導航:首頁 > 編程語言 > python最大覆蓋模型

python最大覆蓋模型

發布時間:2022-04-12 23:21:02

A. python中主要使用哪些資料庫

Python中常用的資料庫有很多,需要根據不同的業務和應用場景來選擇合適的資料庫,才能使程序更高效.
一般常用的主要有 MySQL, Redis, MangoDB 等資料庫
學習這些資料庫,可以看黑馬程序員視頻庫的學習視頻,有代碼、有資料,有PPT,不了解還可以問老師!

B. 說說這篇我為什麼從python轉向go

恩看了這篇我為什麼從python轉向go,
看來作者也是 KSO 輕辦公/企業快盤團隊的。作為快盤從無到有時期的工程師之一(總是被瀟灑哥說他們改我留下的 bug ),又恰好是
Python/Go 雙修(大霧其實我是 Rust 黨),其實一開始我是拒絕的,ang ang ang,那就隨手寫一點把。

一段段來吧,首先作者說 Python 是動態語言

python是一門動態語言,不是強類型系統。對於一個變數,我們有時候壓根不知道它是什麼類型,然後就可能出現int + string這樣的運行時錯誤。

在python裡面,可以允許同名函數的出現,後一個函數會覆蓋前一個函數,有一次我們系統一個很嚴重的錯誤就是因為這個導致的。

事實上,如果是靜態檢查,pylint 和 pyflakes 是可以做這件事的,雖然不能和 go
那種靜態編譯型語言比,但也足夠了。如果沒記錯的話,阿通當年是要求全組都在提交前做靜態檢查的。我認為這種問題更多的應該是人員素質上來避免,畢竟蔥頭
也說過,代碼自己寫的就要多回頭看看,看能不能重構,能不能做更好。不是說偷懶不行,但是從中得出 Python
動態特性太靈活,Python:怪我咯看

另外,函數作為第一對象,在 Python 中是 feature,Go 要寫個 mock,簡直虐得不要不要的。

其實這個一直是很多人吐槽python的地方,不過想想,python最開始是為了解決啥問題而被開發出來的看我們硬是要將他用到高性能伺服器開發上面,其實也是有點難為它。

如果沒記錯,無論是輕辦公還是快盤,是重 IO 不重 CPU,最大耗時是數據塊加密那塊,我在的時候是 java 寫的。另外高性能伺服器選 Go 也是虐得不要不要的,各種小心翼翼避免 GC。大多數極端情況下,pypy 的性能足矣勝任了,我認為這不算充分條件。

python的GIL導致導致無法真正的多線程,大家可能會說我用多進程不就完了。但如果一些計算需要涉及到多進程交互,進程之間的通訊開銷也是不得不考慮的。

其實,Python 有宏可以繞開這個 GIL,但是呢架構設計得好其實可以避免的,到非同步那塊我會說。

無狀態的分布式處理使用多進程很方便,譬如處理http請求,我們就是在nginx後面掛載了200多個django server來處理http的,但這么多個進程自然導致整體機器負載偏高。

但即使我們使用了多個django進程來處理http請求,對於一些超大量請求,python仍然處理不過來。所以我們使用openresty,將高頻次的http請求使用lua來實現。可這樣又導致使用兩種開發語言,而且一些邏輯還得寫兩份不同的代碼。

如果推測沒錯,你們現在還在用五年前寫的 Gateway看那個基於 django route
的流量分發層看四年前我離開的時候已經小范圍的使用 Flask+Gevent Demo 測試過了,無論是性能還是負載都比同步模型的 django
有優勢。如果還是 django
這套的話,我只能說比較遺憾,畢竟當年金山新員工大賽頭牌就是我和幾個小夥伴寫的實時同步在線文檔編輯系統,用的就是這套技術。

因此這是個工程問題,並非語言問題。 Python 提供給了你了這么多工具,硬要選一個傳統的,Old fashion 的,Python:怪我咯看

django的網路是同步阻塞的,也就是說,如果我們需要訪問外部的一個服務,在等待結果返回這段時間,django不能處理任何其他的邏輯(當然,多線程的除外)。如果訪問外部服務需要很長時間,那就意味著我們的整個服務幾乎在很長一段時間完全不可用。

為了解決這個問題,我們只能不斷的多開django進程,同時需要保證所有服務都能快速的處理響應,但想想這其實是一件很不靠譜的事情。

同步模型並非不行,因為 overhead 足夠低,很多業務場景下用同步模型反而會取得更好的效果,比如豆瓣。同步模型最大的問題是對於 IO 密集型業務等待時間足夠長,這時候需要的不是換語言 ,而是提醒你是不是架構要改一下了。

