⑴ 怎樣用 python 進行數據分析
做數據分析,首先你要知道有哪些數據分析的方法,然後才是用Python去調用這些方法
那Python有哪些庫類是能做數據分析的,很多,pandas,sklearn等等
所以你首先要裝一個anaconda套件,它包含了幾乎所有的Python數據分析工具,
之後再學怎麼分析。
⑵ python數據分析的一般步驟是什麼
下面是用python進行數據分析的一般步驟:
一:數據抽取
從外部源數據中獲取數據
保存為各種格式的文件、資料庫等
使用Scrapy爬蟲等技術
二:數據載入
從資料庫、文件中提取數據,變成DataFrame對象
pandas庫的文件讀取方法
三:數據處理
數據准備:
對DataFrame對象(多個)進行組裝、合並等操作
pandas庫的操作
數據轉化:
類型轉化、分類(面元等)、異常值檢測、過濾等
pandas庫的操作
數據聚合:
分組(分類)、函數處理、合並成新的對象
pandas庫的操作
四:數據可視化
將pandas的數據結構轉化為圖表的形式
matplotlib庫
五:預測模型的創建和評估
數據挖掘的各種演算法:
關聯規則挖掘、回歸分析、聚類、分類、時序挖掘、序列模式挖掘等
六:部署(得出結果)
從模型和評估中獲得知識
知識的表示形式:規則、決策樹、知識基、網路權值
更多技術請關注python視頻教程。
⑶ python數據分析師需要掌握什麼技能
首先是基礎篇
1、首先是Excel,貌似這個很簡單,其實未必。Excel不僅能夠做簡單二維表、復雜嵌套表,能畫折線圖/Column chart/Bar chart/Area chart/餅圖/雷達圖/Combo char/散點圖/Win Loss圖等,而且能實現更高級的功能,包括透視表(類似於BI的多維分析模型Cube),以及Vlookup等復雜函數,處理100萬條以內的數據沒有大問題。最後,很多更高級的工具都有Excel插件,例如一些AI Machine Learning的開發工具。
2. SQL(資料庫)
我們都知道數據分析師每天都會處理海量的數據,這些數據來源於資料庫,那麼怎麼從資料庫取數據?如何建立兩表、三表之間的關系?怎麼取到自己想要的特定的數據?等等這些數據選擇問題就是你首要考慮的問題,而這些問題都是通過SQL解決的,所以SQL是數據分析的最基礎的技能。
3. 統計學基礎
數據分析的前提要對數據有感知,數據如何收集?數據整體分布是怎樣的?如果有時間維度的話隨著時間的變化是怎樣的?數據的平均值是什麼?數據的最大值最小值指什麼?數據相關與回歸、時間序列分析和預測等等。
4、掌握可視化工具,比如BI,如Cognos/Tableau/FineBI等,具體看企業用什麼工具,像我之前用的是FineBI。這些工具做可視化非常方便,特別是分析報告能含這些圖,一定會吸引高層領導的眼球,一目瞭然了解,洞察業務的本質。另外,作為專業的分析師,用多維分析模型Cube能夠方便地自定義報表,效率大大提升。
進階階段需要掌握的:
1、系統的學好統計學
純粹的機器學習講究演算法預測能力和實現,但是統計一直就強調「可解釋性」。比如說,針對今天微博股票發行就上升20%,你把你的兩個預測股票上漲還是下跌的model套在新浪的例子上,然後給你的上司看。統計學就是這樣的作用。
數據挖掘相關的統計方法(多元Logistic回歸分析、非線性回歸分析、判別分析等)
定量方法(時間軸分析、概率模型、優化)
決策分析(多目的決策分析、決策樹、影響圖、敏感性分析)
樹立競爭優勢的分析(通過項目和成功案例學習基本的分析理念)
資料庫入門(數據模型、資料庫設計)
預測分析(時間軸分析、主成分分析、非參數回歸、統計流程式控制制)
數據管理(ETL(Extract、Transform、Load)、數據治理、管理責任、元數據)
優化與啟發(整數計劃法、非線性計劃法、局部探索法、超啟發(模擬退火、遺傳演算法))
大數據分析(非結構化數據概念的學習、MapRece技術、大數據分析方法)
數據挖掘(聚類(k-means法、分割法)、關聯性規則、因子分析、存活時間分析)
其他,以下任選兩門(社交網路、文本分析、Web分析、財務分析、服務業中的分析、能源、健康醫療、供應鏈管理、綜合營銷溝通中的概率模型)
風險分析與運營分析的計算機模擬
軟體層面的分析學(組織層面的分析課題、IT與業務用戶、變革管理、數據課題、結果的展現與傳達方法)
2、掌握AI Machine Learning演算法,會用工具(比如Python/R)進行建模。
傳統的BI分析能回答過去發生了什麼?現在正在發生什麼?但對於未來會發生什麼?必須靠演算法。雖然像Tableau、FineBI等自助式BI已經內置了一部分分析模型,但是分析師想要更全面更深度的探索,需要像Python/R的數據挖掘工具。另外大數據之間隱藏的關系,靠傳統工具人工分析是不可能做到的,這時候交由演算法去實現,無疑會有更多的驚喜。
其中,面向統計分析的開源編程語言及其運行環境「R」備受矚目。R的強項不僅在於其包含了豐富的統計分析庫,而且具備將結果進行可視化的高品質圖表生成功能,並可以通過簡單的命令來運行。此外,它還具備稱為CRAN(The Comprehensive R Archive Network)的包擴展機制,通過導入擴展包就可以使用標准狀態下所不支持的函數和數據集。R語言雖然功能強大,但是學習曲線較為陡峭,個人建議從python入手,擁有豐富的statistical libraries,NumPy ,SciPy.org ,Python Data Analysis Library,matplotlib: python plotting。
以上我的回答希望對你有所幫助
⑷ 如何通過python調用新浪微博的API來爬取數據
1:安裝python(這個不多說啦)
2:下載新浪微博SDK的python包,解壓為weibopy目錄
