導航:首頁 > 編程語言 > 嶺回歸Python

嶺回歸Python

發布時間:2022-05-02 17:42:08

Ⅰ noita無法使用魔杖

<strong>python ols summary直線的x,y方程是這樣的:y = kx+b, k就是斜率。</strong><br>求線性回歸斜率, 就是說有這么一組(x, y)的對應值——樣本。如果有四組,就說樣本量是4,根據這些樣本,做「線性回歸」,最終求出一條直線(即y = kx + b的k值和b值),使得樣本里的各個點(x, y) 「盡可能的」落到直線(或者直線附近)上。實際解題主要用到的python庫是pandas. 解題演算法是「最小二乘法」,這用到了pandas的ols函數。<br>可決系數,說明估計的准確性,「可決系數」是通過數據的變化來表徵一個擬合的好壞。由上面的表達式可以知道「確定系數」的正常取值范圍為[0 1],越接近1,表明方程的變數對y的解釋能力越強,這個模型對數據擬合的也較好。嶺回歸(ridge regression, Tikhonov regularization)是一種專用於共線性數據分析的有偏估計回歸方法,實質上是一種改良的最小二乘估計法,通過放棄最小二乘法的無偏性,以損失部分信息、降低精度為代價獲得回歸系數更為符合實際、更可靠的回歸方法,對病態數據的擬合要強於最小二乘法。通常嶺回歸方程的R平方值會稍低於普通回歸分析,但回歸系數的顯著性往往明顯高於普通回歸,在存在共線性問題和病態數據偏多的研究中有較大的實用價值。

Ⅱ python 嶺回歸



所求參數是alpha的函數,比如記為f(alpha),f(alpha)隨alpha的改變的軌跡就是嶺跡。
實際計算中可選非常多的alpha值,做出一個嶺跡圖,看看這個圖在取哪個值的時候變穩定了,
那就確定alpha值了,從而確定參數。

Ridge(alpha=1.0,fit_intercept=False)
model.fit(x,y)

這樣就等於你算的,因為你numpy是用增廣矩陣算的,所以應該將setfit_intercept=False
model.coef_
array([[1.06059732,0.48614918,0.44596739]])

