導航:首頁 > 編程語言 > pyhs2python3

pyhs2python3

發布時間:2025-07-15 17:19:31

❶ tushare的介面怎麼樣使用

一、安裝TuShare

方式1:pip install tushare

方式2:訪問https://pypi.python.org/pypi/tushare/下載安裝

方式3:將源代碼下載到本地python setup.py install

二、升級TuShare

1、先查看本地與線上的版本版本號:

pip search tushare

2、升級TuShare:

pip install tushare --upgrade

確認安裝成功

import tushare as ts
print ts.__version__
import tushare as ts
df = ts.get_hist_data(『600848』)
ts.get_hist_data(『600848』,ktype='W『) #獲取周k線數據
ts.get_hist_data('600848』,ktype='M『) #獲取月k線數據
ts.get_hist_data('600848』,ktype='5『) #獲取5分鍾k線數據
ts.get_hist_data('600848』,ktype='15『) #獲取15分鍾k線數據
ts.get_hist_data('600848』,ktype='30『) #獲取30分鍾k線數據
ts.get_hist_data('600848』,ktype='60『) #獲取60分鍾k線數據
ts.get_hist_data('sh』)#獲取上證指數k線數據,其它參數與個股一致,下同
ts.get_hist_data(『sz』)#獲取深圳成指k線數據 ts.get_hist_data(『hs300』)#獲取滬深300指數k線數據
ts.get_hist_data(『sz50』)#獲取上證50指數k線數據
ts.get_hist_data(『zxb』)#獲取中小板指數k線數據
ts.get_hist_data(『cyb』)#獲取創業板指數k線數據
Python財經數據介麵包TuShare的使用
獲取歷史分筆數據
df = ts.get_tick_data(『000756','2015-03-27』)
df.head(10)
Python財經數據介麵包TuShare的使用
獲取實時分筆數據
df = ts.get_realtime_quotes(『000581』)
print df[['code','name','price','bid','ask','volume','amount','time']]
返回值說明:
0:name,股票名字
1:open,今日開盤價
2:pre_close,昨日收盤價
3:price,當前價格
4:high,今日最高價
5:low,今日最低價
6:bid,競買價,即「買一」報價
7:ask,競賣價,即「賣一」報價
8:volumn,成交量 maybe you need do volumn/100
9:amount,成交金額(元 CNY)
10:b1_v,委買一(筆數 bid volume)
11:b1_p,委買一(價格 bid price)
12:b2_v,「買二」
13:b2_p,「買二」
14:b3_v,「買三」
15:b3_p,「買三」
16:b4_v,「買四」
17:b4_p,「買四」
18:b5_v,「買五」
19:b5_p,「買五」
20:a1_v,委賣一(筆數 ask volume)
21:a1_p,委賣一(價格 ask price)

30:date,日期
31:time,時間

❷ python連接hive,怎麼安裝thrifthive

HiveServer2的啟動

啟動HiveServer2

HiveServer2的啟動十分簡便:

$ $HIVE_HOME/bin/hiveserver2

或者

$ $HIVE_HOME/bin/hive --service hiveserver2

默認情況下,HiverServer2的Thrift監聽埠是10000,其WEB UI埠是10002。可通過http://localhost:10002來查看HiveServer2的Web UI界面,這里顯示了Hive的一些基本信息。如果Web界面不能查看,則說明HiveServer2沒有成功運行。

使用beeline測試客戶端連接

HiveServer2成功運行後,我們可以使用Hive提供的客戶端工具beeline連接HiveServer2。

$ $HIVE_HOME/bin/beeline

beeline > !connect jdbc:hive2://localhost:10000

如果成功登錄將出現如下的命令提示符,此時可以編寫HQL語句。

0: jdbc:hive2://localhost:10000>

報錯:User: xxx is not allowed to impersonate anonymous

在beeline使用!connect連接HiveServer2時可能會出現如下錯誤信息:

Caused by: org.apache.hadoop.ipc.RemoteException:
User: xxx is not allowed to impersonate anonymous

這里的xxx是我的操作系統用戶名稱。這個問題的解決方法是在hadoop的core-size.xml文件中添加xxx用戶代理配置:

<property> <name>hadoop.proxyuser.xxx.groups</name> <value>*</value></property><property> <name>hadoop.proxyuser.xxx.hosts</name> <value>*</value></property>

重啟HDFS後,再用beeline連接HiveServer2即可成功連接。

常用配置

HiveServer2的配置可以參考官方文檔《Setting Up HiveServer2》

這里列舉一些hive-site.xml的常用配置:

hive.server2.thrift.port:監聽的TCP埠號。默認為10000。

hive.server2.thrift.bind.host:TCP介面的綁定主機。

hive.server2.authentication:身份驗證方式。默認為NONE(使用 plain SASL),即不進行驗證檢查。可選項還有NOSASL, KERBEROS, LDAP, PAM and CUSTOM.

hive.server2.enable.doAs:是否以模擬身份執行查詢處理。默認為true。

Python客戶端連接HiveServer2

python中用於連接HiveServer2的客戶端有3個:pyhs2,pyhive,impyla。官網的示例採用的是pyhs2,但pyhs2的官網已聲明不再提供支持,建議使用impyla和pyhive。我們這里使用的是impyla。

impyla的安裝

impyla必須的依賴包括:

❸ python代碼運行助手怎麼打開

python代碼運行助手是能在網頁上運行python語言的工具。因為python的運行環境在很多教程里都是用dos的,黑乎乎的界面看的有點簡陋,所以出了這python代碼運行助手,作為ide。

實際上,python代碼運行助手界面只能算及格分,如果要找ide,推薦使用jupyter。jupyter被集成到ANACONDA里,只要安裝了anacoda就能使用了。

回到這個問題:

1、要打開這運行助手首先要下載一個learning.py,如果找不到可以復制如下代碼另存為「learning.py」,編輯器用sublime、或者notepad++。

#!/usr/bin/envpython3
#-*-coding:utf-8-*-

r'''
learning.py

APython3tutorialfromhttp://www.liaoxuefeng.com

Usage:

python3learning.py
'''

importsys

defcheck_version():
v=sys.version_info
ifv.major==3andv.minor>=4:
returnTrue
print('Yourcurrentpythonis%d.%d.PleaseusePython3.4.'%(v.major,v.minor))
returnFalse

ifnotcheck_version():
exit(1)

importos,io,json,subprocess,tempfile
fromurllibimportparse
fromwsgiref.simple_serverimportmake_server

EXEC=sys.executable
PORT=39093
HOST='local.liaoxuefeng.com:%d'%PORT
TEMP=tempfile.mkdtemp(suffix='_py',prefix='learn_python_')
INDEX=0

defmain():
httpd=make_server('127.0.0.1',PORT,application)
print('ReadyforPythoncodeonport%d...'%PORT)
httpd.serve_forever()

defget_name():
globalINDEX
INDEX=INDEX+1
return'test_%d'%INDEX

defwrite_py(name,code):
fpath=os.path.join(TEMP,'%s.py'%name)
withopen(fpath,'w',encoding='utf-8')asf:
f.write(code)
print('Codewroteto:%s'%fpath)
returnfpath

defdecode(s):
try:
returns.decode('utf-8')
exceptUnicodeDecodeError:
returns.decode('gbk')