3:申請AppKey,
流程:
1:通過oAuth認證
按我的理解簡化如下:
用戶在新浪微博給的頁面輸入賬號密碼,然後微博給應用一個PIN碼,這樣應用通過PIN碼才有許可權訪問該用戶的信息,而應用在整個過程中是接觸不到密碼的,所以用戶覺得很安全,後果很滿意
2:獲得認證之後,就可以使用微博SDK提供的API獲得信息啦
3:如果想設計web或者客戶端應用的話,那就繼續加個GUI好啦(未完成)
代碼:
#!/usr/bin/python
import webbrowser
from weibopy.auth import OAuthHandler
from weibopy.api import API
AppKey = '2525355147'
AppSecret = ''
my_auth = OAuthHandler(AppKey , AppSecret)
webbrowser.open(my_auth.get_authorization_url())
verifier = raw_input('PIN: ').strip()
my_auth.get_access_token(verifier)
my_api = API(my_auth)
for comment in my_api.mentions():
object = comment
id = object.__getattribute__("id")
text = object.__getattribute__("text")
print str(id) + " : " + text
⑸ 我要做一個基於Python的微博數據抓取和用戶特徵分析系統開發如何做愛樂惠
我曾經曾經有做這方面東西的想法,微博API的單位時間調用次數限製成了最大的障礙,至於你想通過爬蟲大量爬網頁抓取微博信息,我估計微博的安審力量不會那麼差。再就是微博HTML頁面的數據限制量本來就比較小。最後就是微博現在已經沒有市場價值了,大多數人都已經不用微博了。
⑹ 如何利用python進行數據分析
作者Wes McKinney是pandas庫的主要作者,所以本書也可以作為利用Python實現數據密集型應用的科學計算實踐指南。本書適合剛剛接觸Python的分析人員以及剛剛接觸科學計算的Python程序員。
•將IPython這個互動式Shell作為你的首要開發環境。
•學習NumPy(Numerical Python)的基礎和高級知識。
•從pandas庫的數據分析工具開始。
•利用高性能工具對數據進行載入、清理、轉換、合並以及重塑。
•利用matplotlib創建散點圖以及靜態或互動式的可視化結果。
•利用pandas的groupby功能對數據集進行切片、切塊和匯總操作。
•處理各種各樣的時間序列數據。
•通過詳細的案例學習如何解決Web分析、社會科學、金融學以及經•濟學等領域的問題。
⑺ python數據分析是干什麼的
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。
數據分析的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得數據分析得以推廣。數據分析是數學與計算機科學相結合的產物。
Python數據分析可以做的事情有很多,具體如下:
第一、檢查數據表
Python中使用shape函數來查看數據表的維度,也就是行數和列數。你可以使用info函數查看數據表的整體信息,使用dtypes函數來返回數據格式。Lsnull是Python中檢查空置的函數,你可以對整個數據進行檢查,也可以單獨對某一列進行空置檢查,返回的結果是邏輯值,包括空置返回True,不包含則返回False。使用unique函數查看唯一值,使用Values函數用來查看數據表中的數值。
第二,數據表清洗
Python中處理空值的方法比較靈活,可以使用Dropna函數用來刪除數據表中包括空值的數據,也可以使用fillna函數對空值進行填充。Python中dtype是查看數據格式的函數,與之對應的是asstype函數,用來更改數據格式,Rename是更改名稱的函數,drop_plicate函數函數重復值,replace函數實現數據轉換。
第三,數據預處理
數據預處理是對清洗完的數據進行整理以便後期統計和分析工作,主要包括數據表的合並、排序、數值分列、數據分組以及標記等工作。在Python中可以使用merge函數對兩個數據表進行合並,合並的方式為inner,此外還有left、right和outer方式。使用ort_values函數和sort_index函數完成排序,使用where函數完成數據分組,使用split函數實現分列。
第四,數據提取
主要是使用三個函數:loc、iloc和ix,其中loc函數按標准值進行提取,iloc按位置進行提取,ix可以同時按標簽和位置進行提取。除了按標簽和位置提取數據意外,還可以按照具體的條件進行提取。
第五,數據篩選匯總
Python中使用loc函數配合篩選條件來完成篩選功能,配合sum和count函數還能實現Excel中sumif和countif函數的功能。Python中使用的主要函數是groupby和pivot_table。
⑻ 怎樣用python爬新浪微博大V所有數據
我是個微博重度用戶,工作學習之餘喜歡刷刷timeline看看有什麼新鮮事發生,也因此認識了不少高質量的原創大V,有分享技術資料的,比如好東西傳送門;有時不時給你一點人生經驗的,比如石康;有高產的段子手,比如銀教授;有黃圖黃段子小能手,比如阿良哥哥木木蘿希木初犬餅…
好吧,我承認,爬黃圖黃段子才是我的真實目的,前三個是掩人耳目的…(捂臉,跑開)
另外說點題外話,我一開始想使用Sina Weibo API來獲取微博內容,但後來發現新浪微博的API限制實在太多,大家感受一下:
iTerm
