導航:首頁 > 編程語言 > 協方差橢圓python

協方差橢圓python

發布時間:2024-08-06 13:45:08

『壹』 python中kspace的用法

KSpace是一種Python庫,它提供了一種易於使用的方式來創建、計算和可視化空間譜、空間功率譜和空間協方差函數。根據相關信息查詢,KSpace可以用於處理任何形式的空間數據,例如高解析度地形數據、氣象數據和地震數據等。它可以方便地計算空間譜、空間功率譜和空間協方差函數,並可視化空間數據的形式。

『貳』 Python數據分析 | 數據描述性分析

首先導入一些必要的數據處理包和可視化的包,讀文檔數據並通過前幾行查看數據欄位。

對於我的數據來說,由於數據量比較大,因此對於缺失值可以直接做刪除處理。

得到最終的數據,並提取需要的列作為特徵。

對類別數據進行統計:

類別型欄位包括location、cpc_class、pa_country、pa_state、pa_city、assignee六個欄位,其中:

單變數統計描述是數據分析中最簡單的形式,其中被分析的數據只包含一個變數,不處理原因或關系。單變數分析的主要目的是通過對數據的統計描述了解當前數據的基本情況,並找出數據的分布模型。
單變數數據統計描述從集中趨勢上看,指標有:均值,中位數,分位數,眾數;從離散程度上看,指標有:極差、四分位數、方差、標准差、協方差、變異系數,從分布上看,有偏度,峰度等。需要考慮的還有極大值,極小值(數值型變數)和頻數,構成比(分類或等級變數)。

對於數值型數據,首先希望了解一下數據取值范圍的分布,因此可以用統計圖直觀展示數據分布特徵,如:柱狀圖、正方圖、箱式圖、頻率多邊形和餅狀圖。

按照發布的時間先後作為橫坐標,數值范圍的分布情況如圖所示.

還可以根據最終分類的結果查看這些數值數據在不同類別上的分布統計。

箱線圖可以更直觀的查看異常值的分布情況。

異常值指數據中的離群點,此處定義超出上下四分位數差值的1.5倍的范圍為異常值,查看異常值的位置。

參考:
python數據分析之數據分布 - yancheng111 - 博客園
python數據統計分析 -

科爾莫戈羅夫檢驗(Kolmogorov-Smirnov test),檢驗樣本數據是否服從某一分布,僅適用於連續分布的檢驗。下例中用它檢驗正態分布。

在使用k-s檢驗該數據是否服從正態分布,提出假設:x從正態分布。最終返回的結果,p-value=0.9260909172362317,比指定的顯著水平(一般為5%)大,則我們不能拒絕假設:x服從正態分布。這並不是說x服從正態分布一定是正確的,而是說沒有充分的證據證明x不服從正態分布。因此我們的假設被接受,認為x服從正態分布。如果p-value小於我們指定的顯著性水平,則我們可以肯定的拒絕提出的假設,認為x肯定不服從正態分布,這個拒絕是絕對正確的。

衡量兩個變數的相關性至少有以下三個方法:

皮爾森相關系數(Pearson correlation coefficient) 是反應倆變數之間線性相關程度的統計量,用它來分析正態分布的兩個連續型變數之間的相關性。常用於分析自變數之間,以及自變數和因變數之間的相關性。

返回結果的第一個值為相關系數表示線性相關程度,其取值范圍在[-1,1],絕對值越接近1,說明兩個變數的相關性越強,絕對值越接近0說明兩個變數的相關性越差。當兩個變數完全不相關時相關系數為0。第二個值為p-value,統計學上,一般當p-value<0.05時,可以認為兩變數存在相關性。

斯皮爾曼等級相關系數(Spearman』s correlation coefficient for ranked data ) ,它主要用於評價順序變數間的線性相關關系,在計算過程中,只考慮變數值的順序(rank, 秩或稱等級),而不考慮變數值的大小。常用於計算類型變數的相關性。

返回結果的第一個值為相關系數表示線性相關程度,本例中correlation趨近於1表示正相關。第二個值為p-value,p-value越小,表示相關程度越顯著。

kendall :

也可以直接對整體數據進行相關性分析,一般來說,相關系數取值和相關強度的關系是:0.8-1.0 極強 0.6-0.8 強 0.4-0.6 中等 0.2-0.4 弱 0.0-0.2 極弱。

『叄』 PCA(主成分分析)python實現

回顧了下PCA的步驟,並用python實現。深刻的發現當年學的特徵值、特徵向量好強大。

PCA是一種無監督的學習方式,是一種很常用的降維方法。在數據信息損失最小的情況下,將數據的特徵數量由n,通過映射到另一個空間的方式,變為k(k<n)。

這里用一個2維的數據來說明PCA,選擇2維的數據是因為2維的比較容易畫圖。
這是數據:

