㈠ 如何用最簡單的python爬蟲採集整個網站
在之前的文章中Python實現「維基網路六度分隔理論「之基礎爬蟲,我們實現了在一個網站上隨機地從一個鏈接到另一個鏈接,但是,如果我們需要系統地把整個網站按目錄分類,或者要搜索網站上的每一個頁面,我們該怎麼辦?我們需要採集整個網站,但是那是一種非常耗費內存資源的過程,尤其是處理大型網站時,比較合適的工具就是用一個資料庫來存儲採集的資源,之前也說過。下面來說一下怎麼做。
網站地圖sitemap
網站地圖,又稱站點地圖,它就是一個頁面,上面放置了網站上需要搜索引擎抓取的所有頁面的鏈接(註:不是所有頁面,一般來說是所有文章鏈接。大多數人在網站上找不到自己所需要的信息時,可能會將網站地圖作為一種補救措施。搜索引擎蜘蛛非常喜歡網站地圖。
對於SEO,網站地圖的好處:
1.為搜索引擎蜘蛛提供可以瀏覽整個網站的鏈接簡單的體現出網站的整體框架出來給搜索引擎看;
2.為搜索引擎蜘蛛提供一些鏈接,指向動態頁面或者採用其他方法比較難以到達的頁面;
3.作為一種潛在的著陸頁面,可以為搜索流量進行優化;
4.如果訪問者試圖訪問網站所在域內並不存在的URL,那麼這個訪問者就會被轉到「無法找到文件」的錯誤頁面,而網站地圖可以作為該頁面的「准」內容。
數據採集
採集網站數據並不難,但是需要爬蟲有足夠的深度。我們創建一個爬蟲,遞歸地遍歷每個網站,只收集那些網站頁面上的數據。一般的比較費時間的網站採集方法從頂級頁面開始(一般是網站主頁),然後搜索頁面上的所有鏈接,形成列表,再去採集到的這些鏈接頁面,繼續採集每個頁面的鏈接形成新的列表,重復執行。
很明顯,這是一個復雜度增長很快的過程。加入每個頁面有10個鏈接,網站上有5個頁面深度,如果採集整個網站,一共得採集的網頁數量是105,即100000個頁面。
因為網站的內鏈有很多都是重復的,所以為了避免重復採集,必須鏈接去重,在Python中,去重最常用的方法就是使用自帶的set集合方法。只有「新」鏈接才會被採集。看一下代碼實例:
from urllib.request import urlopenfrom bs4 import BeautifulSoupimport repages = set()def getLinks(pageurl):globalpageshtml= urlopen("" + pageurl)soup= BeautifulSoup(html)forlink in soup.findAll("a", href=re.compile("^(/wiki/)")):if'href' in link.attrs:iflink.attrs['href'] not in pages:#這是新頁面newPage= link.attrs['href']print(newPage)pages.add(newPage)getLinks(newPage)getLinks("")
原理說明:程序執行時,用函數處理一個空URL,其實就是維基網路的主頁,然後遍歷首頁上每個鏈接,並檢查是否已經在全局變數集合pages裡面,如果不在,就列印並添加到pages集合,然後遞歸處理這個鏈接。
遞歸警告:Python默認的遞歸限制是1000次,因為維基網路的鏈接浩如煙海,所以這個程序達到遞歸限制後就會停止。如果你不想讓它停止,你可以設置一個遞歸計數器或者其他方法。
採集整個網站數據
為了有效使用爬蟲,在用爬蟲的時候我們需要在頁面上做一些事情。我們來創建一個爬蟲來收集頁面標題、正文的第一個段落,以及編輯頁面的鏈接(如果有的話)這些信息。
第一步,我們需要先觀察網站上的頁面,然後制定採集模式,通過F12(一般情況下)審查元素,即可看到頁面組成。
觀察維基網路頁面,包括詞條和非詞條頁面,比如隱私策略之類的頁面,可以得出下面的規則:
所有的標題都是在h1→span標簽里,而且頁面上只有一個h1標簽。
所有的正文文字都在div#bodyContent標簽里,如果我們想獲取第一段文字,可以用div#mw-content-text→p,除了文件頁面,這個規則對所有頁面都適用。
編輯鏈接只出現在詞條頁面上,如果有編輯鏈接,都位於li#ca-edit標簽的li#ca-edit→span→a裡面。
調整一下之前的代碼,我們可以建立一個爬蟲和數據採集的組合程序,代碼如下:
import redef getLinks(pageUrl):global pageshtml = urlopen("" + pageUrl)soup = BeautifulSoup(html)try:print(soup.h1.get_text())print(soup.find(id="mw-content-text").findAll("p")[0])print(soup.find(id="ca-edit").find("span").find("a").attrs['href'])except AttributeError:print("頁面缺少屬性")for link in soup.findAll("a", href =re.compile("^(/wiki/)")):if 'href' in link.attrs:#這是新頁面newPage = link.attrs['href']print("------------------\n"+newPage)
