① python 怎樣爬去網頁的內容
用python爬取網頁信息的話,需要學習幾個模塊,urllib,urllib2,urllib3,requests,httplib等等模塊,還要學習re模塊(也就是正則表達式)。根據不同的場景使用不同的模塊來高效快速的解決問題。
最開始我建議你還是從最簡單的urllib模塊學起,比如爬新浪首頁(聲明:本代碼只做學術研究,絕無攻擊用意):
這樣就把新浪首頁的源代碼爬取到了,這是整個網頁信息,如果你要提取你覺得有用的信息得學會使用字元串方法或者正則表達式了。
平時多看看網上的文章和教程,很快就能學會的。
補充一點:以上使用的環境是python2,在python3中,已經把urllib,urllib2,urllib3整合為一個包,而不再有這幾個單詞為名字的模塊。
② 如何利用Python爬蟲從網頁上批量獲取想要的信息
稍微說一下背景,當時我想研究蛋白質與小分子的復合物在空間三維結構上的一些規律,首先得有數據啊,數據從哪裡來?就是從一個涵蓋所有已經解析三維結構的蛋白質-小分子復合物的資料庫裡面下載。這時候,手動一個個去下顯然是不可取的,我們需要寫個腳本,能從特定的網站選擇性得批量下載需要的信息。python是不錯的選擇。
import urllib #python中用於獲取網站的模塊
import urllib2, cookielib
有些網站訪問時需要cookie的,python處理cookie代碼如下:
cj = cookielib.CookieJar ( )
opener = urllib2.build_opener( urllib2.HttpCookieProcessor(cj) )
urllib2.install_opener (opener)
通常我們需要在網站中搜索得到我們需要的信息,這里分為二種情況:
1. 第一種,直接改變網址就可以得到你想要搜索的頁面:
def GetWebPage( x ): #我們定義一個獲取頁面的函數,x 是用於呈遞你在頁面中搜索的內容的參數
url = 'http://xxxxx/xxx.cgi?&' + 『你想要搜索的參數』 # 結合自己頁面情況適當修改
page = urllib2.urlopen(url)
pageContent = page.read( )
return pageContent #返回的是HTML格式的頁面信息
2.第二種,你需要用到post方法,將你搜索的內容放在postdata裡面,然後返回你需要的頁面
def GetWebPage( x ): #我們定義一個獲取頁面的函數,x 是用於呈遞你在頁面中搜索的內容的參數
url = 'http://xxxxx/xxx' #這個網址是你進入搜索界面的網址
postData = urllib.urlencode( { 各種『post』參數輸入 } ) #這裡面的post參數輸入需要自己去查
req= urllib2.Request (url, postData)
pageContent = urllib2.urlopen (req). read( )
return pageContent #返回的是HTML格式的頁面信息
在獲取了我們需要的網頁信息之後,我們需要從獲得的網頁中進一步獲取我們需要的信息,這里我推薦使用 BeautifulSoup 這個模塊, python自帶的沒有,可以自行網路谷歌下載安裝。 BeautifulSoup 翻譯就是『美味的湯』,你需要做的是從一鍋湯裡面找到你喜歡吃的東西。
import re # 正則表達式,用於匹配字元
from bs4 import BeautifulSoup # 導入BeautifulSoup 模塊
soup = BeautifulSoup(pageContent) #pageContent就是上面我們搜索得到的頁面
soup就是 HTML 中所有的標簽(tag)BeautifulSoup處理格式化後的字元串,一個標準的tag形式為:
hwkobe24
通過一些過濾方法,我們可以從soup中獲取我們需要的信息:
(1) find_all ( name , attrs , recursive , text , **kwargs)
這裡面,我們通過添加對標簽的約束來獲取需要的標簽列表, 比如 soup.find_all ('p') 就是尋找名字為『p』的 標簽,而soup.find_all (class = "tittle") 就是找到所有class屬性為"tittle" 的標簽,以及soup.find_all ( class = re.compile('lass')) 表示 class屬性中包含『lass』的所有標簽,這里用到了正則表達式(可以自己學習一下,非常有用滴)
當我們獲取了所有想要標簽的列表之後,遍歷這個列表,再獲取標簽中你需要的內容,通常我們需要標簽中的文字部分,也就是網頁中顯示出來的文字,代碼如下:
tagList = soup.find_all (class="tittle") #如果標簽比較復雜,可以用多個過濾條件使過濾更加嚴格
for tag in tagList:
print tag.text
f.write ( str(tag.text) ) #將這些信息寫入本地文件中以後使用