畫個圖看看分布情況:

協方差的定義為:

假設n為數據的特徵數,那麼協方差矩陣M, 為一個n n的矩陣,其中Mij為第i和第j個特徵的協方差,對角線是各個特徵的方差。
在我們的數據中,n=2,所以協方差矩陣是2
2的,
通過numpy我們可以很方便的得到:

得到cov的結果為:
array([[ 0.61655556, 0.61544444],
[ 0.61544444, 0.71655556]])

由於我們之前已經做過normalization,因此對於我們來說,
這個矩陣就是 data*data的轉置矩陣。

得到結果:
matrix([[ 5.549, 5.539],
[ 5.539, 6.449]])

我們發現,其實協方差矩陣和散度矩陣關系密切,散度矩陣 就是協方差矩陣乘以(總數據量-1)。因此他們的 特徵根 特徵向量 是一樣的。這里值得注意的一點就是,散度矩陣是 SVD奇異值分解 的一步,因此PCA和SVD是有很大聯系的,他們的關系這里就不詳細談了,以後有機會再寫下。

用numpy計算特徵根和特徵向量很簡單,

但是他們代表的意義非常有意思,讓我們將特徵向量加到我們原來的圖里:

其中紅線就是特徵向量。有幾點值得注意:

藍色的三角形就是經過坐標變換後得到的新點,其實他就是紅色原點投影到紅線、藍線形成的。

得到特徵值和特徵向量之後,我們可以根據 特徵值 的大小,從大到小的選擇K個特徵值對應的特徵向量。
這個用python的實現也很簡單:

從eig_pairs選取前k個特徵向量就行。這里,我們只有兩個特徵向量,選一個最大的。

主要將原來的數據乘以經過篩選的特徵向量組成的特徵矩陣之後,就可以得到新的數據了。

output:

數據果然變成了一維的數據。
最後我們通過畫圖來理解下數據經過PCA到底發生了什麼。

綠色的五角星是PCA處理過後得到的一維數據,為了能跟以前的圖對比,將他們的高度定位1.2,其實就是紅色圓點投影到藍色線之後形成的點。這就是PCA,通過選擇特徵根向量,形成新的坐標系,然後數據投影到這個新的坐標系,在盡可能少的丟失信息的基礎上實現降維。

通過上述幾步的處理,我們簡單的實現了PCA第一個2維數據的處理,但是原理就是這樣,我們可以很輕易的就依此實現多維的。

用sklearn的PCA與我們的pca做個比較:

得到結果:

用我們的pca試試

得到結果:

完全一致,完美~
值得一提的是,sklearn中PCA的實現,用了部分SVD的結果,果然他們因緣匪淺。

『肆』 Python基礎 numpy中的常見函數有哪些

有些Python小白對numpy中的常見函數不太了解,今天小編就整理出來分享給大家。

Numpy是Python的一個科學計算的庫,提供了矩陣運算的功能,其一般與Scipy、matplotlib一起使用。其實,list已經提供了類似於矩陣的表示形式,不過numpy為我們提供了更多的函數。

數組常用函數
1.where()按條件返回數組的索引值
2.take(a,index)從數組a中按照索引index取值
3.linspace(a,b,N)返回一個在(a,b)范圍內均勻分布的數組,元素個數為N個
4.a.fill()將數組的所有元素以指定的值填充
5.diff(a)返回數組a相鄰元素的差值構成的數組
6.sign(a)返回數組a的每個元素的正負符號
7.piecewise(a,[condlist],[funclist])數組a根據布爾型條件condlist返回對應元素結果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引

改變數組維度
a.ravel(),a.flatten():將數組a展平成一維數組
a.shape=(m,n),a.reshape(m,n):將數組a轉換成m*n維數組
a.transpose,a.T轉置數組a

數組組合
1.hstack((a,b)),concatenate((a,b),axis=1)將數組a,b沿水平方向組合
2.vstack((a,b)),concatenate((a,b),axis=0)將數組a,b沿豎直方向組合
3.row_stack((a,b))將數組a,b按行方向組合
4.column_stack((a,b))將數組a,b按列方向組合

數組分割
1.split(a,n,axis=0),vsplit(a,n)將數組a沿垂直方向分割成n個數組
2.split(a,n,axis=1),hsplit(a,n)將數組a沿水平方向分割成n個數組

數組修剪和壓縮
1.a.clip(m,n)設置數組a的范圍為(m,n),數組中大於n的元素設定為n,小於m的元素設定為m
2.a.compress()返回根據給定條件篩選後的數組