雖然tornado是非同步的,但是python的mysql庫都不支持非同步,這也就意味著如果我們在tornado裡面訪問資料庫,我們仍然可能面臨因為資料庫問題造成的整個服務不可用。

tornado 是有這個問題,但是 gevent 已經解決了。我在 node.js 的某問題下曾經回答過,對於 node
而言,能選擇的非同步模型只有一個,而 Python 就是太多選擇了。另外 pypy+tornado+redis
可以隨意虐各種長連接的場景,比如我給我廠寫過的一個 push service。

其實非同步模型最大的問題在於代碼邏輯的割裂,因為是事件觸發的,所以我們都是通過callback進行相關處理,於是代碼裡面就經常出現干一件事情,傳一個callback,然後callback裡面又傳callback的情況,這樣的結果就是整個代碼邏輯非常混亂。

這個還真不是,如果說沒有 ES6 的 JavaScript,可能真有 Callback hell,但這是 Python 啊!Python
早就實現了左值綁定唉,yield 那姿勢比某些天天吹的語言不知道高到哪裡去了,當然我說的是完整版的 Python3 yield。即便是不完整的
Python 2 yield 用於非同步表達式求值也是完全足夠的,tornado 的 gen.coroutine 啊。

同步形態寫非同步,在 Python 實力強的公司裡面早普及了,這是個工程問題,並非語言問題。當然把這種事怪在 Python 身上,Python:怪我咯看

python沒有原生的協程支持,雖然可以通過gevent,greenlet這種的上patch方式來支持協程,但畢竟更改了python源碼。另外,python的yield也可以進行簡單的協程模擬,但畢竟不能跨堆棧,局限性很大,不知道3.x的版本有沒有改進。

無論是 Gevent 還是 Greenlet 均沒修改 Python 源碼,事實上這貨已經成為了 Py2 coroutine 的標准,加上豆瓣開源出來的greenify,基本上所有的庫都可以平滑的非同步化,包括 MySQL 等 C 一級的 lib。自從用上這套技術後,豆瓣的 Python dev 各種爽得不要不要的。

當我第一次使用python開發項目,我是沒成功安裝上項目需要的包的,光安裝成功mysql庫就弄了很久。後來,是一位同事將他整個python目錄打包給我用,我才能正常的將項目跑起來。話說,現在有了docker,是多麼讓人幸福的一件事情。

而部署python服務的時候,我們需要在伺服器上面安裝一堆的包,光是這一點就讓人很麻煩,雖然可以通過puppet,salt這些自動化工具解決部署問題,但相比而言,靜態編譯語言只用扔一個二進制文件,可就方便太多了。

恰好我又是在開發基於 docker 的平台, docker 還真不是用來做部署這事的。首先, Python 是有 virtualenv
這個工具的,事實上對比包管理和包隔離,Python 比 Go 高得不知道哪裡去了。Python 跟 Git 談笑風生的時候, Go 的 dev
們還得考慮我怎樣才能使得 import 的包穩定在一個版本上(當然現在有很多第三方方案)。Virtualenv + Pip 完全可以實現
Python 部署自動化,所以這個問題我認為是,工具鏈選取問題。畢竟是個十幾年的老妖怪了,Python
啥情況沒見過啊,各種打包工具任君選擇,強行說 Python 部署不方便,Python:怪我咯看

python非常靈活簡單,寫c幾十行代碼才能搞定的功能,python一行代碼沒准就能解決。但是太簡單,反而導致很多
同學無法對代碼進行深層次的思考,對整個架構進行細致的考量。來了一個需求,啪啪啪,鍵盤敲完開速實現,結果就是代碼越來越混亂,最終導致了整個項目代碼
失控。

曾經知乎有個帖子問 Python 會不會降低程序員編程能力,
我只能說這真的很人有關。你不去思考深層次的東西怪語言不行是沒道理的,那好,Go 裡面 goroutine 是怎麼實現的,一個帶 socket 的
goroutine
最小能做到多少內存,思考過看任何語言都有自己的優勢和劣勢,都需要執行者自己去判斷,一味的覺得簡單就不會深入思考這是有問題的。另外,代碼混亂我認為
還是工程上的控制力不夠,豆瓣有超過10W行的 Python 實現,雖然不說很完美,大體上做到了不會混亂這么個目標。

還有,C 寫幾十行搞定的 Python 一行解決這絕對是重大 feature,生產力啊,人員配置啊,招人培養的成本啊,從工程上來說,Python 在這一塊完全是加分項,不是每個項目都要求極致的並發,極致的效率,做工程很多時候都是要取捨的。