Ⅲ Python 在編程語言中是什麼地位為什麼很多大學不教 Python

作者看著網上各種數據分析的知識泛濫, 但是沒有什麼體系,初學者不知道學哪些, 不知道學多少, 不知道學多深, 單純一個python語言, 數據分析會用到那種程度, 不可能說像開發那樣去學, numpy如果不是做演算法工程師用到的知識並不多, pandas知識雜亂無章, 哪些才是最常用的功能等等, 作者不忍眾生皆苦, 決定寫一套python數據分析的全套教程, 目前已完成一部分課件的製作。需要說明的是, 作為一名數據分析師, 你應該先會一點Excel和SQL知識,相關的內容, 網上很多。但是, 即便你一點Excel和SQL都不會也不會影響這部分的學習 !目前作者整理的大綱如下:
第一章 python編程基礎
1.1 python語言概述 1.2 數據科學神器--Anaconda介紹與安裝 1.3 標准輸入輸出 1.4 變數定義與賦值 1.5 數據類型 1.6 流程式控制制語句 1.7 函數
1.8 面向對象編程 第二章 python數據清洗之numpy 2.1 核心ndarray對象的創建 2.2 ndarray對象常用的屬性和方法 2.3 ndarray對象的索引和切片 2.4 ndarray對象的分割與合並 2.5 ndarray對象的廣播(Broadcast) 2.6 numpy中的算術運算函數 2.7 numpy中的統計函數 2.8 numpy中的排序 搜索 計數 去重函數 2.9 numpy中的字元串函數 2.10 numpy中可能會用到的線性代數模塊(後期機器學習會用到一點)
第三章 數據清洗神器pandas
3.1 pandas核心對象之Series對象的創建 常用屬性和方法 3.2 pandas核心對象之DataFrame對象的創建 常用屬性和方法 3.3 DataFrame對象的列操作和行操作 3.4 DataFrame對象的索引和切片 3.5 DataFrame對象的布爾索引 3.6 數據的讀入與導出 3.7 groupby分組運算 3.8 數據合並與數據透視
第四章 數據可視化matplotlib seaborn pyecharts
4.1 包括常用圖形的繪制,略
第五章 實戰案列
5.1 拉勾網數據分析相關職位分析 5.2 boss直聘數據分析相關職位分析 5.3 珍愛網女性用戶數據分析
第六章 機器學習
機器學習部分, 簡單的演算法會講手寫, 難的就用scikit-learn實現, 可能有小夥伴說, 這是調包俠乾的, 小哥哥!小姐姐!哪有那麼多公司, 那麼多人自己干寫演算法的, 有幾個人敢說他寫的演算法比scikit-learn寫得好? 再說了, 你是數據分析師, 這些是你的工具, 解決問題的!不是一天到晚拉格朗日對偶性!先來個機器學習介紹, 然後如下:
6.1 K近鄰演算法 6.2 Kmeans演算法 6.3 決策樹 階段案列:決策樹案列(保險行業) 6.4 線性回歸 嶺回歸 Lasso回歸 6.5 邏輯回歸 6.6 樸素貝葉斯 階段案列:推薦系統(電商玩具) 6.7 隨機森林 6.8 Adaboost 6.9 梯度提升樹GBDT 6.10 極端梯度提升樹Xgboost 6.11 支持向量機SVM 6.12 神經網路 階段案例:Xgboost案例
------------------------------本節內容-----------------------------------------
python語言概述
在說python之前, 我們還是先來看看計算機軟硬體的發展歷史。
1 計算機硬體的發展歷史
第一代計算機-電子管計算機(1946-1957)
無論如何,一項技術的突破必然伴隨著其他行業的突破,簡而言之,電子計算機的出現,前提必須有電子技術的進步,否則一切都是空談!下面是我列舉出計算機硬體的發展過程中, 一些比較重要的事件。
1906年, 美國的Lee De Forest 發明了電子管。在這之前造出數字電子計算機是不可能的。這為電子計算機的發 展奠定了基礎。
1924年2月, 一個具有劃時代意義的公司成立,IBM。
1935年, IBM推出IBM 601機。 這是一台能在一秒鍾算出乘法的穿孔卡片計算機。這台機器無論在自然科學還是在商業意義上都具有重要的地位。大約造了1500台。
1937年, 英國劍橋大學的Alan M. Turing (1912-1954)出版了他的論文 ,並提出了被後人稱之為"圖靈機"的數學模型。
1937年, 美國貝爾試驗室的George Stibitz展示了用繼電器表示二進制的裝置。盡管僅僅是個展示品,但卻是世界上第一台二進制電子計算機。
1941年, Atanasoff和學生Berry完成了能解線性代數方程的計算機,取名叫"ABC"(Atanasoff-Berry Computer),用電容作存儲器,用穿孔卡片作輔助存儲器,那些孔實際上是"燒"上的。 時鍾頻率是60HZ,完成一次加法運算用時一秒。這就是ABC計算機。
1946年, 美國賓夕法尼亞大學,第一台通用電子計算機ENIAC (Electronic Numerical Integrator 和 Computer)誕生, 總工程師埃克特在當時年僅25歲。
這時的計算機的基本線路是採用電子管結構,程序從人工手編的 機器指令程序(0 1),過渡到符號語言(匯編),電子管計算機是計算工具革命性發展的開始,它所採用的進位制與程序存貯等基本技術思想,奠定了現代電子計算機技術基礎。以馮·諾依曼為代表。
第二代計算機——晶體管計算機(時間1957~1964)
電子管時代的計算機盡管已經步入了現代計算機的范疇,但其體積之大、能耗之高、故障之多、價格之貴大大制約了它的普及應用。直到晶體管被發明出來,電子計算機才找到了騰飛的起點,一發而不可收……
20世紀50年代中期,晶體管的出現使計算機生產技術得到了根本性的發展,由晶體管代替電子管作為計算機的基礎器件,用 磁芯或磁鼓作存儲器,在整體性能上,比第一代計算機有了很大的提高。
第三代計算機——中小規模集成電路計算機(時間1964~1971)