數組屬性
1.a.dtype數組a的數據類型
2.a.shape數組a的維度
3.a.ndim數組a的維數
4.a.size數組a所含元素的總個數
5.a.itemsize數組a的元素在內存中所佔的位元組數
6.a.nbytes整個數組a所佔的內存空間7.a.astype(int)轉換a數組的類型為int型

數組計算
1.average(a,weights=v)對數組a以權重v進行加權平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)數組a的均值、最大值、最小值、中位數、方差、標准差
3.a.prod()數組a的所有元素的乘積
4.a.cumprod()數組a的元素的累積乘積
5.cov(a,b),corrcoef(a,b)數組a和b的協方差、相關系數
6.a.diagonal()查看矩陣a對角線上的元素7.a.trace()計算矩陣a的跡,即對角線元素之和

以上就是numpy中的常見函數。更多Python學習推薦:PyThon學習網教學中心。

『伍』 怎麼用python表示出二維高斯分布函數,mu表示均值,sigma表示協方差矩陣,x表示數據點

clear
closeall
%%%%%%%%%%%%%%%%%%%%%%%%%生成實驗數據集

rand('state',0)
sigma_matrix1=eye(2);
sigma_matrix2=50*eye(2);

u1=[0,0];
u2=[30,30];
m1=100;
m2=300;%樣本數
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1數據集
Y1=multivrandn(u1,m1,sigma_matrix1);
Y2=multivrandn(u2,m2,sigma_matrix2);

scatter(Y1(:,1),Y1(:,2),'bo')
holdon
scatter(Y2(:,1),Y2(:,2),'r*')
title('SM1數據集')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2數據集
u11=[0,0];
u22=[5,5];
u33=[10,10];
u44=[15,15];
m=600;
sigma_matrix3=2*eye(2);
Y11=multivrandn(u11,m,sigma_matrix3);
Y22=multivrandn(u22,m,sigma_matrix3);
Y33=multivrandn(u33,m,sigma_matrix3);
Y44=multivrandn(u44,m,sigma_matrix3);
figure(2)
scatter(Y11(:,1),Y11(:,2),'bo')
holdon
scatter(Y22(:,1),Y22(:,2),'r*')
scatter(Y33(:,1),Y33(:,2),'go')
scatter(Y44(:,1),Y44(:,2),'c*')
title('SM2數據集')
end
functionY=multivrandn(u,m,sigma_matrix)
%%生成指定均值和協方差矩陣的高斯數據
n=length(u);
c=chol(sigma_matrix);
X=randn(m,n);
Y=X*c+ones(m,1)*u;
end

『陸』 python數據統計分析

1. 常用函數庫

  scipy包中的stats模塊和statsmodels包是python常用的數據分析工具,scipy.stats以前有一個models子模塊,後來被移除了。這個模塊被重寫並成為了現在獨立的statsmodels包。

 scipy的stats包含一些比較基本的工具,比如:t檢驗,正態性檢驗,卡方檢驗之類,statsmodels提供了更為系統的統計模型,包括線性模型,時序分析,還包含數據集,做圖工具等等。

2. 小樣本數據的正態性檢驗

(1) 用途

 夏皮羅維爾克檢驗法 (Shapiro-Wilk) 用於檢驗參數提供的一組小樣本數據線是否符合正態分布,統計量越大則表示數據越符合正態分布,但是在非正態分布的小樣本數據中也經常會出現較大的W值。需要查表來估計其概率。由於原假設是其符合正態分布,所以當P值小於指定顯著水平時表示其不符合正態分布。

 正態性檢驗是數據分析的第一步,數據是否符合正態性決定了後續使用不同的分析和預測方法,當數據不符合正態性分布時,我們可以通過不同的轉換方法把非正太態數據轉換成正態分布後再使用相應的統計方法進行下一步操作。

(2) 示例

(3) 結果分析

 返回結果 p-value=0.029035290703177452,比指定的顯著水平(一般為5%)小,則拒絕假設:x不服從正態分布。

3. 檢驗樣本是否服務某一分布

(1) 用途

 科爾莫戈羅夫檢驗(Kolmogorov-Smirnov test),檢驗樣本數據是否服從某一分布,僅適用於連續分布的檢驗。下例中用它檢驗正態分布。

(2) 示例

(3) 結果分析

 生成300個服從N(0,1)標准正態分布的隨機數,在使用k-s檢驗該數據是否服從正態分布,提出假設:x從正態分布。最終返回的結果,p-value=0.9260909172362317,比指定的顯著水平(一般為5%)大,則我們不能拒絕假設:x服從正態分布。這並不是說x服從正態分布一定是正確的,而是說沒有充分的證據證明x不服從正態分布。因此我們的假設被接受,認為x服從正態分布。如果p-value小於我們指定的顯著性水平,則我們可以肯定地拒絕提出的假設,認為x肯定不服從正態分布,這個拒絕是絕對正確的。