(2)find( name , attrs , recursive , text , **kwargs )
它與 find_all( ) 方法唯一的區別是 find_all() 方法的返回結果是值包含一個元素的列表,而 find() 方法直接返回結果
(3)find_parents( ) find_parent( )
find_all() 和 find() 只搜索當前節點的所有子節點,孫子節點等. find_parents() 和 find_parent() 用來搜索當前節點的父輩節點,搜索方法與普通tag的搜索方法相同,搜索文檔搜索文檔包含的內容
(4)find_next_siblings() find_next_sibling()
這2個方法通過 .next_siblings 屬性對當 tag 的所有後面解析的兄弟 tag 節點進代, find_next_siblings() 方法返回所有符合條件的後面的兄弟節點,find_next_sibling() 只返回符合條件的後面的第一個tag節點
(5)find_previous_siblings() find_previous_sibling()
這2個方法通過 .previous_siblings 屬性對當前 tag 的前面解析的兄弟 tag 節點進行迭代, find_previous_siblings()方法返回所有符合條件的前面的兄弟節點, find_previous_sibling() 方法返回第一個符合條件的前面的兄弟節點
(6)find_all_next() find_next()
這2個方法通過 .next_elements 屬性對當前 tag 的之後的 tag 和字元串進行迭代, find_all_next() 方法返回所有符合條件的節點, find_next() 方法返回第一個符合條件的節點
(7)find_all_previous() 和 find_previous()
這2個方法通過 .previous_elements 屬性對當前節點前面的 tag 和字元串進行迭代, find_all_previous() 方法返回所有符合條件的節點, find_previous()方法返回第一個符合條件的節點
具體的使用方法還有很多,用到這里你應該可以解決大部分問題了,如果要更深入了解可以參考官方的使用說明哈!
③ 如何用python讀取瀏覽器歷史記錄
1.建議換網路瀏覽器,網路瀏覽器功能更齊全,內容更豐富;
2.網路瀏覽器依靠網路強大的搜索平台,在滿足瀏覽網頁的基礎上,以網路體系業務整合為優勢,帶給更方便的瀏覽方式,更舒適的上網體驗。
④ python爬蟲登錄知乎後怎樣爬取數據
模擬登錄
很多網站,比如知乎、微博、豆瓣,都需要登錄之後,才能瀏覽某些內容。所以想要爬取這類網站,必須先模擬登錄。比較簡單的方式是利用這個網站的 cookie。cookie 相當於是一個密碼箱,裡面儲存了用戶在該網站的基本信息。在一次登錄之後,網站會記住你的信息,把它放到cookie里,方便下次自動登錄。所以,要爬取這類網站的策略是:先進行一次手動登錄,獲取cookie,然後再次登錄時,調用上一次登錄得到的cookie,實現自動登錄。
動態爬取
在爬取知乎某個問題的時候,需要將滑動滑鼠滾輪到底部,以顯示新的回答。靜態的爬取方法無法做到這一點,可以引入selenium庫來解決這一問題。selenium庫模擬人瀏覽網站、進行操作,簡單易懂。
⑤ 怎麼用Python從多個網址中爬取內容
調用 requests 包 , BeautifulSoup4包, 能實現,網頁內容寫入 excel 不太好看,建議寫入 txt 或者 xml。確定要寫入 Excel 可以調用 pandas包或者 openpyxl包
⑥ 如何用 Python 爬取需要登錄的網站
最近我必須執行一項從一個需要登錄的網站上爬取一些網頁的操作。它沒有我想像中那麼簡單,因此我決定為它寫一個輔助教程。
在本教程中,我們將從我們的bitbucket賬戶中爬取一個項目列表。
教程中的代碼可以從我的Github中找到。
我們將會按照以下步驟進行:
提取登錄需要的詳細信息
執行站點登錄
爬取所需要的數據
在本教程中,我使用了以下包(可以在requirements.txt中找到):
Python
1
2
requests
lxml
步驟一:研究該網站
打開登錄頁面
進入以下頁面 「bitbucket.org/account/signin」。你會看到如下圖所示的頁面(執行注銷,以防你已經登錄)
仔細研究那些我們需要提取的詳細信息,以供登錄之用
在這一部分,我們會創建一個字典來保存執行登錄的詳細信息:
1. 右擊 「Username or email」 欄位,選擇「查看元素」。我們將使用 「name」 屬性為 「username」 的輸入框的值。「username」將會是 key 值,我們的用戶名/電子郵箱就是對應的 value 值(在其他的網站上這些 key 值可能是 「email」,「 user_name」,「 login」,等等)。
2. 右擊 「Password」 欄位,選擇「查看元素」。在腳本中我們需要使用 「name」 屬性為 「password」的輸入框的值。「password」 將是字典的 key 值,我們輸入的密碼將是對應的 value 值(在其他網站key值可能是 「userpassword」,「loginpassword」,「pwd」,等等)。