雖然java和php都是最好的編程語言(大家都這么爭的),但我更傾向一門更簡單的語言。而openresty,雖然性
能強悍,但lua仍然是動態語言,也會碰到前面說的動態語言一些問題。最後,前金山許式偉用的go,前快盤架構師蔥頭也用的go,所以我們很自然地選擇了
go。

Openresty 用 lua 如果按照動態語言的角度去看,還真算不上,頂多是個簡單點的 C。許式偉走的時候大多數都是
CPP,蔥頭目前我還不知道他創業用的是什麼寫的,不過他肯定沒語言傾向。當年無論是 leo 還是 ufa,一個用 Python 一個用
Java, 他都是從工程實際來選擇使用什麼樣的語言。

error,好吧,如果有語言潔癖的同學可能真的受不了go的語法,尤其是約定的最後一個返回值是error。

這其實是 Go style,無論是 go fmt 還是 error style,Go 其實是想抹平不同工程師之間的風格問題。不再為了一個縮進和大括弧位置什麼的浪費時間。這種方法並不是不好,只是我個人覺得沒 rust 那種返回值處理友善。

GC,java的GC發展20年了,go才這么點時間,gc鐵定不完善。所以我們仍然不能隨心所欲的寫代碼,不然在大請求量下面gc可能會卡頓整個服務。所以有時候,該用對象池,內存池的一定要用,雖然代碼丑了點,但好歹性能上去了。

1.4 開始 go 就是 100% 精確 GC 了,另外說到卡頓啊,完全和你怎麼用對象有關,能內聯絕不傳引用大部分場景是完全足夠的,這樣 gc 的影響程度會最低。實在想用池……只能說為啥不選 Java。

天生的並行支持,因為goroutine以及channel,用go寫分布式應用,寫並發程序異常的容易。沒有了蛋疼的callback導致的代碼邏輯割裂,代碼邏輯都是順序的。

這是有代價的,goroutine 的內存消耗計算(當然1.3還是1.4開始得到了很大的改善,內存最小值限制已經沒了),channel
跨線程帶來的性能損耗(跨線程鎖),還有對 goroutine 的控制力幾乎為 0
等。總之這種嘛,算不上是殺手級特性,大家都有,是方便了一點,但也有自己的弊端。比如我們用 go 吧,經常就比較蛋疼 spawn 出去的
goroutine 怎麼優美的 shutdown,反而有時候把事情做復雜化了。

性能,go的性能可能趕不上c,c++以及openresty,但真的也挺強悍的。在我們的項目中,現在單機就部署了一個go的進程,就完全能夠勝任以前200個python進程乾的事情,而且CPU和MEM佔用更低。

我不嚴謹的實測大概 gevent+py2 能達到同樣邏輯 go 實現的 30%~40%,pypy+tornado 能達到
80%~90%,混合了一些計算和連接處理什麼的。主要還是看業務場景吧,純粹的 CPU bound 當然是 go 好,純粹的 IO bound
你就是用 C 也沒用啊。

運維部署,直接編譯成二進制,扔到伺服器上面就成,比python需要安裝一堆的環境那是簡單的太多了。當然,如果有cgo,我們也需要將對應的動態庫給扔過去。

我們現在根據 glibc 所處的 host 版本不同有2套編譯環境,看上去是部署簡單了,編譯起來坑死你。另外雖然說 disk 便宜,這幾行代碼就幾M了,集群同步部署耗時在某些情況下還真會出簍子。

開發效率,雖然go是靜態語言,但我個人感覺開發效率真的挺高,直覺上面跟python不相上下。對於我個人來說,最好的
例子就是我用go快速開發了非常多的開源組件,譬如ledisdb,go-mysql等,而這些最開始的版本都是在很短的時間裡面完成的。對於我們項目來
說,我們也是用go在一個月就重構完成了第一個版本,並發布。

