導航:首頁 > 編程語言 > python的3種排序方法

python的3種排序方法

發布時間:2022-06-23 11:45:22

㈠ 怎樣用python將數組里的數從高到低排序

1、首先我們定義一個列表輸入一串大小不一的數字。

㈡ python怎麼降序排列

最為簡單的方法是利用表理解,生成一個新的字典 必須要保證鍵值是一一對應的 d = {'one':1, 'two':2, 'three':3, 'four':4}di = {v:k for k,v in d.items()}di。

import pandas as pd。

s=pd.Series(range(10))。

s.sort_values(ascending=False)。

演算法穩定性

冒泡排序就是把小的元素往前調或者把大的元素往後調。比較是相鄰的兩個元素比較,交換也發生在這兩個元素之間。所以,如果兩個元素相等,是不會再交換的;如果兩個相等的元素沒有相鄰,那麼即使通過前面的兩兩交換把兩個相鄰起來,這時候也不會交換,所以相同元素的前後順序並沒有改變,所以冒泡排序是一種穩定排序演算法。

㈢ python幾種經典排序方法的實現

class SortMethod:
'''
插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據,演算法適用於少量數據的排序,時間復雜度為O(n^2)。是穩定的排序方法。
插入演算法把要排序的數組分成兩部分:
第一部分包含了這個數組的所有元素,但將最後一個元素除外(讓數組多一個空間才有插入的位置)
第二部分就只包含這一個元素(即待插入元素)。
在第一部分排序完成後,再將這個最後元素插入到已排好序的第一部分中。
'''
def insert_sort(lists):
# 插入排序
count = len(lists)
for i in range(1, count):
key = lists[i]
j = i - 1
while j >= 0:
if lists[j] > key:
lists[j + 1] = lists[j]
lists[j] = key
j -= 1
return lists
'''
希爾排序 (Shell Sort) 是插入排序的一種。也稱縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法。該方法因 DL.Shell 於 1959 年提出而得名。
希爾排序是把記錄按下標的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至 1 時,整個文件恰被分成一組,演算法便終止。
'''
def shell_sort(lists):
# 希爾排序
count = len(lists)
step = 2
group = count / step
while group > 0:
for i in range(0, group):
j = i + group
while j < count:
k = j - group
key = lists[j]
while k >= 0:
if lists[k] > key:
lists[k + group] = lists[k]
lists[k] = key
k -= group
j += group
group /= step
return lists
'''
冒泡排序重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。
'''
def bubble_sort(lists):
# 冒泡排序
count = len(lists)
for i in range(0, count):
for j in range(i + 1, count):
if lists[i] > lists[j]:
temp = lists[j]
lists[j] = lists[i]
lists[i] = temp
return lists
'''
快速排序
通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列
'''
def quick_sort(lists, left, right):
# 快速排序
if left >= right:
return lists
key = lists[left]
low = left
high = right
while left < right:
while left < right and lists[right] >= key:
right -= 1
lists[left] = lists[right]
while left < right and lists[left] <= key:
left += 1
lists[right] = lists[left]
lists[right] = key
quick_sort(lists, low, left - 1)
quick_sort(lists, left + 1, high)
return lists
'''
直接選擇排序
第 1 趟,在待排序記錄 r[1] ~ r[n] 中選出最小的記錄,將它與 r[1] 交換;
第 2 趟,在待排序記錄 r[2] ~ r[n] 中選出最小的記錄,將它與 r[2] 交換;
以此類推,第 i 趟在待排序記錄 r[i] ~ r[n] 中選出最小的記錄,將它與 r[i] 交換,使有序序列不斷增長直到全部排序完畢。
'''
def select_sort(lists):
# 選擇排序
count = len(lists)
for i in range(0, count):
min = i
for j in range(i + 1, count):
if lists[min] > lists[j]:
min = j
temp = lists[min]
lists[min] = lists[i]
lists[i] = temp
return lists
'''
堆排序 (Heapsort) 是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法,它是選擇排序的一種。
可以利用數組的特點快速定位指定索引的元素。堆分為大根堆和小根堆,是完全二叉樹。大根堆的要求是每個節點的值都不大於其父節點的值,即 A[PARENT[i]] >= A[i]。
在數組的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。
'''
# 調整堆
def adjust_heap(lists, i, size):
lchild = 2 * i + 1
rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size)
# 創建堆
def build_heap(lists, size):
for i in range(0, (size/2))[::-1]:
adjust_heap(lists, i, size)
# 堆排序
def heap_sort(lists):
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i)
'''
歸並排序是建立在歸並操作上的一種有效的排序演算法,該演算法是採用分治法 (Divide and Conquer) 的一個非常典型的應用。將已有序的子序列合並,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合並成一個有序表,稱為二路歸並。
歸並過程為:
比較 a[i] 和 a[j] 的大小,若 a[i]≤a[j],則將第一個有序表中的元素 a[i] 復制到 r[k] 中,並令 i 和 k 分別加上 1;
否則將第二個有序表中的元素 a[j] 復制到 r[k] 中,並令 j 和 k 分別加上 1,如此循環下去,直到其中一個有序表取完,然後再將另一個有序表中剩餘的元素復制到 r 中從下標 k 到下標 t 的單元。歸並排序的演算法我們通常用遞歸實現,先把待排序區間 [s,t] 以中點二分,接著把左邊子區間排序,再把右邊子區間排序,最後把左區間和右區間用一次歸並操作合並成有序的區間 [s,t]。
'''
def merge(left, right):
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
def merge_sort(lists):
# 歸並排序
if len(lists) <= 1:
return lists
num = len(lists) / 2
left = merge_sort(lists[:num])
right = merge_sort(lists[num:])
return merge(left, right)
'''
基數排序 (radix sort) 屬於「分配式排序」 (distribution sort),又稱「桶子法」 (bucket sort) 或 bin sort,顧名思義,它是透過鍵值的部份資訊,將要排序的元素分配至某些「桶」中,藉以達到排序的作用,基數排序法是屬於穩定性的排序。
其時間復雜度為 O (nlog(r)m),其中 r 為所採取的基數,而 m 為堆數,在某些時候,基數排序法的效率高於其它的穩定性排序法。
'''
import math
def radix_sort(lists, radix=10):
k = int(math.ceil(math.log(max(lists), radix)))
bucket = [[] for i in range(radix)]
for i in range(1, k+1):
for j in lists:
bucket[j/(radix**(i-1)) % (radix**i)].append(j)
del lists[:]
for z in bucket:
lists += z
del z[:]
return lists
---------------------
作者:CRazyDOgen
來源:CSDN
原文:https://blog.csdn.net/jipang6225/article/details/79975312
版權聲明:本文為博主原創文章,轉載請附上博文鏈接!

