Ⅰ 如何用python進行大數據挖掘和分析
如何用Python進行大數據挖掘和分析?快速入門路徑圖
大數據無處不在。在時下這個年代,不管你喜歡與否,在運營一個成功的商業的過程中都有可能會遇到它。
什麼是 大數據 ?
大數據就像它看起來那樣——有大量的數據。單獨而言,你能從單一的數據獲取的洞見窮其有限。但是結合復雜數學模型以及強大計算能力的TB級數據,卻能創造出人類無法製造的洞見。大數據分析提供給商業的價值是無形的,並且每天都在超越人類的能力。
大數據分析的第一步就是要收集數據本身,也就是眾所周知的「數據挖掘」。大部分的企業處理著GB級的數據,這些數據有用戶數據、產品數據和地理位置數據。今天,我將會帶著大家一起探索如何用 Python 進行大數據挖掘和分析?
為什麼選擇Python?
Python最大的優點就是簡單易用。這個語言有著直觀的語法並且還是個強大的多用途語言。這一點在大數據分析環境中很重要,並且許多企業內部已經在使用Python了,比如Google,YouTube,迪士尼等。還有,Python是開源的,並且有很多用於數據科學的類庫。
現在,如果你真的要用Python進行大數據分析的話,毫無疑問你需要了解Python的語法,理解正則表達式,知道什麼是元組、字元串、字典、字典推導式、列表和列表推導式——這只是開始。
數據分析流程
一般可以按「數據獲取-數據存儲與提取-數據預處理-數據建模與分析-數據可視化」這樣的步驟來實施一個數據分析項目。按照這個流程,每個部分需要掌握的細分知識點如下:
數據獲取:公開數據、Python爬蟲
外部數據的獲取方式主要有以下兩種。
第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。
另一種獲取外部數據的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變數、循環、函數………
以及,如何用 Python 庫(urllib、BeautifulSoup、requests、scrapy)實現網頁爬蟲。
掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。
數據存取:SQL語言
在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,資料庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。
SQL作為最經典的資料庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數據
資料庫的增、刪、查、改
數據的分組聚合、如何建立多個表之間的聯系
數據預處理:Python(pandas)
很多時候我們拿到的數據是不幹凈的,數據的重復、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數據訪問
缺失值處理:對缺失數據行進行刪除或填充
重復值處理:重復值的判斷與刪除
異常值處理:清除不必要的空格和極端、異常數據
相關操作:描述性統計、Apply、直方圖等
合並:符合各種邏輯關系的合並操作
分組:數據劃分、分別執行函數、數據重組
Reshaping:快速生成數據透視表
概率論及統計學知識
需要掌握的知識點如下:
基本統計量:均值、中位數、眾數、百分位數、極值等
其他描述性統計量:偏度、方差、標准差、顯著性等
其他統計知識:總體和樣本、參數和統計量、ErrorBar
概率分布與假設檢驗:各種分布、假設檢驗流程
其他概率論知識:條件概率、貝葉斯等
有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。
Python 數據分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:
回歸分析:線性回歸、邏輯回歸
基本的分類演算法:決策樹、隨機森林……
基本的聚類演算法:k-means……
特徵工程基礎:如何用特徵選擇優化模型
調參方法:如何調節參數優化模型
Python 數據分析包:scipy、numpy、scikit-learn等
在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。
當然,隨著你實踐量的增多,可能會遇到一些復雜的問題,你就可能需要去了解一些更高級的演算法:分類、聚類。
然後你會知道面對不同類型的問題的時候更適合用哪種演算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。
總結
其實做數據挖掘不是夢,5步就能讓你成為一個Python爬蟲高手!