C. Python需要學習什麼內容,好學嗎

Python相對來說挺好入門的,不過也不要掉以輕心,學習的時候還是應該認真努力,學習內容整理如下:
Python語言基礎:主要學習Python基礎知識,如Python3、數據類型、字元串、函數、類、文件操作等。
Python語言高級:主要學習Python庫、正則表達式、進程線程、爬蟲、遍歷以及MySQL資料庫。
Pythonweb開發:主要學習HTML、CSS、JavaScript、jQuery等前端知識,掌握python三大後端框架(Django、 Flask以及Tornado)。
Linux基礎:主要學習Linux相關的各種命令,如文件處理命令、壓縮解壓命令、許可權管理以及Linux Shell開發等。
Linux運維自動化開發:主要學習Python開發Linux運維、Linux運維報警工具開發、Linux運維報警安全審計開發、Linux業務質量報表工具開發、Kali安全檢測工具檢測以及Kali 密碼破解實戰。
Python爬蟲:主要學習python爬蟲技術,掌握多線程爬蟲技術,分布式爬蟲技術。
Python數據分析和大數據:主要學習numpy數據處理、pandas數據分析、matplotlib數據可視化、scipy數據統計分析以及python 金融數據分析;Hadoop HDFS、python Hadoop MapRece、python Spark core、python Spark SQL以及python Spark MLlib。
Python機器學習:主要學習KNN演算法、線性回歸、邏輯斯蒂回歸演算法、決策樹演算法、樸素貝葉斯演算法、支持向量機以及聚類k-means演算法。

D. 人工智慧語言Python中的庫是如何應用的

在Python中,第三方庫有很多種,pandas是其中之一。那麼pandas是用來做什麼的呢?其實pandas的存在很大程度上是為解決數據分析問題而存在的。pandas中不僅包含著大量的關於數據分析的庫和通用的數據模型,也包含處理數據的較為齊全完備的函數,這就使得Python的數據分析功能非常強大,從而當仁不讓地成為人工智慧語言。

pandas是Python的第三方庫,也可以說是Python的數據分析包。同時,它也是開源的,是在數據分析中常見的庫。類似於Python這樣的開源編程的體系中,庫一般有三類。第一類就是開發平台為我們提供的介面;第二類就是我們開發者自己寫的程序;第三類就是pandas這樣的能夠專門用於解決某一領域問題的專用庫。

經常使用Python的朋友都能體驗到擁有強大標准庫的Python是怎樣處理數據的。Python語言的核心,除了數字、字元串、列表、字典、文件等常見類型和函數,還有Python標准庫提供的各種功能,如系統管理、網路通信、文本處理、資料庫介面、圖形系統、XML處理等等,這些都建立在Python標准庫的基礎上。
關於其標准庫的功能大概有以下幾點:
1.文本處理:包括文本的格式化、正則表達式匹配、Unicode、文本差異的計算等;
2.文件處理:Python可直接操作與創建文件、對文件進行壓縮歸檔、操作配置文件等;
3.操作系統:支持線程與進程、IO的復用、日期與時間處理、調用系統函數、日誌等;
4.網路通信:主要內容是非同步網路通信等;
除此之外,網路通信、科學計算也是Python標准庫不可或缺的功能
Python作為一種開源的編程體系也有大量第三方模塊,和標准庫的使用是一樣的。從功能角度而言同樣覆蓋科學計算、Web開發、資料庫介面、圖形系統多個領域。而且功能更加完備,更能夠解決具體問題。這些模塊不僅可用Python來寫,同時也可以用C/C++,作為「膠水語言」的Python也可以將其粘合在一起。SWIG,SIP常用於將C語言編寫的程序庫轉化為Python模塊。Boost C++ Libraries包含了一組函式庫,Boost.Python,使得以Python或C++編寫的程式能互相調用。

在Python中安裝第三方庫可以在PyCharm中進行
首先打開PyCharm,選擇頂部菜單File,選擇Default Settings;
然後搜索project interpreter,選擇當前Python環境,然後底部點擊「+」號添加庫;
其次搜索資料庫名稱,選中一個庫之後點擊底部的Install Package,安裝成功即可,此時可以返回到之前的Project Interpreter中查看已經安裝好的庫,點擊「-」號可以卸載不需要的庫。
在使用第三方庫時,在PyCharm中輸入庫之後即可開始使用,輸入庫用import,後面加上庫的名稱就可以了。
其實Python的優點就在於它的第三方庫的調用方便易行,為開發者提供了很大的便利,也使得Python成為一門受歡迎的編程語言,同時Python中庫的應用也是用Python開發其他程序的基礎。