defapplication(environ,start_response):
host=environ.get('HTTP_HOST')
method=environ.get('REQUEST_METHOD')
path=environ.get('PATH_INFO')
ifmethod=='GET'andpath=='/':
start_response('200OK',[('Content-Type','text/html')])
return[b'<html><head><title>LearningPython</title></head><body><formmethod="post"action="/run"><textareaname="code"style="width:90%;height:600px"></textarea><p><buttontype="submit">Run</button></p></form></body></html>']
ifmethod=='GET'andpath=='/env':
start_response('200OK',[('Content-Type','text/html')])
L=[b'<html><head><title>ENV</title></head><body>']
fork,vinenviron.items():
p='<p>%s=%s'%(k,str(v))
L.append(p.encode('utf-8'))
L.append(b'</html>')
returnL
ifhost!=HOSTormethod!='POST'orpath!='/run'ornotenviron.get('CONTENT_TYPE','').lower().startswith('application/x-www-form-urlencoded'):
start_response('400BadRequest',[('Content-Type','application/json')])
return[b'{"error":"bad_request"}']
s=environ['wsgi.input'].read(int(environ['CONTENT_LENGTH']))
qs=parse.parse_qs(s.decode('utf-8'))
ifnot'code'inqs:
start_response('400BadRequest',[('Content-Type','application/json')])
return[b'{"error":"invalid_params"}']
name=qs['name'][0]if'name'inqselseget_name()
code=qs['code'][0]
headers=[('Content-Type','application/json')]
origin=environ.get('HTTP_ORIGIN','')
iforigin.find('.liaoxuefeng.com')==-1:
start_response('400BadRequest',[('Content-Type','application/json')])
return[b'{"error":"invalid_origin"}']
headers.append(('Access-Control-Allow-Origin',origin))
start_response('200OK',headers)
r=dict()
try:
fpath=write_py(name,code)
print('Execute:%s%s'%(EXEC,fpath))
r['output']=decode(subprocess.check_output([EXEC,fpath],stderr=subprocess.STDOUT,timeout=5))
exceptsubprocess.CalledProcessErrorase:
r=dict(error='Exception',output=decode(e.output))
exceptsubprocess.TimeoutExpiredase:
r=dict(error='Timeout',output='執行超時')
exceptsubprocess.CalledProcessErrorase:
r=dict(error='Error',output='執行錯誤')
print('Executedone.')
return[json.mps(r).encode('utf-8')]

if__name__=='__main__':
main()

2,再用一個記事本寫如下的代碼:

@echooff
pythonlearning.py
pause

另存為『運行.bat』

3、把「運行.bat」和「learning.py」放到同一目錄下,

❹ tushare的介面怎麼樣使用

安裝TuShare
方式1:pip install tushare
方式2:訪問https://pypi.python.org/pypi/tushare/下載安裝
方式3:將源代碼下載到本地python setup.py install
升級TuShare
1、先查看本地與線上的版本版本號:
pip search tushare
2、升級TuShare:
pip install tushare --upgrade
確認安裝成功
import tushare as ts
print ts.__version__
獲取歷史交易數據
import tushare as ts
df = ts.get_hist_data(『600848』)
ts.get_hist_data(『600848』,ktype='W『) #獲取周k線數據
ts.get_hist_data('600848』,ktype='M『) #獲取月k線數據
ts.get_hist_data('600848』,ktype='5『) #獲取5分鍾k線數據
ts.get_hist_data('600848』,ktype='15『) #獲取15分鍾k線數據
ts.get_hist_data('600848』,ktype='30『) #獲取30分鍾k線數據
ts.get_hist_data('600848』,ktype='60『) #獲取60分鍾k線數據
ts.get_hist_data('sh』)#獲取上證指數k線數據,其它參數與個股一致,下同
ts.get_hist_data(『sz』)#獲取深圳成指k線數據 ts.get_hist_data(『hs300』)#獲取滬深300指數k線數據
ts.get_hist_data(『sz50』)#獲取上證50指數k線數據
ts.get_hist_data(『zxb』)#獲取中小板指數k線數據
ts.get_hist_data(『cyb』)#獲取創業板指數k線數據
Python財經數據介麵包TuShare的使用
獲取歷史分筆數據
df = ts.get_tick_data(『000756','2015-03-27』)
df.head(10)
Python財經數據介麵包TuShare的使用
獲取實時分筆數據
df = ts.get_realtime_quotes(『000581』)
print df[['code','name','price','bid','ask','volume','amount','time']]
返回值說明:
0:name,股票名字
1:open,今日開盤價
2:pre_close,昨日收盤價
3:price,當前價格
4:high,今日最高價
5:low,今日最低價
6:bid,競買價,即「買一」報價
7:ask,競賣價,即「賣一」報價
8:volumn,成交量 maybe you need do volumn/100
9:amount,成交金額(元 CNY)
10:b1_v,委買一(筆數 bid volume)
11:b1_p,委買一(價格 bid price)
12:b2_v,「買二」
13:b2_p,「買二」
14:b3_v,「買三」
15:b3_p,「買三」
16:b4_v,「買四」
17:b4_p,「買四」
18:b5_v,「買五」
19:b5_p,「買五」
20:a1_v,委賣一(筆數 ask volume)
21:a1_p,委賣一(價格 ask price)