Ⅱ Python的主要應用領域有哪些
python主要應用領域:
1、雲計算:
PYTHON語言算是雲計算最火的語言,典型應用OpenStack。
2、WEB前端開發
python相比php uby的模塊化設計,非常便於功能擴展;多年來形成了大量優秀的web開發框架,並且在不斷迭代;如目前優秀的全棧的django、框架flask,都繼承了python簡單、明確的風格,開發效率高、易維護,與自動化運維結合性好。
python已經成為自動化運維平台領域的事實標准;眾多大型網站均為Python開發,Youtube, Dropbox, 豆瓣。
3、人工智慧應用
基於大數據分析和深度學習而發展出來的人工智慧本質上已經無法離開python的支持,目前世界優秀的人工智慧學習框架如Google的TransorFlow 、FaceBook的PyTorch以及開源社區的神經網路庫Karas等是用python實現的。
甚至微軟的CNTK(認知工具包)也完全支持Python,而且微軟的Vscode都已經把Python作為第一級語言進行支持。
4、系統運維工程項目
Python在與操作系統結合以及管理中非常密切,目前所有linux發行版中都帶有python,且對於linux中相關的管理功能都有大量的模塊可以使用,例如目前主流的自動化配置管理工具:SaltStackAnsible(目前是RedHat的)。
目前在幾乎所有互聯網公司,自動化運維的標配就是python+Django/flask,另外,在虛擬化管理方面已經是事實標準的openstack就是python實現的,所以Python是所有運維人員的必備技能。
5、金融理財分析
量化交易,金融分析,在金融工程領域,Python語言不但在用,且用的最多,而且重要性逐年提高。原因:作為動態語言的Python,語言結構清晰簡單,庫豐富,成熟穩定,科學計算和統計分析都很牛逼,生產效率遠遠高於c,c++,java,尤其擅長策略回測。
5、大數據分析
Python語言相對於其它解釋性語言最大的特點是其龐大而活躍的科學計算生態,在數據分析、交互、可視化方面有相當完善和優秀的庫(python數據分析棧:Numpy Pandas ScipyMatplotlipIpython)
並且還形成了自己獨特的面向科學計算的Python發行版Anaconda,而且這幾年一直在快速進化和完善,對傳統的數據分析語言如R MATLAB SAS Stata形成了非常強的替代性。
Ⅲ Python 適合大數據量的處理嗎
python可以處理大數據,python處理大數據不一定是最優的選擇。適合大數據處理。而不是大數據量處理。 如果大數據量處理,需要採用並用結構,比如在hadoop上使用python,或者是自己做的分布式處理框架。
python的優勢不在於運行效率,而在於開發效率和高可維護性。針對特定的問題挑選合適的工具,本身也是一項技術能力。
Python處理數據的優勢(不是處理大數據):
1. 異常快捷的開發速度,代碼量巨少
2. 豐富的數據處理包,不管正則也好,html解析啦,xml解析啦,用起來非常方便
3. 內部類型使用成本巨低,不需要額外怎麼操作(java,c++用個map都很費勁)
4. 公司中,很大量的數據處理工作工作是不需要面對非常大的數據的
5. 巨大的數據不是語言所能解決的,需要處理數據的框架(hadoop, mpi)雖然小眾,但是python還是有處理大數據的框架的,或者一些框架也支持python。
(3)python大數據應用擴展閱讀:
Python處理數據缺點:
Python處理大數據的劣勢:
1、python線程有gil,通俗說就是多線程的時候只能在一個核上跑,浪費了多核伺服器。在一種常見的場景下是要命的:並發單元之間有巨大的數據共享或者共用(例如大dict)。
多進程會導致內存吃緊,多線程則解決不了數據共享的問題,單獨的寫一個進程之間負責維護讀寫這個數據不僅效率不高而且麻煩
2、python執行效率不高,在處理大數據的時候,效率不高,這是真的,pypy(一個jit的python解釋器,可以理解成腳本語言加速執行的東西)能夠提高很大的速度,但是pypy不支持很多python經典的包,例如numpy。
3. 絕大部分的大公司,用java處理大數據不管是環境也好,積累也好,都會好很多。
參考資料來源:網路-Python
Ⅳ 為什麼大數據用python
Python 已經成為較受歡迎的程序設計語言之一。自從2004年以後,python的使用率呈線性增長。2011年1月,它被TIOBE編程語言排行榜評為2010年度語言。由於Python語言的簡潔性、易讀性以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學已經採用Python來教授程序設計課程。
數據就是資產。大數據工程師是現在十分火熱、高薪的職位。做大數據開發和分析不僅要用到Java,Python也是較重要的語言。
那麼,今天我們就來分析一下,Python之於大數據的意義和作用。
相關推薦:《Python入門教程》
什麼是大數據?
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
為什麼是python大數據?