E. 解決python開發中模塊沖突的具體方法

假如有兩個同名的模塊,那麼只能導入它們中的一個——默認情況下,Python總是會選擇在模塊搜索路徑sys.path中最左邊的那一項。如果你偏愛的模塊和頂層腳本在同一目錄下,那就不成問題;由於頂層腳本的主目錄總是模塊搜索路徑中的第一項,因此它的內容總是會首先被自動定位。然而對於跨目錄的導入,模塊搜索路徑的線性本質意味著同名的文件會產生沖突。
要修復這一沖突,要麼避免同名文件。如果你需要同時訪問兩個同名的文件,那麼就要把兩個源文件分別放入子目錄中,這樣包導入目錄名稱將使得模塊引用唯一。只要外圍的包目錄名稱是唯一的,你就能訪問同名模塊中的任意一個,或是全部的兩個。注意,如果你不小心為自己的模塊使用了一個名稱,而它碰巧和你需要使用的標准庫模塊的名稱相同,那麼也會出現這一問題。這是因為程序主目錄(或是模塊路徑中靠前的另一個目錄)下的本地模塊會隱藏和替換標准庫模塊。要修復這種覆蓋,要麼避免使用和你需要的另一模塊相同的名稱,要麼把模塊放到一個包目錄下然後使用Python 3.X的包相對導入模型(包相對導入在2.X版本中是一個可選的功能)。在包相對導入模型下,普通導入會跳過包目錄,因此你可以獲取標准庫版本,但在必要時特殊的點號開頭導入語句仍然可以選取同名模塊的本地版本。

F. 如何用Python做數據准備

這篇的內容是一系列針對在Python中從零開始運用機器學習能力工作流的輔導第一部分,覆蓋了從小組開始的演算法編程和其他相關工具。最終會成為一套手工製成的機器語言工作包。這次的內容會首先從數據准備開始。

—— 來自Matthew Mayo, KDnuggets

似乎大家對機器學習能力的認知總是簡單到把一系列論據傳送到越來越多的資料庫和應用程序界面中,接著就期待能有一些神奇的結果出現。可能你對在這些資料庫里究竟發生了什麼有自己很好的理解—— 從數據准備到建模到結果演示呈現等等,但不得不說你依然需要依賴於這些紛繁的工具去完成自己的工作。

我們的代碼正在按我們希望的方式工作,讓我們做一些簡單的房屋清理工作。一旦開始滾動,我們將為我們的編碼提供一個更全面的組織結構,但是現在我們需要把所有這些功能加到一個單獨的文件中,並保存成為dataset.py的格式。這會讓我們以後的使用更方便,下次我們會學到。

未來計劃

之後我們會學習簡單的分類演算法,k最近鄰演算法。我們會學習如何在簡單的工作流中構建分類和聚類模型。毫無疑問,這需要編寫一些限額外的工具來幫助我們完成項目,並且我確定我們還將對已經做完的部分進行修改。

練習機器學習就是理解機器學習的最好方法。運用我們的工作流中需要的演算法和支持工具最終會被證明是有用的。

G. Python 3 網路爬蟲學習建議

用py3寫爬蟲的話,強力推薦這本書,應該是目前最系統最完善介紹python爬蟲的書。可以去圖靈社區買電子版。書的內容很新也很系統,從beautifulSoup,requests到ajax,圖像識別,單元測試。比起絕大多數blog零散的教程要好的多,看完書後就可以去做些實戰項目,這個時候可以去github上找類似的項目借鑒下。英文版pdf:個人覺得英文版更好)中文版pdf:這本書內容比較淺,我表示贊同。但是對於新手來說,看完這本書,對於爬蟲基礎的應用與概念絕對有了初步的了解。其實國內有一本講爬蟲的好書,《自己動手寫網路爬蟲》,這本書除了介紹爬蟲基本原理,包括優先順序,寬度優先搜索,分布式爬蟲,多線程,還有雲計算,數據挖掘內容。只不過用了java來實現,但是思路是相同的。有這幾個包基本上就夠用了。當初學習爬蟲的時候一點都不懂,甚至連爬蟲是什麼都不知道就在學了,但是懷著不懂裝懂的精神,到現在基本上也算對爬蟲了解一二。正如你所說,爬蟲是個大坑!因為這不僅僅是Python的事,想要學好爬蟲,需要學習:網路基礎知識(post/get/抓包)、(推薦)正則表達式(re模塊)、多線程/多進程、資料庫(儲存)。還有各種各樣的問題:Python蛋疼的編碼問題、遇到Ajax就要用selenium(效率低)、遇到驗證碼腫么辦(我放棄)、需要模擬登錄(我直接用cookies,在這里推薦requests,用法是:被網站禁ip等等所以,如果你是想學爬蟲,那麼就慢慢磨吧。但是你是想學習機器學習,網上那麼多的數據集,可以不必專門學。