這個for循環和原來的採集程序基本上是一樣的,因為不能確定每一頁上都有所有類型的數據,所以每個列印語句都是按照數據在頁面上出現的可能性從高到低排列的。
數據存儲到MySQL
前面已經獲取了數據,直接列印出來,查看比較麻煩,所以我們就直接存到MySQL裡面吧,這里只存鏈接沒有意義,所以我們就存儲頁面的標題和內容。前面我有兩篇文章已經介紹過如何存儲數據到MySQL,數據表是pages,這里直接給出代碼:
import reimport datetimeimport randomimport pymysqlconn = pymysql.connect(host = '127.0.0.1',port = 3306, user = 'root', passwd = '19930319', db = 'wiki', charset ='utf8mb4')cur = conn.cursor()cur.execute("USE wiki")#隨機數種子random.seed(datetime.datetime.now())#數據存儲def store(title, content):cur.execute("INSERT INTO pages(title, content)VALUES(\"%s\", \"%s\")", (title, content))cur.connection.commit()def getLinks(articleUrl):html = urlopen("" + articleUrl)title = soup.find("h1").get_text()content =soup.find("div",{"id":"mw-content-text"}).find("p").get_text()store(title, content)returnsoup.find("div",{"id":"bodyContent"}).findAll("a",href=re.compile("^(/wiki/)((?!:).)*$"))#設置第一頁links =getLinks("/wiki/Kevin_Bacon")try:while len(links)>0:newArticle = links[random.randint(0, len(links)-1)].attrs['href']print (newArticle)links = getLinks(newArticle)finally:cur.close()conn.close()
小結
今天主要講一下Python中遍歷採集一個網站的鏈接,方便下面的學習。
希望通過上面的操作能幫助大家。如果你有什麼好的意見,建議,或者有不同的看法,我都希望你留言和我們進行交流、討論。
㈡ python3 獲取title的編寫
水平有限,不會造輪子,只為學習。
在原來寫埠掃描的基礎上進一步爬取web服務的title信息,方便收集信息。
適用於在外網收集資產形成IP字典後去批量獲取title,意在最快地尋找脆弱點。
自行安裝BeautifulSoup4、requests庫。
V1.0
python3 寫的單線程爬取web系統的title信息。
註解
1.使用BeautifulSoup4庫來解析HTML,爬取title信息;
2.列印title時,帶有顏色的輸出;
3.在開放443、4433、8443埠時,採用https進行訪問;
4.解決SSL認證問題;
V1.0.1
python3 單線程寫的爬取網站title信息。增加了OptionParser模塊,運行時看起來比較舒服。
註解
1.依然是從IP字典里爬取,實際運行腳本時,即使沒有獲取title,也應該手動訪問開放的埠,往往有意外驚喜;
2.埠內置在腳本里,可自行修改;
V1.1
python3寫的多線程爬取web系統的title。
註解
1.只是使用threading模塊,沒有添加到隊列,也沒有加鎖;本身port_list也不多;
V1.2
python3 寫的多線程加隊列的來爬取web系統的title信息。
註解
1.增加了queue隊列,和多線程配合使用。更加實用;
V1.3
python3 寫的多線程加隊列的來爬取web系統的title信息。
增加result輸出結果到文本,適應於內外網埠掃描並獲取title
python3 編寫掃描IP網段如192.168.1.0/24某些指定應用埠爬取title信息。 在代理進行內網滲透時內網資產不容易找到。
適用於內網、外網環境。
自行安裝BeautifulSoup4、requests庫。
V2.0
python3寫的掃描IP段並爬取title信息,收集資產。
註解
1.使用ipaddress模塊獲取C段地址,也可以是B段;
2.只使用threading模塊,沒有添加隊列queue;
V2.1