30:date,日期
31:time,時間

❺ python stackless 怎麼多線程並發

1 介紹

1.1 為什麼要使用Stackless

摘自stackless網站。

Note

Stackless Python 是Python編程語言的一個增強版本,它使程序員從基於線程的編程方式中獲得好處,並避免傳統線程所帶來的性能與復雜度問題。Stackless為 Python帶來的微線程擴展,是一種低開銷、輕量級的便利工具,如果使用得當,可以獲益如下:

❻ 如何利用深度學習技術訓練聊天機器人語言模型

數據預處理

模型能聊的內容也取決於選取的語料。如果已經具備了原始聊天數據,可以用SQL通過關鍵字查詢一些對話,也就是從大庫里選取出一個小庫來訓練。從一些論文上,很多演算法都是在數據預處理層面的,比如Mechanism-Aware Neural Machine for Dialogue Response Generation就介紹了,從大庫中抽取小庫,然後再進行融合,訓練出有特色的對話來。

對於英語,需要了解NLTK,NLTK提供了載入語料,語料標准化,語料分類,PoS詞性標注,語意抽取等功能。

另一個功能強大的工具庫是CoreNLP,作為 Stanford開源出來的工具,特色是實體標注,語意抽取,支持多種語言。

下面主要介紹兩個內容:

中文分詞

現在有很多中文分詞的SDK,分詞的演算法也比較多,也有很多文章對不同SDK的性能做比較。做中文分詞的示例代碼如下。

# coding:utf8
'''
Segmenter with Chinese
'''

import jieba
import langid


def segment_chinese_sentence(sentence):
'''
Return segmented sentence.
'''
seg_list = jieba.cut(sentence, cut_all=False)
seg_sentence = u" ".join(seg_list)
return seg_sentence.strip().encode('utf8')


def process_sentence(sentence):
'''
Only process Chinese Sentence.
'''
if langid.classify(sentence)[0] == 'zh':
return segment_chinese_sentence(sentence)
return sentence

if __name__ == "__main__":
print(process_sentence('飛雪連天射白鹿'))
print(process_sentence('I have a pen.'))

以上使用了langid先判斷語句是否是中文,然後使用jieba進行分詞。

在功能上,jieba分詞支持全切分模式,精確模式和搜索引擎模式。

全切分:輸出所有分詞。

精確:概率上的最佳分詞。

所有引擎模式:對精確切分後的長句再進行分詞。

jieba分詞的實現

主要是分成下面三步:

1、載入字典,在內存中建立字典空間。

字典的構造是每行一個詞,空格,詞頻,空格,詞性。

上訴書 3 n
上訴人 3 n
上訴期 3 b
上訴狀 4 n
上課 650 v

建立字典空間的是使用python的dict,採用前綴數組的方式。

使用前綴數組的原因是樹結構只有一層 -word:freq,效率高,節省空間。比如單詞"dog", 字典中將這樣存儲:

{
"d": 0,
"do": 0,
"dog": 1 # value為詞頻
}

字典空間的主要用途是對輸入句子建立有向無環圖,然後根據演算法進行切分。演算法的取捨主要是根據模式- 全切,精確還是搜索。

2、對輸入的語句分詞,首先是建立一個有向無環圖。
有向無環圖,Directed acyclic graph(音 /ˈdæɡ/)。

【圖 3-2】 DAG

DAG對於後面計算最大概率路徑和使用HNN模型識別新詞有直接關系。

3、按照模式,對有向無環圖進行遍歷,比如,在精確模式下,便利就是求最大權重和的路徑,權重來自於在字典中定義的詞頻。對於沒有出現在詞典中的詞,連續的單個字元也許會構成新詞。然後用HMM模型和Viterbi演算法識別新詞。