H. Python中的鎖都具有哪些

大致羅列一下:
一、全局解釋器鎖(GIL)
1、什麼是全局解釋器鎖
每個CPU在同一時間只能執行一個線程,那麼其他的線程就必須等待該線程的全局解釋器,使用權消失後才能使用全局解釋器,即使多個線程直接不會相互影響在同一個進程下也只有一個線程使用cpu,這樣的機制稱為全局解釋器鎖(GIL)。GIL的設計簡化了CPython的實現,使的對象模型包括關鍵的內建類型,如:字典等,都是隱含的,可以並發訪問的,鎖住全局解釋器使得比較容易的實現對多線程的支持,但也損失了多處理器主機的並行計算能力。
2、全局解釋器鎖的好處
1)、避免了大量的加鎖解鎖的好處
2)、使數據更加安全,解決多線程間的數據完整性和狀態同步
3、全局解釋器的缺點
多核處理器退化成單核處理器,只能並發不能並行。
4、GIL的作用:
多線程情況下必須存在資源的競爭,GIL是為了保證在解釋器級別的線程唯一使用共享資源(cpu)。
二、同步鎖
1、什麼是同步鎖?
同一時刻的一個進程下的一個線程只能使用一個cpu,要確保這個線程下的程序在一段時間內被cpu執,那麼就要用到同步鎖。
2、為什麼用同步鎖?
因為有可能當一個線程在使用cpu時,該線程下的程序可能會遇到io操作,那麼cpu就會切到別的線程上去,這樣就有可能會影響到該程序結果的完整性。
3、怎麼使用同步鎖?
只需要在對公共數據的操作前後加上上鎖和釋放鎖的操作即可。
4、同步鎖的所用:
為了保證解釋器級別下的自己編寫的程序唯一使用共享資源產生了同步鎖。
三、死鎖
1、什麼是死鎖?
指兩個或兩個以上的線程或進程在執行程序的過程中,因爭奪資源或者程序推進順序不當而相互等待的一個現象。
2、死鎖產生的必要條件?
互斥條件、請求和保持條件、不剝奪條件、環路等待條件
3、處理死鎖的基本方法?
預防死鎖、避免死鎖(銀行家演算法)、檢測死鎖(資源分配)、解除死鎖:剝奪資源、撤銷進程
四、遞歸鎖
在Python中為了支持同一個線程中多次請求同一資源,Python提供了可重入鎖。這個RLock內部維護著一個Lock和一個counter變數,counter記錄了acquire的次數,從而使得資源可以被多次require。直到一個線程所有的acquire都被release,其他的線程才能獲得資源。遞歸鎖分為可遞歸鎖與非遞歸鎖。
五、樂觀鎖
假設不會發生並發沖突,只在提交操作時檢查是否違反數據完整性。
六、悲觀鎖
假定會發生並發沖突,屏蔽一切可能違反數據完整性的操作。
python常用的加鎖方式:互斥鎖、可重入鎖、迭代死鎖、互相調用死鎖、自旋鎖大致羅列一下:
一、全局解釋器鎖(GIL)
1、什麼是全局解釋器鎖
每個CPU在同一時間只能執行一個線程,那麼其他的線程就必須等待該線程的全局解釋器,使用權消失後才能使用全局解釋器,即使多個線程直接不會相互影響在同一個進程下也只有一個線程使用cpu,這樣的機制稱為全局解釋器鎖(GIL)。GIL的設計簡化了CPython的實現,使的對象模型包括關鍵的內建類型,如:字典等,都是隱含的,可以並發訪問的,鎖住全局解釋器使得比較容易的實現對多線程的支持,但也損失了多處理器主機的並行計算能力。
2、全局解釋器鎖的好處
1)、避免了大量的加鎖解鎖的好處
2)、使數據更加安全,解決多線程間的數據完整性和狀態同步
3、全局解釋器的缺點
多核處理器退化成單核處理器,只能並發不能並行。
4、GIL的作用:
多線程情況下必須存在資源的競爭,GIL是為了保證在解釋器級別的線程唯一使用共享資源(cpu)。
二、同步鎖
1、什麼是同步鎖?
同一時刻的一個進程下的一個線程只能使用一個cpu,要確保這個線程下的程序在一段時間內被cpu執,那麼就要用到同步鎖。
2、為什麼用同步鎖?
因為有可能當一個線程在使用cpu時,該線程下的程序可能會遇到io操作,那麼cpu就會切到別的線程上去,這樣就有可能會影響到該程序結果的完整性。
3、怎麼使用同步鎖?
只需要在對公共數據的操作前後加上上鎖和釋放鎖的操作即可。
4、同步鎖的所用:
為了保證解釋器級別下的自己編寫的程序唯一使用共享資源產生了同步鎖。
三、死鎖
1、什麼是死鎖?
指兩個或兩個以上的線程或進程在執行程序的過程中,因爭奪資源或者程序推進順序不當而相互等待的一個現象。
2、死鎖產生的必要條件?
互斥條件、請求和保持條件、不剝奪條件、環路等待條件
3、處理死鎖的基本方法?
預防死鎖、避免死鎖(銀行家演算法)、檢測死鎖(資源分配)、解除死鎖:剝奪資源、撤銷進程
四、遞歸鎖
在Python中為了支持同一個線程中多次請求同一資源,Python提供了可重入鎖。這個RLock內部維護著一個Lock和一個counter變數,counter記錄了acquire的次數,從而使得資源可以被多次require。直到一個線程所有的acquire都被release,其他的線程才能獲得資源。遞歸鎖分為可遞歸鎖與非遞歸鎖。
五、樂觀鎖
假設不會發生並發沖突,只在提交操作時檢查是否違反數據完整性。
六、悲觀鎖
假定會發生並發沖突,屏蔽一切可能違反數據完整性的操作。
python常用的加鎖方式:互斥鎖、可重入鎖、迭代死鎖、互相調用死鎖、自旋鎖