20世紀60年代中期, 計算機發展歷程隨著半導體工藝的發展,成功製造了集成電路。中小規模集成電路成為計算機的主要部件,主存儲器也漸漸過渡到 半導體存儲器,使計算機的體積更小,大大降低了計算機計算時的功耗,由於減少了 焊點和 接插件,進一步提高了計算機的可靠性。
第四代計算機——大規模和超大規模集成電路計算機(時間1971~至今)
隨著大規模集成電路的成功製作並用於計算機硬體生產過程,計算機的體積進一步縮小,性能進一步提高。集成更高的大容量半導體存儲器作為內存儲器,發展了並行技術和多機系統,出現了 精簡指令集計算機(RISC),軟體系統工程化、理論化,程序設計自動化。微型計算機在社會上的應用范圍進一步擴大,幾乎所有領域都能看到計算機的「身影」。
第五代計算機——泛指具有人工智慧的計算機(至今~未來)
目前還沒有明確地定義
2 簡述計算機軟體的發展歷史
編程語言的發展
計算機軟體系統的發展,也伴隨著編程語言的發展。計算機程序設計語言的發展,經歷了從機器語言、匯編語言到高級語言的歷程。
機器語言:簡單點說,機器本身也只認識0和1,電路無非就只有通和斷兩種狀態,對應的二進制就是二進制的1和1。
匯編語言:匯編語言只是把一些特殊的二進制用特殊的符號表示,例如,機器要傳送一個數據,假設「傳送」這個指令對應的機器碼是000101,則人們把000101用一個特殊符號,比如mov來表示,當人們要用這個指令時用mov就行,但是mov的本質還是000101,沒有脫離硬體的范圍,有可能這個指令不能在其他機器上用。
高級語言:高級語言完全脫離了硬體范疇,所有的語法更貼近人類的自然語言,人們只需要清楚高級語言的語法,寫出程序就行了,剩下的交給編譯器或者解釋器去編譯或者解釋成機器語言就行了,看,這樣就完全脫離了硬體的范疇,大大提高了程序的開發效率。接下來我們就來看看高級語言的發展,高級語言非常多,我們主要看看比較經典的幾個。
高級語言的發展
B語言與Unix
20世紀60年代,貝爾實驗室的研究員Ken Thompson(肯·湯普森)發明了B語言,並使用B編了個游戲 - Space Travel,他想玩自己這個游戲,所以他背著老闆找到了台空閑的機器 - PDP-7,但是這台機器沒有操作系統,於是Thompson著手為PDP-7開發操作系統,後來這個OS被命名為 - UNIX。
C語言
1971年,Ken Thompson(肯·湯普森)的同事D.M.Ritchie(DM里奇),也很想玩Space Travel,所以加入了Ken Thompson,合作開發UNIX,他的主要工作是改進Thompson的B語言。最終,在1972年這個新語言被稱為C,取BCPL的第二個字母,也是B的下一個字母。
C語言和Unix
1973年,C主體完成。Ken Thompson和D.M.Ritchie迫不及待的開始用C語言完全重寫了UNIX。此時編程的樂趣已經使他們完全忘記了那個「Space Travel」,一門心思的投入到了UNIX和C語言的開發中。自此,C語言和UNIX相輔相成的發展至今。
類C語言起源、歷史
C++(C plus plus Programming Language) - 1983
還是貝爾實驗室的人,Bjarne Stroustrup(本賈尼·斯特勞斯特盧普) 在C語言的基礎上推出了C++,它擴充和完善了C語言,特別是在面向對象編程方面。一定程度上克服了C語言編寫大型程序時的不足。
Python (Python Programming Language)--1991
1989年聖誕節期間,Guido van Rossum 在阿姆斯特丹,Guido van Rossum為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,做為ABC語言的一種繼承。之所以選中Python(大蟒蛇的意思)作為該編程語言的名字,是因為他是一個叫Monty Python的喜劇團體的愛好者。第一個Python的版本發布於1991年。
Java(Java Programming Language) - 1995
Sun公司的Patrick Naughton的工作小組研發了Java語言,主要成員是James Gosling(詹姆斯·高斯林)
C(C Sharp Programming Language) - 2000
Microsoft公司的Anders Hejlsberg(安德斯·海爾斯伯格)發明了C,他也是Delphi語言之父。
當然現在還有一些新語言,比如2009年Google的go語言,以及麻省理工的julia等。
3 為什麼是Python
Python有哪些優點
1 語法簡單 漂亮:我們可以說Python是簡約的語言,非常易於讀寫。在遇到問題時,我們可以把更多的注意力放在問題本身上,而不用花費太多精力在程序語言、語法上。
2 豐富而免費的庫:Python社區創造了各種各樣的Python庫。在他們的幫助下,你可以管理文檔,執行單元測試、資料庫、web瀏覽器、電子郵件、密碼學、圖形用戶界面和更多的東西。所有東西包括在標准庫,然而,除了它,還有很多其他的庫。
3 開源:Python是免費開源的。這意味著我們不用花錢,就可以共享、復制和交換它,這也幫助Python形成了豐富的社區資源,使其更加完善,技術發展更快。
4 Python既支持面向過程,也支持面向對象編程。在面向過程編程中,程序員復用代碼,在面向對象編程中,使用基於數據和函數的對象。盡管面向對象的程序語言通常十分復雜,Python卻設法保持簡潔。
5 Python兼容眾多平台,所以開發者不會遇到使用其他語言時常會遇到的困擾。
Python有哪些作用
Python是什麼都能做,但是我們學的是數據分析,我們看看在數據分析領域Python能做什麼。
數據採集:以Scrapy 為代表的各類方式的爬蟲
數據鏈接:Python有大量各類資料庫的第三方包,方便快速的實現增刪改查
數據清洗:Numpy、Pandas,結構化和非結構化的數據清洗及數據規整化的利器
數據分析:Scikit-Learn、Scipy,統計分析,科學計算、建模等
數據可視化:Matplotlib、Seaborn等等大量各類可視化的庫
所以說總結, 為什麼數據科學選的是python, 最重要就是兩個原因:
1 語法簡單漂亮
2 大量豐富免費的第三方庫