精確模型切詞:使用動態規劃對最大概率路徑進行求解。

最大概率路徑:求route = (w1, w2, w3 ,.., wn),使得Σweight(wi)最大。Wi為該詞的詞頻。

更多的細節還需要讀一下jieba的源碼。

自定義字典

jieba分詞默認的字典是:1998人民日報的切分語料還有一個msr的切分語料和一些txt小說。開發者可以自行添加字典,只要符合字典構建的格式就行。

jieba分詞同時提供介面添加詞彙。

Word embedding

使用機器學習訓練的語言模型,網路演算法是使用數字進行計算,在輸入進行編碼,在輸出進行解碼。word embedding就是編解碼的手段。

【圖 3-3】 word embedding, Ref. #7

word embedding是文本的數值化表示方法。表示法包括one-hot,bag of words,N-gram,分布式表示,共現矩陣等。

Word2vec

近年來,word2vec被廣泛採用。Word2vec輸入文章或者其他語料,輸出語料中詞彙建設的詞向量空間。詳細可參考word2vec數學原理解析。

使用word2vec

安裝完成後,得到word2vec命令行工具。

word2vec -train "data/review.txt"
-output "data/review.model"
-cbow 1
-size 100
-window 8
-negative 25
-hs 0
-sample 1e-4
-threads 20
-binary 1
-iter 15

-train "data/review.txt" 表示在指定的語料庫上訓練模型

-cbow 1 表示用cbow模型,設成0表示用skip-gram模型

-size 100 詞向量的維度為100

-window 8 訓練窗口的大小為8 即考慮一個單詞的前八個和後八個單詞

-negative 25 -hs 0 是使用negative sample還是HS演算法

-sample 1e-4 採用閾值

-threads 20 線程數

-binary 1 輸出model保存成2進制

-iter 15 迭代次數

在訓練完成後,就得到一個model,用該model可以查詢每個詞的詞向量,在詞和詞之間求距離,將不同詞放在數學公式中計算輸出相關性的詞。比如:

vector("法國") - vector("巴黎) + vector("英國") = vector("倫敦")"

對於訓練不同的語料庫,可以單獨的訓練詞向量模型,可以利用已經訓練好的模型。

其它訓練詞向量空間工具推薦:Glove。

Seq2Seq

2014年,Sequence to Sequence Learning with Neural Networks提出了使用深度學習技術,基於RNN和LSTM網路訓練翻譯系統,取得了突破,這一方法便應用在更廣泛的領域,比如問答系統,圖像字幕,語音識別,撰寫詩詞等。Seq2Seq完成了【encoder + decoder -> target】的映射,在上面的論文中,清晰的介紹了實現方式。

【圖 3-4】 Seq2Seq, Ref. #1

也有很多文章解讀它的原理。在使用Seq2Seq的過程中,雖然也研究了它的結構,但我還不認為能理解和解釋它。下面談兩點感受:

a. RNN保存了語言順序的特點,這和CNN在處理帶有形狀的模型時如出一轍,就是數學模型的設計符合物理模型。

【圖 3-5】 RNN, Ref. #6

b. LSTM Cell的復雜度對應了自然語言處理的復雜度。

【圖 3-6】 LSTM, Ref. #6

理由是,有人將LSTM Cell嘗試了多種其它方案傳遞狀態,結果也很好。

【圖 3-7】 GRU, Ref. #6

LSTM的一個替代方案:GRU。只要RNN的Cell足夠復雜,它就能工作的很好。

使用DeepQA2訓練語言模型

准備工作,下載項目:

git clone https://github.com/Samurais/DeepQA2.git
cd DeepQA2
open README.md # 根據README.md安裝依賴包

DeepQA2將工作分成三個過程:

數據預處理:從語料庫到數據字典。

訓練模型:從數據字典到語言模型。

提供服務:從語言模型到RESt API。

預處理

DeepQA2使用Cornell Movie Dialogs Corpus作為demo語料庫。

原始數據就是movie_lines.txt和movie_conversations.txt。這兩個文件的組織形式參考README.txt

deepqa2/dataset/preprocesser.py是將這兩個文件處理成數據字典的模塊。

train_max_length_enco就是問題的長度,train_max_length_deco就是答案的長度。在語料庫中,大於該長度的部分會被截斷。

程序運行後,會生成dataset-cornell-20.pkl文件,它載入到python中是一個字典:

word2id存儲了{word: id},其中word是一個單詞,id是int數字,代表這個單詞的id。

id2word存儲了{id: word}。

trainingSamples存儲了問答的對話對。

比如 [[[1,2,3],[4,5,6]], [[7,8,9], [10, 11, 12]]]