I. Python做大數據,都需要學習什麼,比如哪些框架,庫等!人工智慧呢請盡量詳細點!

階段一、人工智慧篇之Python核心
1、Python掃盲
2、面向對象編程基礎
3、變數和基本數據類型
4、Python機器學習類庫
5、Python控制語句與函數
6.、Python資料庫操作+正則表達式
7、Lambda表達式、裝飾器和Python模塊化開發
階段二、人工智慧篇之資料庫交互技術
1、初識MySQL資料庫
2、創建MySQL資料庫和表
3、MySQL資料庫數據管理
4、使用事務保證數據完整性
5、使用DQL命令查詢數據
6、創建和使用索引
7、MySQL資料庫備份和恢復
階段三、人工智慧篇之前端特效
1、HTML+CSS
2、Java
3、jQuery
階段四、人工智慧篇之Python高級應用
1、Python開發
2、資料庫應用程序開發
3、Python Web設計
4、存儲模型設計
5、智聯招聘爬蟲
6、附加:基礎python爬蟲庫
階段五、人工智慧篇之人工智慧機器學習篇
1、數學基礎
2、高等數學必知必會
3、Numpy前導介紹
4、Pandas前導課程
5、機器學習
階段六、人工智慧篇之人工智慧項目實戰
1、人臉性別和年齡識別原理
2、CTR廣告點擊量預測
3、DQN+遺傳演算法
4、圖像檢索系統
5、NLP閱讀理解
階段七、人工智慧篇之人工智慧項目實戰篇
1、基於Python數據分析與機器學習案例實戰教程
2、基於人工智慧與深度學習的項目實戰
3、分布式搜索引擎ElasticSearch開發
4、AI法律咨詢大數據分析與服務智能推薦項目
5、電商大數據情感分析與AI推斷實戰項目
6、AI大數據互聯網電影智能推薦