小問題:在我的測試中,有的時候會出現圖片下載失敗的問題,具體原因還不是很清楚,可能是網速問題,因為我宿舍的網速實在太不穩定了,當然也有可能是別的問題,所以在程序根目錄下面,我還生成了一個userid_imageurls的文本文件,裡面存儲了爬取的所有圖片的下載鏈接,如果出現大片的圖片下載失敗,可以將該鏈接群一股腦導進迅雷等下載工具進行下載。
另外,我的系統是OSX EI Capitan10.11.2,Python的版本是2.7,依賴庫用sudo pip install XXXX就可以安裝,具體配置問題可以自行stackoverflow,這里就不展開講了。
下面我就給出實現代碼(嚴肅臉)
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#-*-coding:utf8-*-
import re
import string
import sys
import os
import urllib
import urllib2
from bs4 import BeautifulSoup
import requests
from lxml import etree
reload(sys)
sys.setdefaultencoding('utf-8')
if(len(sys.argv) >=2):
user_id = (int)(sys.argv[1])
else:
user_id = (int)(raw_input(u"請輸入user_id: "))
cookie = {"Cookie": "#your cookie"}
url = 'd?filter=1&page=1'%user_id
html = requests.get(url, cookies = cookie).content
selector = etree.HTML(html)
pageNum = (int)(selector.xpath('//input[@name="mp"]')[0].attrib['value'])
result = ""
urllist_set = set()
word_count = 1
image_count = 1
print u'爬蟲准備就緒...'
for page in range(1,pageNum+1):
#獲取lxml頁面
url = 'hu/%d?filter=1&page=%d'%(user_id,page)
lxml = requests.get(url, cookies = cookie).content
#文字爬取
selector = etree.HTML(lxml)
content = selector.xpath('//span[@class="ctt"]')
for each in content:
text = each.xpath('string(.)')
if word_count >= 4:
text = "%d :"%(word_count-3) +text+" "
else :
text = text+" "
result = result + text
word_count += 1
#圖片爬取
soup = BeautifulSoup(lxml, "lxml")
urllist = soup.find_all('a',href=re.compile(r'^mblog/oripic',re.I))
first = 0
for imgurl in urllist:
urllist_set.add(requests.get(imgurl['href'], cookies = cookie).url)
image_count +=1
fo = open("/Users/Personals/%s"%user_id, "wb")
fo.write(result)
word_path=os.getcwd()+'/%d'%user_id
print u'文字微博爬取完畢'
link = ""
fo2 = open("/Users/Personals/%s_imageurls"%user_id, "wb")
for eachlink in urllist_set:
link = link + eachlink +" "
fo2.write(link)
print u'圖片鏈接爬取完畢'
if not urllist_set:
print u'該頁面中不存在圖片'
else:
#下載圖片,保存在當前目錄的pythonimg文件夾下
image_path=os.getcwd()+'/weibo_image'
if os.path.exists(image_path) is False:
os.mkdir(image_path)
x=1
for imgurl in urllist_set:
temp= image_path + '/%s.jpg' % x
print u'正在下載第%s張圖片' % x
try:
urllib.urlretrieve(urllib2.urlopen(imgurl).geturl(),temp)
except:
print u"該圖片下載失敗:%s"%imgurl
x+=1
print u'原創微博爬取完畢,共%d條,保存路徑%s'%(word_count-4,word_path)
print u'微博圖片爬取完畢,共%d張,保存路徑%s'%(image_count-1,image_path)
⑼ 如何用python進行數據分析
利用python進行數據分析
鏈接: https://pan..com/s/15VdW4dcuPuIUEPrY3RehtQ
本書也可以作為利用Python實現數據密集型應用的科學計算實踐指南。本書適合剛剛接觸Python的分析人員以及剛剛接觸科學計算的Python程序員。