Ⅳ 數據科學家需要掌握的10個基本統計技術

數據科學家需要掌握的10個基本統計技術
無論您在數據的科學性問題上持哪種看法,都無法忽視數據的持續重要性,也不能輕視分析、組織和情境化數據的能力。 根據大量的就業數據和員工反饋信息統計,在「25個最佳美國就業機會」排行榜中,數據科學家排名第一。毫無疑問,數據科學家所做的具體工作內容將會進一步拓展。隨著機器學習等技術變得越來越普遍,深度學習等新興領域對研究人員和工程師的需求得到了巨大的推動,數據科學家們在創新和技術進步的浪潮中再次嶄露頭角。
編碼能力強大是很重要的,但數據科學並不專職於軟體工程(事實上,對Python很熟悉就足夠了)。數據科學家生活在編碼、統計學和批判性思維的交叉點上。正如喬希·威爾斯(JoshWills)所說的那樣:「數據科學家是一個比任何程序員都要好的統計學家,而且比任何統計學家都更擅長編程。」筆者個人知道有太多的軟體工程師希望轉向數據科學家,並盲目利用機器學習框架TensorFlow或Apache Spark,而不透徹理解背後的統計理論。因此出現了「統計學習」,一個與機器學習有關的理論框架,包含統計到功能分析的一系列專業領域。
為什麼學習統計學習?了解各種技術背後的想法是非常重要的,可以讓你知道如何以及何時使用它們。由簡入繁,首先要理解更簡單的方法,才好把握更復雜的方法。准確地評估一種方法的性能,了解它的工作效果多好或者多糟,這一點很重要。此外,這是一個令人興奮的研究領域,在科學,工業和金融領域有著重要的應用。最終,統計學習是培養現代數據科學家的基本要素。統計學習問題的例子有:
確定前列腺癌的危險因素。
根據記錄周期圖對錄制的音素進行分類。
根據人口統計、飲食和臨床測量,預測是否有人會發生心臟病。
自定義垃圾郵件檢測系統。
識別手寫郵政編碼中的數字。
將組織樣本分為幾個癌症類別之一。
建立人口調查數據中工資與人口變數之間的關系。
統計學習和機器學習之間的差異在於:
機器學習是人工智慧的一個子領域。
統計學習是統計學的一個分支。
機器學習更強調大規模應用和預測的准確性。
統計學習強調模型及其可解釋性,精確性和不確定性。
1 - 線性回歸:
在統計學中,線性回歸是一種通過擬合自變數與自變數之間最佳線性關系來預測目標變數的方法。最好的做法是確保每個點的形狀和實際觀測之間的所有距離之和盡可能小。形狀的適合性是「最好的」,因為在形狀的選擇上沒有其他位置會產生較少的誤差。線性回歸的2種主要類型是簡單線性回歸和多元線性回歸。簡單線性回歸使用一個獨立變數來通過擬合最佳線性關系來預測因變數。多重線性回歸使用多個獨立變數來通過擬合最佳線性關系來預測因變數。
選擇你在日常生活中使用的任何兩件相關的東西。如每月支出,月收入和過去三年每月的旅行次數的數據。就需要回答以下問題:
我明年的每月開支是多少?
哪個因素(每月收入或每月旅行次數)在決定我的每月支出時更重要?
月收入和每月旅行如何與每月支出相關聯?
2 - 分類:
分類是一種數據挖掘技術,它將類別分配給數據集合,以助進行更准確的預測和分析。有時也稱為決策樹,分類是用於對非常大的數據集進行分析的幾種方法之一。眼下有2大分類技術脫穎而出:Logistic回歸和判別分析。
Logistic回歸分析是當因變數是二分(二元)時進行的適當的回歸分析。像所有回歸分析一樣,Logistic回歸是預測分析。 Logistic回歸用於描述數據並解釋一個相關二元變數與一個或多個標稱、序數、區間或比例級別的獨立變數之間的關系。邏輯回歸可以檢查的問題類型:
每增加一磅的超重和每天吸一包香煙,肺癌的可能性(是vs否)會發生怎樣的變化?
體重卡路里攝入量,脂肪攝入量和參與者年齡對心臟病發作是否有影響(有vs無)?
在判別分析中,先驗已知2個或更多個組或群或群,並基於所測量的特徵將1個或更多個新觀察分類到1個已知群中。判別分析在每個響應類別中分別對預測因子X的分布進行建模,然後使用貝葉斯定理將它們翻轉為給定X的值的響應類別概率的估計。這樣的模型可以是線性的或二次的。
線性判別分析為每個觀測值計算「判別分數」,以便對它所處的響應變數類別進行分類。這些分數是通過尋找自變數的線性組合得到的。它假設每個類別內的觀察值都來自多變數高斯分布,預測因子的協方差在響應變數Y的所有k水平上是共同的。
二次判別分析提供了一種替代方法。和LDA一樣,QDA假定每個Y類的觀測值都是從高斯分布中得到的。但是,與LDA不同的是,QDA假定每個類都有其自己的協方差矩陣。換句話說,預測因子不被假定在Y中的每個k水平上具有共同的方差。
3 - 重采樣方法:
重采樣是從原始數據樣本中繪制重復樣本的方法。這是統計推斷的非參數方法。換句話說,重采樣方法不涉及使用通用分布表來計算近似p概率值。
重采樣根據實際數據生成唯一的采樣分布。它使用實驗方法而不是分析方法來生成獨特的抽樣分布。它產生無偏估計,因為它是基於研究者所研究數據的所有可能結果的無偏樣本。為了理解重采樣的概念,您應該理解術語Bootstrapping和交叉驗證:
Bootstrapping是一種技術,可以幫助您在很多情況下驗證預測模型的性能、集成方法、估計模型的偏差和方差。它通過對原始數據進行替換來進行采樣,並將「未選擇」的數據點作為測試用例。我們可以做這幾次,並計算平均分作為我們的模型性能的估計。
另一方面,交叉驗證是驗證模型性能的一種技術,它是通過將訓練數據分成k個部分來完成的。我們以k - 1部分作為訓練集,並使用「伸出部分」作為我們的測試集。我們重復k次不同的方式。最後,我們將k分數的平均值作為我們的業績估計。
通常對於線性模型,普通最小二乘法是考慮將它們適合於數據的主要標准。接下來的3種方法是可以為線性模型的擬合提供更好的預測精度和模型可解釋性的替代方法。
4 - 子集選擇:
這種方法確定了我們認為與響應相關的p預測因子的一個子集。然後,我們使用子集特徵的最小二乘擬合模型。
最佳子集選擇:這里我們對每個可能的p預測因子組合進行單獨的OLS回歸,然後查看最終的模型擬合。演算法分為2個階段:(1)擬合所有包含k預測因子的模型,其中k是模型的最大長度;(2)使用交叉驗證的預測誤差選擇單個模型。使用測試或驗證錯誤非常重要,而不是訓練錯誤來評估模型擬合,因為RSS和R 2單調增加更多的變數。最好的方法是在測試誤差估計值上交叉驗證並選擇具有最高R 2和最低RSS的模型。
向前逐步選擇考慮預測因子的一個小得多的子集。它從不含預測因子的模型開始,然後在模型中添加預測因子,直到所有預測因子都在模型中。被添加變數的順序是變數,其給出對擬合的最大的加法改進,直到沒有更多的變數使用交叉驗證的預測誤差來改進模型擬合。