J. python進階有什麼好推薦書籍或者教程的嗎

第一個
個人認為《Python學習手冊:第3版》是學習語言基礎比較好的書了.
《Python學習手冊(第3版)》講述了:Python可移植、功能強大、易於使用,是編寫獨立應用程序和腳本應用程序的理想選擇。無論你是剛接觸編程或者剛接觸Python,通過學習《Python學習手冊(第3版)》,你可以迅速高效地精通核心Python語言基礎。讀完《Python學習手冊(第3版)》,你會對這門語言有足夠的了解,從而可以在你所從事的任何應用領域中使用它。
《Python學習手冊(第3版)》是作者根據過去10年用於教學而廣為人知的培訓課程的材料編寫而成的。除了有許多詳實說明和每章小結之外,每章還包括一個頭腦風暴:這是《Python學習手冊(第3版)》獨特的一部分,配合以實用的練習題和復習題,讓讀者練習新學的技巧並測試自己的理解程度。
《Python學習手冊(第3版)》包括:
類型和操作——深入討論Python主要的內置對象類型:數字、列表和字典等。
語句和語法——在Python中輸入代碼來建立並處理對象,以及Python一般的語法模型。
函數——Python基本的面向過程工具,用於組織代碼和重用。
模塊——封裝語句、函數以及其他工具,從而可以組織成較大的組件。
類和OOP——Python可選的面向對象編程工具,可用於組織程序代碼從而實現定製和重用。
異常和工具——異常處理模型和語句,並介紹編寫更大程序的開發工具。
討論Python 3.0。
《Python學習手冊(第3版)》讓你對Python語言有深入而完整的了解,從而幫助你理解今後遇到的任何Python應用程序實例。如果你准備探索Google和YouTube為什麼選中了Python,《Python學習手冊(第3版)》就是你入門的最佳指南。
第二個
《Python基礎教程(第2版·修訂版)》也是經典的Python入門教程,層次鮮明,結構嚴謹,內容翔實,特別是最後幾章,作者將前面講述的內容應用到10個引人入勝的項目中,並以模板的形式介紹了項目的開發過程,手把手教授Python開發,讓讀者從項目中領略Python的真正魅力。這本書既適合初學者夯實基礎,又能幫助Python程序員提升技能,即使是Python方面的技術專家,也能從書里找到耳目一新的內容。
第三個
《「笨辦法」學Python(第3版)》是一本Python入門書籍,適合對計算機了解不多,沒有學過編程,但對編程感興趣的初學者使用。這本書結構非常簡單,其中覆蓋了輸入/輸出、變數和函數三個主題,以及一些比較高級的話題,如條件判斷、循環、類和對象、代碼測試及項目的實現等。每一章的格式基本相同,以代碼習題開始,按照說明編寫代碼,運行並檢查結果,然後再做附加練習。這本書以習題的方式引導讀者一步一步學習編程,從簡單的列印一直講授到完整項目的實現,讓初學者從基礎的編程技術入手,最終體驗到軟體開發的基本過程。
【大牛評價】hardway(笨辦法)比較適合起步編程,作為Python的入門挺不錯。
第四個
在這里給大家推薦最後一本《集體智慧編程》
本書以機器學習與計算統計為主題背景,專門講述如何挖掘和分析Web上的數據和資源,如何分析用戶體驗、市場營銷、個人品味等諸多信息,並得出有用的結論,通過復雜的演算法來從Web網站獲取、收集並分析用戶的數據和反饋信息,以便創造新的用戶價值和商業價值。
全書內容翔實,包括協作過濾技術(實現關聯產品推薦功能)、集群數據分析(在大規模數據集中發掘相似的數據子集)、搜索引擎核心技術(爬蟲、索引、查詢引擎、PageRank演算法等)、搜索海量信息並進行分析統計得出結論的優化演算法、貝葉斯過濾技術(垃圾郵件過濾、文本過濾)、用決策樹技術實現預測和決策建模功能、社交網路的信息匹配技術、機器學習和人工智慧應用等。
本書是Web開發者、架構師、應用工程師等的絕佳選擇。
「太棒了!對於初學這些演算法的開發者而言,我想不出有比這本書更好的選擇了,而對於像我這樣學過Al的老朽而言,我也想不出還有什麼更好的辦法能夠讓自己重溫這些知識的細節。」
——Dan Russell,資深技術經理,Google
「Toby的這本書非常成功地將機器學習演算法這一復雜的議題拆分成了一個個既實用又易懂的例子,我們可以直接利用這些例子來分析當前網路上的社會化交互作用。假如我早兩年讀過這本書,就會省去許多寶貴的時間,也不至於走那麼多的彎路了。」
——Tim Wolters,CTO,Collective Intellect
第五個
其實我覺得很多人也在看《Python核心編程:第2版》.在我自己看來,我並不喜歡這本書.

這本書的原書的勘誤表就有夠長的,翻譯時卻幾乎沒有參考勘誤表,把原書的所有低級錯誤都搬進去了。這本書的原書質量也並不好,書的結構組織並不合理,不適合初學者閱讀。有人說,這本書適合進階閱讀,我覺得也不盡然。這本書很多地方都寫的欲言又止的,看得人很郁悶。
// 替換指定位置的數據

閱讀全文

與python最大覆蓋模型相關的資料

熱點內容
程序員看不懂怎麼辦 瀏覽:271
linux操作系統題 瀏覽:765
單片機無符號數加法 瀏覽:227
應用隱藏加密怎麼關閉 瀏覽:269
汽車空調的壓縮機電線有什麼用 瀏覽:429
電腦加密圖片如何取消加密 瀏覽:340
慧凈電子51單片機視頻 瀏覽:343
javamap賦值 瀏覽:165
什麼app可以玩掌機游戲 瀏覽:46
java簡單聊天室 瀏覽:462
通用汽車編程軟體 瀏覽:432
一級抗震框架梁箍筋加密區規定是多少 瀏覽:974
教你如何把安卓手機變成蘋果 瀏覽:11
app編譯分類 瀏覽:323
怎麼用伺服器的資源包 瀏覽:199
oa軟體手機登陸伺服器地址 瀏覽:289
androidrtp打包 瀏覽:723
信息被加密碼了怎麼辦 瀏覽:420
彈出光碟命令 瀏覽:517
kdj公式源碼分享 瀏覽:355