從大數據的網路介紹上看到,大數據想要成為信息資產,需要有兩步,一是數據怎麼來,二是數據處理。
數據怎麼來:
在數據怎麼來這個問題上,數據挖掘無疑是很多公司或者個人的優選,畢竟大部分公司或者個人是沒有能力產生這么多數據的,只能是挖掘互聯網上的相關數據。
網路爬蟲是Python的傳統強勢領域,較流行的爬蟲框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能夠獨當一面的類庫。
當然,網路爬蟲並不僅僅只是打開網頁,解析HTML怎麼簡單。高效的爬蟲要能夠支持大量靈活的並發操作,常常要能夠同時幾千甚至上萬個網頁同時抓取,傳統的線程池方式資源浪費比較大,線程數上千之後系統資源基本上就全浪費在線程調度上了。
Python由於能夠很好的支持協程(Coroutine)操作,基於此發展起來很多並發庫,如Gevent,Eventlet,還有Celery之類的分布式任務框架。被認為是比AMQP更高效的ZeroMQ也是較早就提供了Python版本。有了對高並發的支持,網路爬蟲才真正可以達到大數據規模。
數據處理:
有了大數據,那麼也需要處理,才能找到適合自己的數據。而在數據處理方向,Python也是數據科學家較喜歡的語言之一,這是因為Python本身就是一門工程性語言,數據科學家用Python實現的演算法,可以直接用在產品中,這對於大數據初創公司節省成本是非常有幫助的。
正是因為這些原因,才讓python語言成為很多公司處理大數據的優選。加之python本身具有簡單、易學、庫多等原因,讓越來越多的人選擇轉行python開發。
Ⅳ Python在大數據領域是怎麼來應用的
適合大數據處理。而不是大數據量處理。 如果大數據量處理,需要採用並用結構,比如在hadoop上使用python,或者是自己做的分布式處理框架。 大數據量處理使用python的也多。如果單機單核單硬碟大數據量(比如視頻)處理。顯然只能用c/c++語言了。 大數據與大數據量區別還是挺大的。 大數據意思是大數據的智慧演算法和應用。 大數據量,早在50年前就有大數據量處理了。 中國大約在95年左右,大量引入PC機的大數據量處理。一個模型計算數據量大,而且計算時間通常超過一個星期,有時候要計算半年。 氣象,遙感,地震,模式識別,模擬計算的數據量與計算量都是巨大的。當時遠遠超過互聯網。 後來互聯網發起起來以後數據量才上去。即使如此,數據的復雜度也還是比不上科學研究領域的數據。 python早些年就在科學研究和計算領域有大量的積累。所以現在python應用到大數據領域就是水到渠成。
Ⅵ python的應用范圍有哪些
Python是一門簡單、易學並且很有前途的編程語言,很多人都對Python感興趣,但是當學完Python基礎用法之後,又會產生迷茫,尤其是自學的人員,不知道接下來的Python學習方向,以及學完之後能幹些什麼?以下是Python十大應用領域!
1. WEB開發
Python擁有很多免費數據函數庫、免費web網頁模板系統、以及與web伺服器進行交互的庫,可以實現web開發,搭建web框架,目前比較有名氣的Python web框架為Django。從事該領域應從數據、組件、安全等多領域進行學習,從底層了解其工作原理並可駕馭任何業內主流的Web框架。
2. 網路編程
網路編程是Python學習的另一方向,網路編程在生活和開發中無處不在,哪裡有通訊就有網路,它可以稱為是一切開發的「基石」。對於所有編程開發人員必須要知其然並知其所以然,所以網路部分將從協議、封包、解包等底層進行深入剖析。
3. 爬蟲開發
在爬蟲領域,Python幾乎是霸主地位,將網路一切數據作為資源,通過自動化程序進行有針對性的數據採集以及處理。從事該領域應學習爬蟲策略、高性能非同步IO、分布式爬蟲等,並針對Scrapy框架源碼進行深入剖析,從而理解其原理並實現自定義爬蟲框架。
4. 雲計算開發
Python是從事雲計算工作需要掌握的一門編程語言,目前很火的雲計算框架OpenStack就是由Python開發的,如果想要深入學習並進行二次開發,就需要具備Python的技能。
5. 人工智慧
MASA和Google早期大量使用Python,為Python積累了豐富的科學運算庫,當AI時代來臨後,Python從眾多編程語言中脫穎而出,各種人工智慧演算法都基於Python編寫,尤其PyTorch之後,Python作為AI時代頭牌語言的位置基本確定。
6. 自動化運維
Python是一門綜合性的語言,能滿足絕大部分自動化運維需求,前端和後端都可以做,從事該領域,應從設計層面、框架選擇、靈活性、擴展性、故障處理、以及如何優化等層面進行學習。
7. 金融分析
金融分析包含金融知識和Python相關模塊的學習,學習內容囊括Numpy\Pandas\Scipy數據分析模塊等,以及常見金融分析策略如「雙均線」、「周規則交易」、「羊駝策略」、「Dual Thrust 交易策略」等。
8. 科學運算
Python是一門很適合做科學計算的編程語言,97年開始,NASA就大量使用Python進行各種復雜的科學運算,隨著NumPy、SciPy、Matplotlib、Enthought librarys等眾多程序庫的開發,使得Python越來越適合做科學計算、繪制高質量的2D和3D圖像。
9. 游戲開發
在網路游戲開發中,Python也有很多應用,相比於Lua or C++,Python比Lua有更高階的抽象能力,可以用更少的代碼描述游戲業務邏輯,Python非常適合編寫1萬行以上的項目,而且能夠很好的把網游項目的規模控制在10萬行代碼以內。
10. 桌面軟體
Python在圖形界面開發上很強大,可以用tkinter/PyQT框架開發各種桌面軟體!