3. 在源代碼頁面中,查找一個名為 「csrfmiddlewaretoken」 的隱藏輸入標簽。「csrfmiddlewaretoken」 將是 key 值,而對應的 value 值將是這個隱藏的輸入值(在其他網站上這個 value 值可能是一個名為 「csrftoken」,「authenticationtoken」的隱藏輸入值)。列如:「」。
最後我們將會得到一個類似這樣的字典:
Python
1
2
3
4
5
payload = {
"username": "<USER NAME>",
"password": "<PASSWORD>",
"csrfmiddlewaretoken": "<CSRF_TOKEN>"
}
請記住,這是這個網站的一個具體案例。雖然這個登錄表單很簡單,但其他網站可能需要我們檢查瀏覽器的請求日誌,並找到登錄步驟中應該使用的相關的 key 值和 value 值。
步驟2:執行登錄網站
對於這個腳本,我們只需要導入如下內容:
Python
1
2
import requests
from lxml import html
首先,我們要創建session對象。這個對象會允許我們保存所有的登錄會話請求。
Python
1
session_requests = requests.session()
第二,我們要從該網頁上提取在登錄時所使用的 csrf 標記。在這個例子中,我們使用的是 lxml 和 xpath 來提取,我們也可以使用正則表達式或者其他的一些方法來提取這些數據。
Python
1
2
3
4
5
login_url = "n/?next=/"
result = session_requests.get(login_url)
tree = html.fromstring(result.text)
authenticity_token = list(set(tree.xpath("//input[@name='csrfmiddlewaretoken']/@value")))[0]
**更多關於xpath 和lxml的信息可以在這里找到。
接下來,我們要執行登錄階段。在這一階段,我們發送一個 POST 請求給登錄的 url。我們使用前面步驟中創建的 payload 作為 data 。也可以為該請求使用一個標題並在該標題中給這個相同的 url添加一個參照鍵。
Python
1
2
3
4
5
result = session_requests.post(
login_url,
data = payload,
headers = dict(referer=login_url)
)
步驟三:爬取內容
現在,我們已經登錄成功了,我們將從bitbucket dashboard頁面上執行真正的爬取操作。
Python
1
2
3
4
5
url = '/overview'
result = session_requests.get(
url,
headers = dict(referer = url)
)
為了測試以上內容,我們從 bitbucket dashboard 頁面上爬取了項目列表。我們將再次使用 xpath 來查找目標元素,清除新行中的文本和空格並列印出結果。如果一切都運行 OK,輸出結果應該是你 bitbucket 賬戶中的 buckets / project 列表。
Python
1
2
3
4
5
tree = html.fromstring(result.content)
bucket_elems = tree.findall(".//span[@class='repo-name']/")
bucket_names = [bucket.text_content.replace("n", "").strip() for bucket in bucket_elems]
print bucket_names
你也可以通過檢查從每個請求返回的狀態代碼來驗證這些請求結果。它不會總是能讓你知道登錄階段是否是成功的,但是可以用來作為一個驗證指標。
例如:
Python
1
2
result.ok # 會告訴我們最後一次請求是否成功
result.status_code # 會返回給我們最後一次請求的狀態
⑦ 如何用python寫爬蟲來獲取網頁中所有的文章以及關鍵詞
所謂網頁抓取,就是把URL地址中指定的網路資源從網路流中讀取出來,保存到本地。
類似於使用程序模擬IE瀏覽器的功能,把URL作為HTTP請求的內容發送到伺服器端, 然後讀取伺服器端的響應資源。
在Python中,我們使用urllib2這個組件來抓取網頁。
urllib2是Python的一個獲取URLs(Uniform Resource Locators)的組件。
它以urlopen函數的形式提供了一個非常簡單的介面。
最簡單的urllib2的應用代碼只需要四行。
我們新建一個文件urllib2_test01.py來感受一下urllib2的作用:
import urllib2
response = urllib2.urlopen('http://www..com/')
html = response.read()