1,2,3 ... 12 都是word id。

[1,2,3] 和 [4,5,6] 構成一個問答。 [7,8,9] 和 [10, 11, 12] 構成一個問答。

開始訓練

cp config.sample.ini config.ini # modify keys
python deepqa2/train.py

config.ini是配置文件, 根據config.sample.ini進行修改。訓練的時間由epoch,learning rate, maxlength和對話對的數量而定。

deepqa2/train.py大約100行,完成數據字典載入、初始化tensorflow的session,saver,writer、初始化神經元模型、根據epoch進行迭代,保存模型到磁碟。

session是網路圖,由placeholder, variable, cell, layer, output 組成。

saver是保存model的,也可以用來恢復model。model就是實例化variable的session。

writer是查看loss fn或者其他開發者感興趣的數據的收集器。writer的結果會被saver保存,然後使用tensorboard查看。

Model

Model的構建要考慮輸入,狀態,softmax,輸出。

定義損耗函數,使用AdamOptimizer進行迭代。

最後,參考一下訓練的loop部分。

每次訓練,model會被存儲在save路徑下,文件夾的命名根據機器的hostname,時間戳生成。

提供服務

在TensorFlow中,提供了標準的serving模塊 - tensorflow serving。但研究了很久,還專門看了一遍 《C++ Essentials》,還沒有將它搞定,社區也普遍抱怨tensorflow serving不好學,不好用。訓練結束後,使用下面的腳本啟動服務,DeepQA2的serve部分還是調用TensorFlow的python api。

cd DeepQA2/save/deeplearning.cobra.vulcan.20170127.175256/deepqa2/serve
cp db.sample.sqlite3 db.sqlite3
python manage.py runserver 0.0.0.0:8000

測試

POST /api/v1/question HTTP/1.1
Host: 127.0.0.1:8000
Content-Type: application/json
Authorization: Basic YWRtaW46cGFzc3dvcmQxMjM=
Cache-Control: no-cache

{"message": "good to know"}

response
{
"rc": 0,
"msg": "hello"
}

serve的核心代碼在serve/api/chatbotmanager.py中。

使用腳本

scripts/start_training.sh啟動訓練

scripts/start_tensorboard.sh啟動Tensorboard

scripts/start_serving.sh啟動服務

對模型的評價

目前代碼具有很高的維護性,這也是從DeepQA項目進行重構的原因,更清晰的數據預處理、訓練和服務。有新的變更可以添加到deepqa2/models中,然後在train.py和chatbotmanager.py變更一下。

有待改進的地方

a. 新建models/rnn2.py, 使用dropout。目前DeepQA中已經使用了Drop.

b. tensorflow rc0.12.x中已經提供了seq2seq network,可以更新成tf版本.

c. 融合訓練,目前model只有一個庫,應該是設計一個新的模型,支持一個大庫和小庫,不同權重進行,就如Mechanism-Aware Neural Machinefor Dialogue Response Generation的介紹。

d. 代碼支持多機多GPU運行。

e. 目前訓練的結果都是QA對,對於一個問題,可以有多個答案。

f. 目前沒有一個方法進行accuracy測試,一個思路是在訓練中就提供干擾項,因為當前只有正確的答案,如果提供錯誤的答案(而且越多越好),就可以使用recall_at_k方法進行測試。