Ⅶ Python可以做大數據嗎
Python是數據科學家十分喜愛的編程語言,其內置了很多由C語言編寫的庫,操作起來更加方便,Python在網路爬蟲的傳統應用領域,在大數據的抓取方面具有先天優勢,目前,最流行的爬蟲框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能夠獨當一面的Python類庫。
相關推薦:《Python基礎教程》
Python十分適合數據抓取工作,對於大數據的處理,具有一定的局限性:
Python在大數據處理方面的優勢:
1. 異常快捷的開發速度,代碼量少;
2. 豐富的數據處理包,使用十分方便;
3. 內部類型使用成本低;
4. 百萬級別數據可以採用Python處理。
Python在大數據處理方面的劣勢:
1. python線程有gil,多線程的時候只能在一個核上跑,浪費了多核伺服器;
2. python執行效率不高,在處理大數據的時候,效率不高;
3. 10億級別以上的數據Python效率低。
Python適合大數據的抓取、載入和分發,相比於其他語言更加簡單、高效;求一些常用的統計量和求一些基本演算法的結果,Python也有現成的高效的庫,但是針對大數據處理,Python具有一定的局限於,因此,涉及大數據處理時,可以用Python做整個流程的框架,核心CPU密集操作可以採用C語言等編程語言!
Ⅷ Python五大應用領域是什麼
一、網路爬蟲
網路爬蟲是Python比較常用的一個場景,國際上,google在前期大量地運用Python言語作為網路爬蟲的根底,帶動了整個Python言語的運用發展。
二、數據處理
Python有很齊備的生態環境。"大數據"分析中涉及到的分布式核算、數據可視化、資料庫操作等,Python中都有成熟的模塊能夠挑選完結其功能。關於Hadoop-MapRece和Spark,都能夠直接運用Python完結核算邏輯,這不管關於數據科學家仍是關於數據工程師而言都是十分便當的。
三、web開發
Python的誕生前史比Web還要早,由於Python是一種解說型的腳本言語,開發效率高,所以十分適合用來做Web開發。
Django 是 Python 編程言語驅動的一個開源模型-視圖-控制器(MVC)風格的 Web 運用程序結構。運用 Django,咱們在幾分鍾之內就能夠創建高品質、易維護、資料庫驅動的運用程序。
四、數據分析
關於數據分析師來說,不只要自己理解數據背面的含義,而且還要給更直地展現數據的含義。
Scipy是一組專門解決科學核算中各種規范問題域的包的集合。Numpy是python科學核算的根底包。Pandas處理上千萬的數據是一揮而就的工作,同時隨後咱們也將看到它比SQL有更強的表達能力,能夠做很多復雜的操作,要寫的code也更少。
五、人工智慧
人工智慧是現在十分火的一個方向,AI熱潮讓Python言語的未來充滿了無限的潛力。現在釋放出來的幾個十分有影響力的AI結構,大多是Python的實現,為什麼呢?
在人工智慧大領域領域內的數據發掘、機器學習、神經網路、深度學習等方面都是主流的編程言語,得到廣泛的支持和運用。人工智慧的核心演算法大部分仍是依賴於C/C++的,由於是核算密集型,需求十分精細的優化,還需求GPU、專用硬體之類的介面,這些都只要C/C++能做到。
關於Python五大應用領域是什麼,環球青藤小編就和大家分享到這里了,學習是永無止境的,學習一項技能更是受益終身,所以,只要肯努力學,什麼時候開始都不晚。如果您還想繼續了解關於python編程的學習方法及素材等內容,可以點擊本站其他文章學習。
Ⅸ 為什麼從事大數據行業,一定要學習Python
需要澄清兩點之後才可以比較全面的看這個問題: 1. 百萬行級不算大數據量,以目前的互聯網應用來看,大數據量的起點是10億條以上。 2. 處理的具體含義,如果是數據載入和分發,用python是很高效的;如果是求一些常用的統計量和求一些基本演算法的結果,python也有現成的高效的 庫,c實現的和並行化的;如果是純粹自己寫的演算法,沒有任何其他可借鑒的,什麼庫也用不上,用純python寫是自討苦吃。 python的優勢不在於運行效率,而在於開發效率和高可維護性。針對特定的問題挑選合適的工具,本身也是一項技術能力。Python是一個強大的,靈活的,開放的,易於學習的源語言,使用方便,並具有強大的數據操作和分析庫。其簡單的語法使編程新手很容易學習和掌握,經歷過Matlab,,C / C++,java,或Visual Basic,Python提供了一個獨特的組合,都能使用編程語言以及使用方便的分析和定量計算