print html
按下F5可以看到運行的結果:
我們可以打開網路主頁,右擊,選擇查看源代碼(火狐OR谷歌瀏覽器均可),會發現也是完全一樣的內容。
也就是說,上面這四行代碼將我們訪問網路時瀏覽器收到的代碼們全部列印了出來。
這就是一個最簡單的urllib2的例子。
除了"http:",URL同樣可以使用"ftp:","file:"等等來替代。
HTTP是基於請求和應答機制的:
客戶端提出請求,服務端提供應答。
urllib2用一個Request對象來映射你提出的HTTP請求。
在它最簡單的使用形式中你將用你要請求的地址創建一個Request對象,
通過調用urlopen並傳入Request對象,將返回一個相關請求response對象,
這個應答對象如同一個文件對象,所以你可以在Response中調用.read()。
我們新建一個文件urllib2_test02.py來感受一下:
import urllib2
req = urllib2.Request('http://www..com')
response = urllib2.urlopen(req)
the_page = response.read()
print the_page
可以看到輸出的內容和test01是一樣的。
urllib2使用相同的介面處理所有的URL頭。例如你可以像下面那樣創建一個ftp請求。
req = urllib2.Request('ftp://example.com/')
在HTTP請求時,允許你做額外的兩件事。
1.發送data表單數據
這個內容相信做過Web端的都不會陌生,
有時候你希望發送一些數據到URL(通常URL與CGI[通用網關介面]腳本,或其他WEB應用程序掛接)。
在HTTP中,這個經常使用熟知的POST請求發送。
這個通常在你提交一個HTML表單時由你的瀏覽器來做。
並不是所有的POSTs都來源於表單,你能夠使用POST提交任意的數據到你自己的程序。
一般的HTML表單,data需要編碼成標准形式。然後做為data參數傳到Request對象。
編碼工作使用urllib的函數而非urllib2。
我們新建一個文件urllib2_test03.py來感受一下:
import urllib
import urllib2
url = 'http://www.someserver.com/register.cgi'
values = {'name' : 'WHY',
'location' : 'SDU',
'language' : 'Python' }
data = urllib.urlencode(values) # 編碼工作
req = urllib2.Request(url, data) # 發送請求同時傳data表單
response = urllib2.urlopen(req) #接受反饋的信息
the_page = response.read() #讀取反饋的內容
如果沒有傳送data參數,urllib2使用GET方式的請求。
GET和POST請求的不同之處是POST請求通常有"副作用",
它們會由於某種途徑改變系統狀態(例如提交成堆垃圾到你的門口)。
Data同樣可以通過在Get請求的URL本身上面編碼來傳送。
import urllib2
import urllib
data = {}
data['name'] = 'WHY'
data['location'] = 'SDU'
data['language'] = 'Python'
url_values = urllib.urlencode(data)
print url_values
name=Somebody+Here&language=Python&location=Northampton
url = 'http://www.example.com/example.cgi'
full_url = url + '?' + url_values
data = urllib2.open(full_url)
這樣就實現了Data數據的Get傳送。
2.設置Headers到http請求
有一些站點不喜歡被程序(非人為訪問)訪問,或者發送不同版本的內容到不同的瀏覽器。
默認的urllib2把自己作為「Python-urllib/x.y」(x和y是Python主版本和次版本號,例如Python-urllib/2.7),
這個身份可能會讓站點迷惑,或者乾脆不工作。
瀏覽器確認自己身份是通過User-Agent頭,當你創建了一個請求對象,你可以給他一個包含頭數據的字典。
下面的例子發送跟上面一樣的內容,但把自身模擬成Internet Explorer。
(多謝大家的提醒,現在這個Demo已經不可用了,不過原理還是那樣的)。
import urllib
import urllib2
url = 'http://www.someserver.com/cgi-bin/register.cgi'
user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'
values = {'name' : 'WHY',
'location' : 'SDU',
'language' : 'Python' }