向後逐步選擇開始將模型中的所有預測因子,然後迭代去除最不有用的預測因子。
混合方法遵循向前逐步回歸方法,但是,在添加每個新變數之後,該方法還可以去除對模型擬合沒有貢獻的變數。
5 - 收縮:
這種方法適合一個涉及所有p預測因子的模型,然而,估計系數相對於最小二乘估計向零收縮。這種縮水,又稱正規化,具有減少方差的作用。取決於執行什麼類型的收縮,其中一些系數可能恰好被估計為零。因此這個方法也執行變數選擇。將系數估計收縮為零的兩個最著名的技術是嶺回歸和Lasso。
嶺回歸類似於最小二乘,通過最小化一個稍微不同的數量估計系數。像OLS一樣,嶺回歸尋求降低RSS的系數估計值,但是當系數接近於零時,它們也會有收縮懲罰。這個懲罰的作用是將系數估計收縮到零。不用進入數學計算,知道嶺回歸縮小列空間方差最小的特徵是有用的。像在主成分分析中一樣,嶺回歸將數據投影到雙向空間,然後比高方差分量收縮低方差分量的系數,這相當於最大和最小主分量。
嶺回歸至少有一個缺點:它包括最終模型中的所有p預測值。犯規條款將使它們中的許多接近於零,但不完全為零。這對於預測准確性來說通常不是問題,但它可能使模型更難以解釋結果。 Lasso克服了這個缺點,並且能夠迫使一些系數歸零,只要s足夠小。由於s = 1導致有規律的OLS回歸,當s接近0時,系數收縮為零。因此,Lasso回歸也執行變數選擇。
6 - 維度降低:
維數減少將估計p + 1個系數的問題簡化為M + 1個系數的簡單問題,其中M
可以將主成分回歸描述為從大量變數中導出低維特徵集合的方法。數據的第一個主要組成方向是觀測值變化最大的。換句話說,第一台PC是盡可能接近數據的一條線。人們可以適應不同的主要組成部分。第二個PC是與第一個PC不相關的變數的線性組合,並且受這個約束的變化最大。這個想法是主要的組成部分使用隨後正交方向的數據的線性組合捕獲數據中最大的變化。通過這種方式,我們也可以結合相關變數的效果,從可用數據中獲取更多信息,而在正則最小二乘中,我們將不得不放棄其中一個相關變數。
我們上面描述的PCR方法包括確定最能代表預測因子的X的線性組合。這些組合(方向)以無監督的方式被識別,因為響應Y不用於幫助確定主要組件方向。也就是說,響應Y不監督主成分的識別,因此不能保證最能解釋預測因子的方向對於預測響應(即使經常假設)也是最好的。偏最小二乘法(PLS)是一個監督的替代PCR。與PCR一樣,PLS是一種降維方法,它首先識別一組新的較小的特徵,這些特徵是原始特徵的線性組合,然後通過最小二乘法擬合一個線性模型到新的M特徵。然而,與PCR不同的是,PLS利用響應變數來識別新的特徵。
7 - 非線性模型:
在統計學中,非線性回歸是回歸分析的一種形式,其中觀測數據是由一個函數建模的,該函數是模型參數的非線性組合,並取決於一個或多個自變數。數據通過逐次逼近的方法進行擬合。以下是一些處理非線性模型的重要技巧:
如果實數的函數可以寫成區間指示函數的有限線性組合,則稱實數為函數。非正式地說,一個階梯函數是一個只有很多片段的分段常量函數。
分段函數是由多個子函數定義的函數,每個子函數應用於主函數域的一定間隔。分段實際上是表達函數的一種方式,而不是函數本身的一個特徵,但是具有額外的限定,可以描述函數的性質。例如,分段多項式函數是在其每個子域上是多項式的函數,但是每個子域上可能是不同的。
樣條函數是由多項式分段定義的特殊函數。在計算機圖形學中,樣條是指分段多項式參數曲線。由於其結構簡單,評估方便和准確,以及通過曲線擬合和互動式曲線設計逼近復雜形狀的能力,樣條曲線是流行的曲線。
廣義加性模型是一種線性預測模型,其中線性預測變數線性依賴於某些預測變數的未知光滑函數,興趣集中在對這些光滑函數的推理上。
8 - 基於樹的方法:
基於樹的方法可以用於回歸和分類問題。這些涉及將預測空間分層或分割成若干簡單區域。由於用於分割預測變數空間的分裂規則集合可以在樹中進行概括,所以這些類型的方法被稱為決策樹方法。下面的方法生成多個樹,然後結合在一起產生一個單一的共識預測。
套袋(Bagging)是減少預測方差的方法,通過使用重復組合來生成原始數據集中的訓練數據,從而生成與原始數據相同的多樣性。通過增加你的訓練集的大小,你不能提高模型的預測力,只是減少方差,勉強把預測調整到預期的結果。
提升(Boosting)是一種使用幾種不同的模型計算產出的方法,然後使用加權平均方法對結果進行平均。通過改變你的加權公式,結合這些方法的優點和缺陷,你可以使用不同的狹義調整模型,為更廣泛的輸入數據提供一個很好的預測力。
隨機森林(random forest )演算法實際上非常類似於套袋。你也可以繪制訓練集的隨機bootstrap樣本。但是,除了自舉樣本之外,還可以繪制隨機子集來訓練單個樹;在套袋中,你給每個樹一套完整功能。由於隨機特徵選擇,與常規套袋相比,樹木之間的相互獨立性更高,這通常會帶來更好的預測性能(由於更好的方差偏差權衡),而且速度更快,因為每棵樹只能從功能的一個子集。
9 - 支持向量機:
SVM是機器學習中監督學習模型中的一種分類技術。通俗地說,它涉及於找到超平面(2D中的線,3D中的平面和更高維中的超平面,更正式地說,超平面是n維空間中的n維空間)最大保證金從本質上講,它是一個約束優化問題,其邊界被最大化,受限於它對數據進行了完美的分類(硬邊緣)。
這種「支持」這個超平面的數據點被稱為「支持向量」。對於兩類數據不能線性分離的情況,這些點被投影到可能線性分離的分解(高維)空間。涉及多個類的問題可以分解為多個一對一或者一對二的分類問題。
10 - 無監督學習:
到目前為止,我們只討論了監督學習技術,其中組是已知的,提供給演算法的經驗是實際實體和它們所屬的組之間的關系。當數據的組(類別)未知時,可以使用另一組技術。它們被稱為無監督的,因為它會留在學習演算法中以找出所提供的數據中的模式。聚類是無監督學習的一個例子,其中不同的數據集被聚類為密切相關的項目組。下面是最廣泛使用的無監督學習演算法的列表:
主成分分析通過識別一組具有最大方差和相互不相關的特徵的線性組合來幫助產生數據集的低維表示。這種線性維度技術有助於理解變數在無監督環境下的潛在相互作用。
k-Means聚類:根據到群集質心的距離將數據分為k個不同的集群。
分層集群:通過創建集群樹來構建集群的多級分層結構。
以上是一些基本的統計技術的簡單解釋與說明,可以幫助數據科學項目經理和主管人員更好地理解他們的數據科學小組背後隱藏的內容。實際上,一些數據科學小組純粹通過python和R庫運行演算法。他們中的大多數甚至不必考慮潛在的數學問題。但是,能夠理解統計分析的基礎知識可以為您的團隊提供更好的方法。

