懂了。
然後我們先訪問一下網站,獲得一個cookie,你不用管這個cookie該怎麼弄,前面設置的cookie處理器會自動處理。
接著,我們寫一下postdata,也就是你要post的數據,因為我們打算登陸網站,所以postdata里肯定有用戶名和密碼,那麼怎麼知道該怎麼寫postdata呢?看你抓包得到的post數據。下面第一幅圖是httpwatch抓包截圖,點擊postdata,看到post的數據,然後我們看第二幅圖,就是python的寫法。你自己感受一下。
寫完postdata以後,我們 要將postdata轉碼一下,讓伺服器可以解讀postdata數據
接著設置headers信息,headers也是抓包得到的。同樣的方式,你去寫header內的信息
然後我們通過request方法來登陸網站,並返回數據,返回的數據存儲在request中
通過rulopen方法和read方法來讀取數據,並列印出來。
我們看到輸出的結果,這說明我們雖然正確的模擬了登陸網站需要的post信息,但是沒有考慮到登陸網站是需要驗證碼的,後期我們會看到如何處理驗證碼,如果你拿這個教程去處理沒有驗證碼的登陸問題,那麼你現在已經成功了。

『柒』 python數據可視化有什麼用

准確的來說是做統計數據的可視化,一般的數據可視化都是js生成的,這點跟後端語言沒啥關系。R的最大優點就是有一些優秀的可視化包,比如ggplot2

『捌』 Python中數據可視化的兩個庫!

1. Matplotlib:是Python中眾多數據可視化庫的鼻祖,其設計風格與20世紀80年代的商業化程序語言MATLAB十分相似,具有很多強大且復雜的可視化功能;還包含了多種類型的API,可以採用多種方式繪制圖標並對圖標進行定製。
2. Seaborn:是基於Matplotlib進行高級封裝的可視化庫,支持互動式界面,使繪制圖表功能變得簡單,且圖表的色彩更具吸引力。
3. ggplot:是基於Matplotlib並旨在以簡單方式提高Matplotlib可視化感染力的庫,採用疊加圖層的形式繪制圖形,比如先繪制坐標軸所在的圖層,再繪制點所在的圖層,最後繪制線所在的圖層,但其並不適用於個性化定製圖形。
4. Boken:是一個互動式的可視化庫,支持使用Web瀏覽器展示,可使用快速簡單的方式將大型數據集轉換成高性能的、可交互的、結構簡單的圖表。
5. Pygal:是一個可縮放矢量圖標庫,用於生成可在瀏覽器中打開的SVG格式的圖表,這種圖表能夠在不同比例的屏幕上自動縮放,方便用戶交互。
6. Pyecharts:是一個生成ECharts的庫,生成的ECharts憑借良好的交互性、精巧的設計得到了眾多開發者的認可。

『玖』 Python中除了matplotlib外還有哪些數據可視化的庫

數據可視化是展示數據、理解數據的有效手段,常用的Python數據可視化庫如下:
1.Matplotlib:第一個Python可視化庫,有許多別的程序庫都是建立在其基礎上或者直接調用該庫,可以很方便地得到數據的大致信息,功能非常強大,但也非常復雜。
2.Seaborn:利用Matplotlib,用簡潔的代碼來製作好看的圖表,與Matplotlib最大的區別為默認繪圖風格和色彩搭配都具有現代美感。
3.ggplot:基於R的一個作圖庫的ggplot2,同時利用了源於《圖像語法》中的概念,允許疊加不同的圖層來完成一幅圖,並不適用於製作非常個性化的圖像,為操作的簡潔度而犧牲了圖像的復雜度。
4.Bokeh:與ggplot很相似,但與ggplot不同之處為它完全基於Python而不是從R處引用。長處在於能用於製作可交互、可直接用於網路的圖表。圖表可以輸出為JSON對象、HTML文檔或者可交互的網路應用。
5.Plotly:可以通過Python notebook使用,與bokeh一樣致力於交互圖表的製作,但提供在別的庫中幾乎沒有的幾種圖表類型,如等值線圖、樹形圖和三維圖表。
6.pygal:與Bokeh和Plotly一樣,提供可直接嵌入網路瀏覽器的可交互圖像。與其他兩者的主要區別在於可將圖表輸出為SVG格式,所有的圖表都被封裝成方法,且默認的風格也很漂亮,用幾行代碼就可以很容易地製作出漂亮的圖表。
7.geoplotlib:用於製作地圖和地理相關數據的工具箱。可用來製作多種地圖,比如等值區域圖、熱度圖、點密度圖等,必須安裝Pyglet方可使用。
8.missingno:用圖像的方式快速評估數據缺失的情況,可根據數據的完整度對數據進行排序或過濾,或者根據熱度圖或樹狀圖對數據進行修正。

『拾』 Python中數據可視化經典庫有哪些

Python有很多經典的數據可視化庫,比較經典的數據可視化庫有下面幾個。

matplotlib

是Python編程語言及其數值數學擴展包 NumPy 的可視化操作界面。它利用通用的圖形用戶界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,向應用程序嵌入式繪圖提供了應用程序介面。

pyplot 是 matplotlib 的一個模塊,它提供了一個類似 MATLAB 的介面。 matplotlib 被設計得用起來像 MATLAB,具有使用 Python 的能力。

優點:繪圖質量高,可繪制出版物質量級別的圖形。代碼夠簡單,易於理解和擴展,使繪圖變得輕松,通過Matplotlib可以很輕松地畫一些或簡單或復雜的圖形,幾行代碼即可生成直方圖、條形圖、散點圖、密度圖等等,最重要的是免費和開源。

優點:用於創建、操縱和研究復雜網路的結構、以及學習復雜網路的結構、功能及其動力學。

上面是我的回答,希望對您有所幫助!

閱讀全文

與python車間數據可視化相關的資料

熱點內容
phppdf轉換為圖片 瀏覽:373
聊天室源碼完整版 瀏覽:588
超值優惠購買得兩套源碼 瀏覽:42
日產新陽光壓縮機十大品牌 瀏覽:173
javalong的最大值 瀏覽:340
mcs51單片機外部引腳ea 瀏覽:893
蘋果手機怎麼給app給予信用 瀏覽:10
java實型 瀏覽:148
php判斷顯示 瀏覽:695
聯網的單片機 瀏覽:441
安卓錄屏怎麼保存到相冊 瀏覽:350
c語言與單片機 瀏覽:350
tt伺服器是什麼意思 瀏覽:188
賓士app怎麼修改桌面 瀏覽:53
bat演算法面試題 瀏覽:132
因為加密演算法不同 瀏覽:659
會計員app怎麼下載 瀏覽:41
手機小視頻app怎麼刪掉 瀏覽:503
程序員陳一鳴與妹妹 瀏覽:31
個人所得稅app怎麼採集 瀏覽:530