4.方差齊性檢驗

(1) 用途

 方差反映了一組數據與其平均值的偏離程度,方差齊性檢驗用以檢驗兩組或多組數據與其平均值偏離程度是否存在差異,也是很多檢驗和演算法的先決條件。

(2) 示例

(3) 結果分析

 返回結果 p-value=0.19337536323599344, 比指定的顯著水平(假設為5%)大,認為兩組數據具有方差齊性。

5. 圖形描述相關性

(1) 用途

 最常用的兩變數相關性分析,是用作圖描述相關性,圖的橫軸是一個變數,縱軸是另一變數,畫散點圖,從圖中可以直觀地看到相關性的方向和強弱,線性正相關一般形成由左下到右上的圖形;負面相關則是從左上到右下的圖形,還有一些非線性相關也能從圖中觀察到。

(2) 示例

(3) 結果分析

 從圖中可以看到明顯的正相關趨勢。

6. 正態資料的相關分析

(1) 用途

 皮爾森相關系數(Pearson correlation coefficient)是反應兩變數之間線性相關程度的統計量,用它來分析正態分布的兩個連續型變數之間的相關性。常用於分析自變數之間,以及自變數和因變數之間的相關性。

(2) 示例

(3) 結果分析

 返回結果的第一個值為相關系數表示線性相關程度,其取值范圍在[-1,1],絕對值越接近1,說明兩個變數的相關性越強,絕對值越接近0說明兩個變數的相關性越差。當兩個變數完全不相關時相關系數為0。第二個值為p-value,統計學上,一般當p-value<0.05時,可以認為兩變數存在相關性。

7. 非正態資料的相關分析

(1) 用途

 斯皮爾曼等級相關系數(Spearman』s correlation coefficient for ranked data ),它主要用於評價順序變數間的線性相關關系,在計算過程中,只考慮變數值的順序(rank, 值或稱等級),而不考慮變數值的大小。常用於計算類型變數的相關性。

(2) 示例

(3) 結果分析

 返回結果的第一個值為相關系數表示線性相關程度,本例中correlation趨近於1表示正相關。第二個值為p-value,p-value越小,表示相關程度越顯著。

8. 單樣本T檢驗

(1) 用途

 單樣本T檢驗,用於檢驗數據是否來自一致均值的總體,T檢驗主要是以均值為核心的檢驗。注意以下幾種T檢驗都是雙側T檢驗。

(2) 示例

(3) 結果分析

 本例中生成了2列100行的數組,ttest_1samp的第二個參數是分別對兩列估計的均值,p-value返回結果,第一列1.47820719e-06比指定的顯著水平(一般為5%)小,認為差異顯著,拒絕假設;第二列2.83088106e-01大於指定顯著水平,不能拒絕假設:服從正態分布。

9. 兩獨立樣本T檢驗

(1) 用途

 由於比較兩組數據是否來自於同一正態分布的總體。注意:如果要比較的兩組數據不滿足方差齊性, 需要在ttest_ind()函數中添加參數equal_var = False。

(2) 示例

(3) 結果分析

 返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.19313343989106416,比指定的顯著水平(一般為5%)大,不能拒絕假設,兩組數據來自於同一總結,兩組數據之間無差異。

10. 配對樣本T檢驗

(1) 用途

 配對樣本T檢驗可視為單樣本T檢驗的擴展,檢驗的對象由一群來自正態分布獨立樣本更改為二群配對樣本觀測值之差。它常用於比較同一受試對象處理的前後差異,或者按照某一條件進行兩兩配對分別給與不同處理的受試對象之間是否存在差異。

(2) 示例

(3) 結果分析

 返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.80964043445811551,比指定的顯著水平(一般為5%)大,不能拒絕假設。

11. 單因素方差分析

(1) 用途

 方差分析(Analysis of Variance,簡稱ANOVA),又稱F檢驗,用於兩個及兩個以上樣本均數差別的顯著性檢驗。方差分析主要是考慮各組之間的平均數差別。