Ⅳ 常用的大數據技術有哪些

大數據技術包括數據收集、數據存取、基礎架構、數據處理、統計分析、數據挖掘、模型預測、結果呈現。

1、數據收集:在大數據的生命周期中,數據採集處於第一個環節。根據MapRece產生數據的應用系統分類,大數據的採集主要有4種來源:管理信息系統、Web信息系統、物理信息系統、科學實驗系統。

2、數據存取:大數據的存去採用不同的技術路線,大致可以分為3類。第1類主要面對的是大規模的結構化數據。第2類主要面對的是半結構化和非結構化數據。第3類面對的是結構化和非結構化混合的大數據,

3、基礎架構:雲存儲、分布式文件存儲等。

4、數據處理:對於採集到的不同的數據集,可能存在不同的結構和模式,如文件、XML 樹、關系表等,表現為數據的異構性。對多個異構的數據集,需要做進一步集成處理或整合處理,將來自不同數據集的數據收集、整理、清洗、轉換後,生成到一個新的數據集,為後續查詢和分析處理提供統一的數據視圖。

5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。

6、數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。

7、模型預測:預測模型、機器學習、建模模擬。

8、結果呈現:雲計算、標簽雲、關系圖等。

Ⅵ 嶺回歸和Lasso回歸有什麼區別

嶺回歸是線性回歸採用L2正則化的形式,Lasso回歸是採用L1正則化的形式,Lasso回歸易產生稀疏解

Ⅶ 多項式回歸和多元式回歸區別!

方差分析與回歸分析是有聯系又不完全相同的分析方法。方差分析主要研究各變數對結果的影響程度的定性關系,從而剔除對結果影響較小的變數,提高試驗的效率和精度。而回歸分析是研究變數與結果的定量關系,得出相應的數學模式。在回歸分析中,需要對各變數對結果影響進行方差分析,以剔除影響不大的變數,提高回歸分析的有效性。
方差分析(Analysis of Variance,簡稱ANOVA),又稱「變異數分析」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。 由於各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。
回歸分析是研究各因素對結果影響的一種模擬經驗方程的辦法,回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的變數的多少,分為一元回歸和多元回歸分析。
回歸分析中,會用到方差分析來判斷各變數對結果的影響程度,從而確定哪些因素是應該納入到回歸方程中,哪些由於對結果影響的方差小而不應該納入到回歸方程中。

Ⅷ python ols summary哪個是斜率

python ols summary直線的x,y方程是這樣的:y = kx+b, k就是斜率。
求線性回歸斜率, 就是說有這么一組(x, y)的對應值——樣本。如果有四組,就說樣本量是4,根據這些樣本,做「線性回歸」,最終求出一條直線(即y = kx + b的k值和b值),使得樣本里的各個點(x, y) 「盡可能的」落到直線(或者直線附近)上。實際解題主要用到的python庫是pandas. 解題演算法是「最小二乘法」,這用到了pandas的ols函數。
可決系數,說明估計的准確性,「可決系數」是通過數據的變化來表徵一個擬合的好壞。由上面的表達式可以知道「確定系數」的正常取值范圍為[0 1],越接近1,表明方程的變數對y的解釋能力越強,這個模型對數據擬合的也較好。嶺回歸(ridge regression, Tikhonov regularization)是一種專用於共線性數據分析的有偏估計回歸方法,實質上是一種改良的最小二乘估計法,通過放棄最小二乘法的無偏性,以損失部分信息、降低精度為代價獲得回歸系數更為符合實際、更可靠的回歸方法,對病態數據的擬合要強於最小二乘法。通常嶺回歸方程的R平方值會稍低於普通回歸分析,但回歸系數的顯著性往往明顯高於普通回歸,在存在共線性問題和病態數據偏多的研究中有較大的實用價值。