headers = { 'User-Agent' : user_agent }
data = urllib.urlencode(values)
req = urllib2.Request(url, data, headers)
response = urllib2.urlopen(req)
the_page = response.read()
以上就是python利用urllib2通過指定的URL抓取網頁內容的全部內容,非常簡單吧,希望對大家能有所幫助。
⑧ 如何在scrapy框架下,用python實現爬蟲自動跳轉頁面來抓去網頁內容
Scrapy是一個用Python寫的Crawler Framework,簡單輕巧,並且非常方便。Scrapy使用Twisted這個非同步網路庫來處理網路通信,架構清晰,並且包含了各種中間件介面,可以靈活地完成各種需求。Scrapy整體架構如下圖所示:
根據架構圖介紹一下Scrapy中的各大組件及其功能:
Scrapy引擎(Engine):負責控制數據流在系統的所有組建中流動,並在相應動作發生觸發事件。
調度器(Scheler):從引擎接收Request並將它們入隊,以便之後引擎請求request時提供給引擎。
下載器(Downloader):負責獲取頁面數據並提供給引擎,而後提供給Spider。
Spider:Scrapy用戶編寫用於分析Response並提取Item(即獲取到的Item)或額外跟進的URL的類。每個Spider負責處理一個特定(或一些網站)。
Item Pipeline:負責處理被Spider提取出來的Item。典型的處理有清理驗證及持久化(例如存儲到資料庫中,這部分後面會介紹存儲到MySQL中,其他的資料庫類似)。
下載器中間件(Downloader middlewares):是在引擎即下載器之間的特定鉤子(special hook),處理Downloader傳遞給引擎的Response。其提供了一個簡便的機制,通過插入自定義代碼來擴展Scrapy功能(後面會介紹配置一些中間並激活,用以應對反爬蟲)。
Spider中間件(Spider middlewares):是在引擎及Spider之間的特定鉤子(special hook),處理Spider的輸入(response)和輸出(Items即Requests)。其提供了一個簡便的機制,通過插入自定義的代碼來擴展Scrapy功能。
⑨ 怎麼使用python爬取百度網的數據
檔案系統初期算是告一段落了,利用一點時間繼續爬取POI。和領導聊聊,受益匪淺。之前我的想法是爬取一份poi數據,直接能用;而領導聽了之後,覺得更好的方式是爬取多個渠道來源的POI數據,然後做一個數據比較融合(最終事情能不能成不好說,但是經過這么一回,細節技術上有所提高,宏觀把控整體項目流程能力有所長進,更重要的是通過和能人交流,以更高的眼界更宏觀的看待數據、應用以及問題,這就是成長)。 我之前採用的方式,可以滿足需求,但是POI數據獲取效率差一些(雖然已經很快,但是相比本文這種還是慢一些)、數據現勢性不好,高德數據和網路數據雖然是兩套,但是僅僅是坐標不同(所以顯然還是一套)。所以,我加一種方式來爬取網路poi。
一 調研: 網路API提供了一個叫Place API獲取poi的介面,有個城市內檢索 實例為
ce/v2/search?query=銀行&page_size=10&page_num=0&scope=1®ion=北京&output=json&ak={您的密鑰}
它返回的是個json類型數據,一個區域最大返回數為400,每頁最大返回數為20。顯然一個城市內不管什麼類別的poi,不可能只有400個,會遺漏數據,故捨去
還有一個矩形區域檢索,實例為
u.com/place/v2/search?query=美食&page_size=10&page_num=0&scope=1&bounds=39.915,116.404,39.975,116.414&output=json&ak={您的密鑰}只要區域劃分得當,這個可以使用
二 要解決的問題
1 區域劃分
網上有人通過遞歸寫代碼的方式來劃分,這樣劃分有問題,第一,劃分的區域不能完全對應一個城市的市區;第二,演算法設計比較麻煩。解決辦法,後面詳細說。
2 類別問題
網路API的介面必須要指定query的類別,那麼如果類別指定不準,或者類別不全,根本無法完成爬取一個城市所有poi的任務。解決辦法,說實話,這個問題在我做這件事情的時候,
十分棘手,不過我最終找到了這個網頁
/index.php?title=lbscloud/poitags,一切都不是問題了
三 整體流程
1 區域劃分,2km*2km的區域基本可以滿足需求,獲取每個區域的對角坐標(經緯度),逐行寫入一個txt文本里
2 爬蟲程序編寫 讀取1中的txt文本,逐行循環;調用網路API介面,爬取json;將爬取的數據存入資料庫中; 每個類別跑一次程序
3 爬下的POI數據處理 poi顯示,投影坐標轉換,與地圖疊加
後文將詳細介紹流程
⑩ 用python爬取網頁數據
用python爬取網頁數據就三步,用scrapy(爬蟲框架)
1. 定義item類
2. 開發spider類
3. 開發pipeline
如果有不會的,可以看一看《瘋狂python講義》