㈣ 如何對python編程中的列表元素按成績高低進行排序呢

最簡單的辦法就是需要指定列表排序方法中的參數「key」。代碼如下:
第一種:
stu=[['john',79],['mame',96],['herry',85],['lili',95],['ziling',63]]
def takeSecond(elem):
return elem[1]
stu.sort(key=takeSecond,,reverse=True)
print(stu)
第二種:
stu=[['john',79],['mame',96],['herry',85],['lili',95],['ziling',63]]
s=sorted(stu,key=lambda student: student[1],,reverse=True)
print(s)

閱讀全文

與python的3種排序方法相關的資料

熱點內容
代碼加密常用方法 瀏覽:950
安卓手機如何解除已禁用 瀏覽:396
演算法的隨機性 瀏覽:485
高中解壓體育游戲 瀏覽:532
androidstudior丟失 瀏覽:345
命令行筆記 瀏覽:737
360目標文件夾訪問拒絕 瀏覽:518
3b編程加工指令 瀏覽:789
c8051f系列單片機選型手冊 瀏覽:772
南昌php程序員 瀏覽:511
bcs命令 瀏覽:446
如何在伺服器指向域名 瀏覽:417
車床編程可以做刀嗎 瀏覽:519
ln命令源碼 瀏覽:791
用粘液做解壓手套 瀏覽:331
icloud收信伺服器地址 瀏覽:500
編程思考者 瀏覽:453
壓縮機型號用什麼氟利昂 瀏覽:553
農機空氣壓縮機 瀏覽:666
程序員下載歌曲 瀏覽:897