一. 圖像雙三次插值演算法原理:
假設源圖像 A 大小為 m*n ,縮放後的目標圖像 B 的大小為 M*N 。那麼根據比例我們可以得到 B(X,Y) 在 A 上的對應坐標為 A(x,y) = A( X*(m/M), Y*(n/N) ) 。在雙線性插值法中,我們選取 A(x,y) 的最近四個點。而在雙立方插值法中,我們選取的是最近的16個像素點作為計算目標圖像 B(X,Y) 處像素值的參數。如圖所示:
如圖所示昌叢耐 P 點就是目標圖像 B 在 (X,Y) 處對應於源圖像中的位置,P 的坐標位置會出現小數部分,所以我們假設 P 的坐標為 P(x+u,y+v),其中 x,y 分別表示整數部分,u,v 分別表示小數部分。那麼我們就可以得到如圖所示的最近 16 個像素的位置,在這里用 a(i,j)(i,j=0,1,2,3) 來表示。
雙立方插值的目的就是通過找到一種關系,或者說系數,可以把這 16 個像素對於 P 處像素值的影響因子找出來,從而根據這個影響因子來獲得目標圖像對應點的像素值,達到圖像縮放的目的。
耐春 BiCubic基函數形式如下:
二. python實現雙三次插值演算法
from PIL import Image
import numpy as np
import math
# 產生16個像素點不同的權重
def BiBubic(x):
x=abs(x)
if x<=1:
return 1-2*(x**2)+(x**3)
elif x<2:
return 4-8*x+5*(x**2)-(x**3)
else:
return 0
# 雙三次插值演算法
# dstH為目標圖像的高,dstW為目標圖像的寬
def BiCubic_interpolation(img,dstH,dstW):
scrH,scrW,_=img.shape
#img=np.pad(img,((1,3),(1,3),(0,0)),'constant')
retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)
for i in range(dstH):
for j in range(dstW):
scrx=i*(scrH/dstH)
scry=j*(scrW/dstW)
x=math.floor(scrx)
y=math.floor(scry)
鄭純 u=scrx-x
v=scry-y
tmp=0
for ii in range(-1,2):
for jj in range(-1,2):
if x+ii<0 or y+jj<0 or x+ii>=scrH or y+jj>=scrW:
continue
tmp+=img[x+ii,y+jj]*BiBubic(ii-u)*BiBubic(jj-v)
retimg[i,j]=np.clip(tmp,0,255)
return retimg
im_path='../paojie.jpg'
image=np.array(Image.open(im_path))
image2=BiCubic_interpolation(image,image.shape[0]*2,image.shape[1]*2)
image2=Image.fromarray(image2.astype('uint8')).convert('RGB')
image2.save('BiCubic_interpolation.jpg')
三. 實驗結果:
四. 參考內容:
https://www.cnblogs.com/wojianxin/p/12516762.html
https://blog.csdn.net/Ibelievesunshine/article/details/104942406
B. 如何使用Python繪制光滑實驗數據曲線
樓主的問題是否是「怎樣描繪出沒有數據點的位置的曲線」,或者是「x在某個位置時,即使沒有數據,我也想知道他的y值是多少,好繪制曲線」。這就是個預測未知數據的問題。
傳統的方法就是回歸,python的scipy可以做。流行一點的就是機器學習,python的scikit-learn可以做。
但問題在於,僅由光強能預測出開路電壓嗎(當然,有可能可以預測。)?就是你的圖1和圖2的曲線都不能說是不可能發生的情況吧,所以想預測開路電壓值還需引入其他影響因子。這樣你才能知道平滑曲線到底應該像圖1還是圖2還是其他樣子。
如果是單因子的話,從散點圖觀察,有點像 y = Alnx + B,用線性回歸模型確定A,B的值就可以通過x預測y的值,從而繪制平滑的曲線了。