Ⅸ 機器學習實戰的作品目錄

目錄第一部分分類第1章機器學習基礎21.1 何謂機器學習31.1.1 感測器和海量數據41.1.2 機器學習非常重要51.2 關鍵術語51.3 機器學習的主要任務71.4 如何選擇合適的演算法81.5 開發機器學習應用程序的步驟91.6 Python語言的優勢101.6.1 可執行偽代碼101.6.2 Python比較流行101.6.3 Python語言的特色111.6.4 Python語言的缺點111.7 NumPy函數庫基礎121.8 本章小結13第2章k-近鄰演算法 152.1 k-近鄰演算法概述152.1.1 准備:使用Python導入數據172.1.2 從文本文件中解析數據192.1.3 如何測試分類器202.2 示例:使用k-近鄰演算法改進約會網站的配對效果202.2.1 准備數據:從文本文件中解析數據212.2.2 分析數據:使用Matplotlib創建散點圖232.2.3 准備數據:歸一化數值252.2.4 測試演算法:作為完整程序驗證分類器262.2.5 使用演算法:構建完整可用系統272.3 示例:手寫識別系統282.3.1 准備數據:將圖像轉換為測試向量292.3.2 測試演算法:使用k-近鄰演算法識別手寫數字302.4 本章小結31第3章決策樹 323.1 決策樹的構造333.1.1 信息增益353.1.2 劃分數據集373.1.3 遞歸構建決策樹393.2 在Python中使用Matplotlib註解繪制樹形圖423.2.1 Matplotlib註解433.2.2 構造註解樹443.3 測試和存儲分類器483.3.1 測試演算法:使用決策樹執行分類493.3.2 使用演算法:決策樹的存儲503.4 示例:使用決策樹預測隱形眼鏡類型503.5 本章小結52第4章基於概率論的分類方法:樸素貝葉斯 534.1 基於貝葉斯決策理論的分類方法534.2 條件概率554.3 使用條件概率來分類564.4 使用樸素貝葉斯進行文檔分類574.5 使用Python進行文本分類584.5.1 准備數據:從文本中構建詞向量584.5.2 訓練演算法:從詞向量計算概率604.5.3 測試演算法:根據現實情況修改分類器624.5.4 准備數據:文檔詞袋模型644.6 示例:使用樸素貝葉斯過濾垃圾郵件644.6.1 准備數據:切分文本654.6.2 測試演算法:使用樸素貝葉斯進行交叉驗證664.7 示例:使用樸素貝葉斯分類器從個人廣告中獲取區域傾向684.7.1 收集數據:導入RSS源684.7.2 分析數據:顯示地域相關的用詞714.8 本章小結72第5章Logistic回歸 735.1 基於Logistic回歸和Sigmoid函數的分類745.2 基於最優化方法的最佳回歸系數確定755.2.1 梯度上升法755.2.2 訓練演算法:使用梯度上升找到最佳參數775.2.3 分析數據:畫出決策邊界795.2.4 訓練演算法:隨機梯度上升805.3 示例:從疝氣病症預測病馬的死亡率855.3.1 准備數據:處理數據中的缺失值855.3.2 測試演算法:用Logistic回歸進行分類865.4 本章小結88第6章支持向量機896.1 基於最大間隔分隔數據896.2 尋找最大間隔916.2.1 分類器求解的優化問題926.2.2 SVM應用的一般框架936.3 SMO高效優化演算法946.3.1 Platt的SMO演算法946.3.2 應用簡化版SMO演算法處理小規模數據集946.4 利用完整Platt SMO演算法加速優化996.5 在復雜數據上應用核函數1056.5.1 利用核函數將數據映射到高維空間1066.5.2 徑向基核函數1066.5.3 在測試中使用核函數1086.6 示例:手寫識別問題回顧1116.7 本章小結113第7章利用AdaBoost元演算法提高分類性能 1157.1 基於數據集多重抽樣的分類器1157.1.1 bagging:基於數據隨機重抽樣的分類器構建方法1167.1.2 boosting1167.2 訓練演算法:基於錯誤提升分類器的性能1177.3 基於單層決策樹構建弱分類器1187.4 完整AdaBoost演算法的實現1227.5 測試演算法:基於AdaBoost的分類1247.6 示例:在一個難數據集上應用AdaBoost1257.7 非均衡分類問題1277.7.1 其他分類性能度量指標:正確率、召回率及ROC曲線1287.7.2 基於代價函數的分類器決策控制1317.7.3 處理非均衡問題的數據抽樣方法1327.8 本章小結132第二部分利用回歸預測數值型數據第8章預測數值型數據:回歸 1368.1 用線性回歸找到最佳擬合直線1368.2 局部加權線性回歸1418.3 示例:預測鮑魚的年齡1458.4 縮減系數來「理解」數據1468.4.1 嶺回歸1468.4.2 lasso1488.4.3 前向逐步回歸1498.5 權衡偏差與方差1528.6 示例:預測樂高玩具套裝的價格1538.6.1 收集數據:使用Google購物的API1538.6.2 訓練演算法:建立模型1558.7 本章小結158第9章樹回歸1599.1 復雜數據的局部性建模1599.2 連續和離散型特徵的樹的構建1609.3 將CART演算法用於回歸1639.3.1 構建樹1639.3.2 運行代碼1659.4 樹剪枝1679.4.1 預剪枝1679.4.2 後剪枝1689.5 模型樹1709.6 示例:樹回歸與標准回歸的比較1739.7 使用Python的Tkinter庫創建GUI1769.7.1 用Tkinter創建GUI1779.7.2 集成Matplotlib和Tkinter1799.8 本章小結182第三部分無監督學習第10章利用K-均值聚類演算法對未標注數據分組18410.1 K-均值聚類演算法18510.2 使用後處理來提高聚類性能18910.3 二分K-均值演算法19010.4 示例:對地圖上的點進行聚類19310.4.1 Yahoo! PlaceFinder API19410.4.2 對地理坐標進行聚類19610.5 本章小結198第11章使用Apriori演算法進行關聯分析20011.1 關聯分析20111.2 Apriori原理20211.3 使用Apriori演算法來發現頻繁集20411.3.1 生成候選項集20411.3.2 組織完整的Apriori演算法20711.4 從頻繁項集中挖掘關聯規則20911.5 示例:發現國會投票中的模式21211.5.1 收集數據:構建美國國會投票記錄的事務數據集21311.5.2 測試演算法:基於美國國會投票記錄挖掘關聯規則21911.6 示例:發現毒蘑菇的相似特徵22011.7 本章小結221第12章使用FP-growth演算法來高效發現頻繁項集22312.1 FP樹:用於編碼數據集的有效方式22412.2 構建FP樹22512.2.1 創建FP樹的數據結構22612.2.2 構建FP樹22712.3 從一棵FP樹中挖掘頻繁項集23112.3.1 抽取條件模式基23112.3.2 創建條件FP樹23212.4 示例:在Twitter源中發現一些共現詞23512.5 示例:從新聞網站點擊流中挖掘23812.6 本章小結239第四部分其他工具第13章利用PCA來簡化數據24213.1 降維技術24213.2 PCA24313.2.1 移動坐標軸24313.2.2 在NumPy中實現PCA24613.3 示例:利用PCA對半導體製造數據降維24813.4 本章小結251第14章利用SVD簡化數據25214.1 SVD的應用25214.1.1 隱性語義索引25314.1.2 推薦系統25314.2 矩陣分解25414.3 利用Python實現SVD25514.4 基於協同過濾的推薦引擎25714.4.1 相似度計算25714.4.2 基於物品的相似度還是基於用戶的相似度?26014.4.3 推薦引擎的評價26014.5 示例:餐館菜餚推薦引擎26014.5.1 推薦未嘗過的菜餚26114.5.2 利用SVD提高推薦的效果26314.5.3 構建推薦引擎面臨的挑戰26514.6 基於SVD的圖像壓縮26614.7 本章小結268第15章大數據與MapRece27015.1 MapRece:分布式計算的框架27115.2 Hadoop流27315.2.1 分布式計算均值和方差的mapper27315.2.2 分布式計算均值和方差的recer27415.3 在Amazon網路服務上運行Hadoop程序27515.3.1 AWS上的可用服務27615.3.2 開啟Amazon網路服務之旅27615.3.3 在EMR上運行Hadoop作業27815.4 MapRece上的機器學習28215.5 在Python中使用mrjob來自動化MapRece28315.5.1 mrjob與EMR的無縫集成28315.5.2 mrjob的一個MapRece腳本剖析28415.6 示例:分布式SVM的Pegasos演算法28615.6.1 Pegasos演算法28715.6.2 訓練演算法:用mrjob實現MapRece版本的SVM28815.7 你真的需要MapRece嗎?29215.8 本章小結292附錄A Python入門294附錄B 線性代數303附錄C 概率論復習309附錄D 資源312索引313版權聲明316