機器人家上了解到的,希望對你有用

❼ tushare的介面怎麼樣使用

Tushare簡介
Tushare金融大數據開放社區,免費提供各類金融數據和區塊鏈數據,助力智能投資與創新型投資。網址:https://tushare.pro/register?reg=527754
註:推廣一下分享鏈接,幫我攢點積分,你好我也好 ^_^ 。

python環境安裝

強烈建議使用Anaconda,Anaconda的安裝見:https://tushare.pro/document/1?doc_id=29
python的IDE我使用vscode,在Anaconda主界面中直接打開vscode,它會幫你設置好環境,簡單方便。

tushare庫安裝
打開vscode的[查看]->[終端],輸入 pip install tushare 即可安裝tushare。輸入 pip install tushare --upgrade 即可更新tushare。缺少或者更新其他python庫,參照這個方法即可。
環境安裝好後,就可以開工了。直接上代碼,這份代碼從Tushare下載股票列表數據,保存為csv文件,同時保存在mssql資料庫中。

注意:在to_sql中的schema參數為資料庫名,需要帶上該資料庫的角色,我使用sa登錄,資料庫隸屬於dbo。使用to_sql不需要創建表,pandas會自動幫你創建好,也不需要自己寫插入數據的代碼,還是很方便的。如果你在表中增加了主鍵或者唯一索引,有重復數據時批量入庫會失敗。tushare本身是有少量重復數據的。採用逐行入庫的方式速度會比較慢,需要根據業務自己衡量選擇。

#!/usr/bin/python3
# coding:utf-8
# -*- coding: utf-8 -*-
import time

import datetime
import random
import tushare

import pandas
import pymssql
import sqlalchemy
#需修改的參數

stock_list_file = 'stock_list.csv' #股票列表文件csv
#tushare token

tushare_token='你自己的token'

#資料庫參數
db_host = '127.0.0.1'
db_user = 'sa'
db_password = 'pwd'
db_db = 'quantum'
db_charset = 'utf8'
db_url = 'mssql+pymssql://sa:[email protected]:1433/quantum'
#股票列表

def get_stock_basic() :
print('開始下載股票列表數據')
#獲取tushare

pro = tushare.pro_api()
#下載

data = pro.stock_basic(fields='ts_code,symbol,name,fullname,list_status,list_date,delist_date')
#保存到csv文件
data.to_csv(stock_list_file)
#入庫

engine = sqlalchemy.create_engine(db_url)
try:

#先一次性入庫,異常後逐條入庫
pandas.io.sql.to_sql(data, 'stock_basic', engine, schema='quantum.dbo', if_exists='append', index=False)
except :
#逐行入庫
print('批量入庫異常,開始逐條入庫.')
for indexs in data.index :
line = data.iloc[indexs:indexs+1, :]
try:

pandas.io.sql.to_sql(line, 'stock_basic', engine, schema='quantum.dbo', if_exists='append', index=False, chunksize=1)
except:
print('股票列表數據入庫異常:')
print(line)
finally:
pass
finally:
pass
print('完成下載股票列表數據')
return 1
#全量下載所有股票列表數據

if __name__ == '__main__':
print('開始...')
#初始化tushare

tushare.set_token(tushare_token)
print('獲取股票列表')
get_stock_basic()
print('結束')

❽ 我用Python做了一個櫻花樹,360說有活動感染病毒正在入侵你的電腦,怎麼回事。

你的exe應用沒有安全證書,360就會報錯的,我也遇到過。沒關系。網上下載的應用都是有安全證書的。你把360關了就行。

閱讀全文

與pyhs2python3相關的資料

熱點內容
cv單片機 瀏覽:254
安卓平板怎麼寫qq 瀏覽:61
編譯原理實驗教程光碟 瀏覽:505
hadoop上傳命令 瀏覽:371
androidlauncher設置 瀏覽:775
app登錄伺服器地址 瀏覽:573
安卓編程難學嗎 瀏覽:772
光碟來源碼 瀏覽:918
眾包app怎麼下線 瀏覽:917
考電工證的app叫什麼 瀏覽:134
免流伺服器什麼系統 瀏覽:495
壓縮圖片不改變像素 瀏覽:655
方舟生存進化怎麼看伺服器地址 瀏覽:728
Keep跳繩怎麼綁定keep的app 瀏覽:257
android資料庫在哪裡 瀏覽:405
注冊雲伺服器價格 瀏覽:412
Python製作紅包軟體 瀏覽:768
壓縮圖片文字變清晰 瀏覽:895
linux伺服器安全pdf 瀏覽:878
什麼要用到伺服器 瀏覽:739