python3 寫的多線程掃描IP段爬取title。在一定線程下,代理探測內網資產title的非常使用。
註解
1.port_list列表移動到scan方法里;
2.將IP添加到queue隊列,而不是埠;
V2.2
python3 寫的多線程掃描IP段爬取title。
註解
1.只是增加了result_out方法,將結果輸出到指定文件;
https://github.com/aedoo/WebServiceScanner/blob/master/webservicescanner.py
㈢ 如何用Python爬取搜索引擎的結果
我選取的是爬取網路知道的html 作為我的搜索源數據,目前先打算做網頁標題的搜索,選用了 Python 的 scrapy 庫來對網頁進行爬取,爬取網頁的標題,url,以及html,用sqlist3來對爬取的數據源進行管理。
爬取的過程是一個深度優先的過程,設定四個起始 url ,然後維護一個資料庫,資料庫中有兩個表,一個 infoLib,其中存儲了爬取的主要信息:標題,url ,html;另一個表為urlLib,存儲已經爬取的url,是一個輔助表,在我們爬取每個網頁前,需要先判斷該網頁是否已爬過(是否存在urlLib中)。在數據存儲的過程中,使用了SQL的少量語法,由於我之前學過 MySQL ,這塊處理起來比較駕輕就熟。
深度優先的網頁爬取方案是:給定初始 url,爬取這個網頁中所有 url,繼續對網頁中的 url 遞歸爬取。代碼逐段解析在下面,方便自己以後回顧。
1.建一個 scrapy 工程:
關於建工程,可以參看這個scrapy入門教程,通過運行:
[python] view plain
scrapy startproject ***
在當前目錄下建一個scrapy 的項目,然後在 spiders 的子目錄下建立一個 .py文件,該文件即是爬蟲的主要文件,注意:其中該文件的名字不能與該工程的名字相同,否則,之後調用跑這個爬蟲的時候將會出現錯誤,見ImportError。
2.具體寫.py文件:
[python] view plain
import scrapy
from scrapy import Request
import sqlite3
class rsSpider(scrapy.spiders.Spider): #該類繼承自 scrapy 中的 spider
name = "" #將該爬蟲命名為 「知道」,在執行爬蟲時對應指令將為: scrapy crawl
#download_delay = 1 #只是用於控制爬蟲速度的,1s/次,可以用來對付反爬蟲
allowed_domains = ["..com"] #允許爬取的作用域
url_first = 'http://..com/question/' #用於之後解析域名用的短字元串
start_urls = ["http://..com/question/647795152324593805.html", #python
"http://..com/question/23976256.html", #database
"http://..com/question/336615223.html", #C++
"http://..com/question/251232779.html", #operator system
"http://..com/question/137965104.html" #Unix programing
] #定義初始的 url ,有五類知道起始網頁
#add database
connDataBase = sqlite3.connect(".db") #連接到資料庫「.db」
cDataBase = connDataBase.cursor() #設置定位指針
cDataBase.execute('''''CREATE TABLE IF NOT EXISTS infoLib
(id INTEGER PRIMARY KEY AUTOINCREMENT,name text,url text,html text)''')
#通過定位指針操作資料庫,若.db中 infoLib表不存在,則建立該表,其中主鍵是自增的 id(用於引擎的docId),下一列是文章的標題,然後是url,最後是html
#url dataBase
cDataBase.execute('''''CREATE TABLE IF NOT EXISTS urlLib
(url text PRIMARY KEY)''')
#通過定位指針操作資料庫,若.db中urlLib表不存在,則建立該表,其中只存了 url,保存已經爬過的url,之所以再建一個表,是猜測表的主鍵應該使用哈希表存儲的,查詢速度較快,此處其實也可以用一個外鍵將兩個表關聯起來
2. .py文件中的parse函數:
.py文件中的parse函數將具體處理url返回的 response,進行解析,具體代碼中說明:
[python] view plain
def parse(self,response):