 單因素方差分析(One-wayAnova),是檢驗由單一因素影響的多組樣本某因變數的均值是否有顯著差異。

 當因變數Y是數值型,自變數X是分類值,通常的做法是按X的類別把實例成分幾組,分析Y值在X的不同分組中是否存在差異。

(2) 示例

(3) 結果分析

 返回結果的第一個值為統計量,它由組間差異除以組間差異得到,上例中組間差異很大,第二個返回值p-value=6.2231520821576832e-19小於邊界值(一般為0.05),拒絕原假設, 即認為以上三組數據存在統計學差異,並不能判斷是哪兩組之間存在差異 。只有兩組數據時,效果同 stats.levene 一樣。

12. 多因素方差分析

(1) 用途

 當有兩個或者兩個以上自變數對因變數產生影響時,可以用多因素方差分析的方法來進行分析。它不僅要考慮每個因素的主效應,還要考慮因素之間的交互效應。

(2) 示例

(3) 結果分析

 上述程序定義了公式,公式中,"~"用於隔離因變數和自變數,」+「用於分隔各個自變數, ":"表示兩個自變數交互影響。從返回結果的P值可以看出,X1和X2的值組間差異不大,而組合後的T:G的組間有明顯差異。

13. 卡方檢驗

(1) 用途

 上面介紹的T檢驗是參數檢驗,卡方檢驗是一種非參數檢驗方法。相對來說,非參數檢驗對數據分布的要求比較寬松,並且也不要求太大數據量。卡方檢驗是一種對計數資料的假設檢驗方法,主要是比較理論頻數和實際頻數的吻合程度。常用於特徵選擇,比如,檢驗男人和女人在是否患有高血壓上有無區別,如果有區別,則說明性別與是否患有高血壓有關,在後續分析時就需要把性別這個分類變數放入模型訓練。

 基本數據有R行C列, 故通稱RC列聯表(contingency table), 簡稱RC表,它是觀測數據按兩個或更多屬性(定性變數)分類時所列出的頻數表。

(2) 示例

(3) 結果分析

 卡方檢驗函數的參數是列聯表中的頻數,返回結果第一個值為統計量值,第二個結果為p-value值,p-value=0.54543425102570975,比指定的顯著水平(一般5%)大,不能拒絕原假設,即相關性不顯著。第三個結果是自由度,第四個結果的數組是列聯表的期望值分布。

14. 單變數統計分析

(1) 用途

 單變數統計描述是數據分析中最簡單的形式,其中被分析的數據只包含一個變數,不處理原因或關系。單變數分析的主要目的是通過對數據的統計描述了解當前數據的基本情況,並找出數據的分布模型。

 單變數數據統計描述從集中趨勢上看,指標有:均值,中位數,分位數,眾數;從離散程度上看,指標有:極差、四分位數、方差、標准差、協方差、變異系數,從分布上看,有偏度,峰度等。需要考慮的還有極大值,極小值(數值型變數)和頻數,構成比(分類或等級變數)。

 此外,還可以用統計圖直觀展示數據分布特徵,如:柱狀圖、正方圖、箱式圖、頻率多邊形和餅狀圖。

15. 多元線性回歸

(1) 用途

 多元線性回歸模型(multivariable linear regression model ),因變數Y(計量資料)往往受到多個變數X的影響,多元線性回歸模型用於計算各個自變數對因變數的影響程度,可以認為是對多維空間中的點做線性擬合。

(2) 示例

(3) 結果分析

 直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P<0.05則認為自變數具有統計學意義,從上例中可以看到收入INCOME最有顯著性。

16. 邏輯回歸

(1) 用途

 當因變數Y為2分類變數(或多分類變數時)可以用相應的logistic回歸分析各個自變數對因變數的影響程度。

(2) 示例

(3) 結果分析

 直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P<0.05則認為自變數具有統計學意義。

閱讀全文

與協方差橢圓python相關的資料

熱點內容
u盤文件夾變成了白色隱藏無法使用 瀏覽:876
python如何爬取火車票 瀏覽:977
生命哲學pdf 瀏覽:61
socket程序源碼 瀏覽:156
修改文件夾用戶和用戶組 瀏覽:595
女生隱私軟體不加密不要錢 瀏覽:560
壓縮式霧化泵和霧化器一樣嗎 瀏覽:675
程序員測試25條建議 瀏覽:105
解壓縮的定義 瀏覽:561
雲伺服器網速檢測 瀏覽:999
ios直播類app源碼 瀏覽:517
文件夾轉web 瀏覽:717
安心存指紋加密u盤怎麼樣 瀏覽:729
k中心演算法代碼 瀏覽:833
定量分析pdf 瀏覽:58
安卓手機屏幕保護上面廣告怎麼卸掉 瀏覽:496
雲伺服器跟輕量雲的區別 瀏覽:512
linuxusb熱插拔 瀏覽:391
php開發環境內容 瀏覽:603
linuxs狀態 瀏覽:999