Ⅹ python數據挖掘是什麼

數據挖掘(data mining,簡稱DM),是指從大量的數據中,通過統計學、人工智慧、機器學習等方法,挖掘出未知的、且有價值的信
息和知識的過程。
python數據挖掘常用模塊
numpy模塊:用於矩陣運算、隨機數的生成等

pandas模塊:用於數據的讀取、清洗、整理、運算、可視化等

matplotlib模塊:專用於數據可視化,當然含有統計類的seaborn模塊

statsmodels模塊:用於構建統計模型,如線性回歸、嶺回歸、邏輯回歸、主成分分析等

scipy模塊:專用於統計中的各種假設檢驗,如卡方檢驗、相關系數檢驗、正態性檢驗、t檢驗、F檢驗等

sklearn模塊:專用於機器學習,包含了常規的數據挖掘演算法,如決策樹、森林樹、提升樹、貝葉斯、K近鄰、SVM、GBDT、Kmeans等
數據分析和挖掘推薦的入門方式是?小公司如何利用數據分析和挖掘?
關於數據分析與挖掘的入門方式是先實現代碼和Python語法的落地(前期也需要你了解一些統計學知識、數學知識等),這個過程需要
你多閱讀相關的數據和查閱社區、論壇。然後你在代碼落地的過程中一定會對演算法中的參數或結果產生疑問,此時再去查看統計學和數據
挖掘方面的理論知識。這樣就形成了問題為導向的學習方法,如果將入門順序搞反了,可能在硬著頭皮研究理論演算法的過程中就打退堂鼓
了。

對於小公司來說,你得清楚的知道自己的痛點是什麼,這些痛點是否能夠體現在數據上,公司內部的交易數據、營銷數據、倉儲數據等是
否比較齊全。在這些數據的基礎上搭建核心KPI作為每日或每周的經營健康度衡量,數據分析側重於歷史的描述,數據挖掘則側重於未來
的預測。

差異在於對數據的敏感度和對數據的個性化理解。換句話說,就是懂分析的人能夠從數據中看出破綻,解決問題,甚至用數據創造價值;
不懂分析的人,做不到這些,更多的是描述數據。
更多技術請關注python視頻教程。

閱讀全文

與嶺回歸Python相關的資料

熱點內容
grub2命令行 瀏覽:618
無法獲取加密卡信息 瀏覽:774
雲伺服器網卡充值 瀏覽:509
編程就是軟體 瀏覽:49
伺服器如何添加許可權 瀏覽:437
引用指針編程 瀏覽:851
手機加密日記本蘋果版下載 瀏覽:63
命令行括弧 瀏覽:176
java程序升級 瀏覽:490
排序演算法之插入類 瀏覽:227
gcccreate命令 瀏覽:73
海爾監控用什麼app 瀏覽:64
系統盤被壓縮開不了機 瀏覽:984
linuxredis30 瀏覽:541
狸窩pdf轉換器 瀏覽:696
ajax調用java後台 瀏覽:905
活塞式壓縮機常見故障 瀏覽:614
break演算法 瀏覽:731
換電池的app是什麼 瀏覽:771
單片機ad采樣快速發送電腦 瀏覽:22