pageName = response.xpath('//title/text()').extract()[0] #解析爬取網頁中的名稱
pageUrl = response.xpath("//head/link").re('href="(.*?)"')[0] #解析爬取網頁的 url,並不是直接使用函數獲取,那樣會夾雜亂碼
pageHtml = response.xpath("//html").extract()[0] #獲取網頁html
# judge whether pageUrl in cUrl
if pageUrl in self.start_urls:
#若當前url 是 start_url 中以一員。進行該判斷的原因是,我們對重復的 start_url 中的網址將仍然進行爬取,而對非 start_url 中的曾經爬過的網頁將不再爬取
self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(pageUrl,))
lines = self.cDataBase.fetchall()
if len(lines): #若當前Url已經爬過
pass #則不再在資料庫中添加信息,只是由其為跟繼續往下爬
else: #否則,將信息爬入資料庫
self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))
else: #此時進入的非 url 網頁一定是沒有爬取過的(因為深入start_url之後的網頁都會先進行判斷,在爬取,在下面的for循環中判斷)
self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))
self.connDataBase.commit() #保存資料庫的更新
print "-----------------------------------------------" #輸出提示信息,沒啥用
for sel in response.xpath('//ul/li/a').re('href="(/question/.*?.html)'): #抓出所有該網頁的延伸網頁,進行判斷並對未爬過的網頁進行爬取
sel = "http://..com" + sel #解析出延伸網頁的url
self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(sel,)) #判斷該網頁是否已在資料庫中
lines = self.cDataBase.fetchall()
if len(lines) == 0: #若不在,則對其繼續進行爬取
yield Request(url = sel, callback=self.parse)
㈣ 如何用python爬取網站數據
這里簡單介紹一下吧,以抓取網站靜態、動態2種數據為慧返拍例,實驗環境win10+python3.6+pycharm5.0,主要內容如下:
抓取網站靜態數據(數據在網頁源碼中):以糗事網路網站數據為例
1.這里假設我們抓取的數據如下,主要包括用戶昵稱、內容、好笑數和評論數這4個欄位,如下:
對應的網頁源碼如下,包含我們所需要的數據:
2.對應網頁結構,主要代碼如下,很簡單,主要用到requests+BeautifulSoup,其中requests用於請求頁面,BeautifulSoup用於解析頁面:
程序運行截圖如下,已經成功爬取到數據:
抓取網站動態數據(數據不在網頁源碼中,json等文件中):以人人貸網站數據為例
1.這里假設我們爬取的是債券數據,主要包括年利率世型、借款標題、期限、金額和進度這5個欄位信息,截圖如下:
打開網頁源碼中,可以發現數據不在網頁源碼中,按F12抓包分析時,才發現在一個json文件中,如下:
2.獲取到json文件的url後,我們就可以爬取對應數據了,這里使用的包與上面類似,因為是json文件,所以還用了json這個包(解析json),主要內容如下:
程序運行截圖如下,前羨已經成功抓取到數據:
至此,這里就介紹完了這2種數據的抓取,包括靜態數據和動態數據。總的來說,這2個示例不難,都是入門級別的爬蟲,網頁結構也比較簡單,最重要的還是要會進行抓包分析,對頁面進行分析提取,後期熟悉後,可以藉助scrapy這個框架進行數據的爬取,可以更方便一些,效率更高,當然,如果爬取的頁面比較復雜,像驗證碼、加密等,這時候就需要認真分析了,網上也有一些教程可供參考,感興趣的可以搜一下,希望以上分享的內容能對你有所幫助吧。
㈤ Python提取網頁鏈接和標題
提取所有鏈接應該用循環:
urls = driver.find_elements_by_xpath("//a")
for url in urls:
print(url.get_attribute("href"))如果get_attribute方法報錯應該是沒有找到a標簽對象,如果確定是有的話,可能是頁面載入比較慢還沒載入出來,selenium默認是不會等待對象出現的,需要在找對象前加一些等待時間;另外如果頁面上有iframe的話需要先切換進去才能找到裡面的對象。