導航:首頁 > 編程語言 > python是非同步嗎

python是非同步嗎

發布時間:2022-05-14 03:29:20

㈠ 做網路爬蟲,python 的多線程,非同步和 node.js 的非同步哪個好

非同步當然是Node.js遠強過Python的。
這主要體現在省去了線程調度時的內存等各方面的消耗。
另外Node.js在爬蟲市場的生態也逐漸成熟,而python依然是bs那一套。實際上js本身就更適合處理dom(cheerio\jsdom)

㈡ python2.7怎麼實現非同步

改進之前
之前,我的查詢步驟很簡單,就是:
前端提交查詢請求 --> 建立資料庫連接 --> 新建游標 --> 執行命令 --> 接受結果 --> 關閉游標、連接
這幾大步驟的順序執行。
這裡面當然問題很大:
建立資料庫連接實際上就是新建一個套接字。這是進程間通信的幾種方法里,開銷最大的了。
在「執行命令」和「接受結果」兩個步驟中,線程在阻塞在資料庫內部的運行過程中,資料庫連接和游標都處於閑置狀態。
這樣一來,每一次查詢都要順序的新建資料庫連接,都要阻塞在資料庫返回結果的過程中。當前端提交大量查詢請求時,查詢效率肯定是很低的。
第一次改進
之前的模塊里,問題最大的就是第一步——建立資料庫連接套接字了。如果能夠一次性建立連接,之後查詢能夠反復服用這個連接就好了。
所以,首先應該把資料庫查詢模塊作為一個單獨的守護進程去執行,而前端app作為主進程響應用戶的點擊操作。那麼兩條進程怎麼傳遞消息呢?翻了幾天Python文檔,終於構思出來:用隊列queue作為生產者(web前端)向消費者(資料庫後端)傳遞任務的渠道。生產者,會與SQL命令一起,同時傳遞一個管道pipe的連接對象,作為任務完成後,回傳結果的渠道。確保,任務的接收方與發送方保持一致。
作為第二個問題的解決方法,可以使用線程池來並發獲取任務隊列中的task,然後執行命令並回傳結果。
第二次改進
第一次改進的效果還是很明顯的,不用任何測試手段。直接點擊頁面鏈接,可以很直觀地感覺到反應速度有很明顯的加快。
但是對於第二個問題,使用線程池還是有些欠妥當。因為,CPython解釋器存在GIL問題,所有線程實際上都在一個解釋器進程里調度。線程稍微開多一點,解釋器進程就會頻繁的切換線程,而線程切換的開銷也不小。線程多一點,甚至會出現「抖動」問題(也就是剛剛喚醒一個線程,就進入掛起狀態,剛剛換到棧幀或內存的上下文,又被換回內存或者磁碟),效率大大降低。也就是說,線程池的並發量很有限。
試過了多進程、多線程,只能在單個線程里做文章了。
Python中的asyncio庫
Python里有大量的協程庫可以實現單線程內的並發操作,比如Twisted、Gevent等等。Python官方在3.5版本里提供了asyncio庫同樣可以實現協程並發。asyncio庫大大降低了Python中協程的實現難度,就像定義普通函數那樣就可以了,只是要在def前面多加一個async關鍵詞。async def函數中,需要阻塞在其他async def函數的位置前面可以加上await關鍵詞。
import asyncio
async def wait():
await asyncio.sleep(2)
async def execute(task):
process_task(task)
await wait()
continue_job()
async def函數的執行稍微麻煩點。需要首先獲取一個loop對象,然後由這個對象代為執行async def函數。
loop = asyncio.get_event_loop()
loop.run_until_complete(execute(task))
loop.close()
loop在執行execute(task)函數時,如果遇到await關鍵字,就會暫時掛起當前協程,轉而去執行其他阻塞在await關鍵詞的協程,從而實現協程並發。
不過需要注意的是,run_until_complete()函數本身是一個阻塞函數。也就是說,當前線程會等候一個run_until_complete()函數執行完畢之後,才會繼續執行下一部函數。所以下面這段代碼並不能並發執行。
for task in task_list:
loop.run_until_complete(task)
對與這個問題,asyncio庫也有相應的解決方案:gather函數。
loop = asyncio.get_event_loop()
tasks = [asyncio.ensure_future(execute(task))
for task in task_list]
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
當然了,async def函數的執行並不只有這兩種解決方案,還有call_soon與run_forever的配合執行等等,更多內容還請參考官方文檔。
Python下的I/O多路復用
協程,實際上,也存在上下文切換,只不過開銷很輕微。而I/O多路復用則完全不存在這個問題。
目前,Linux上比較火的I/O多路復用API要算epoll了。Tornado,就是通過調用C語言封裝的epoll庫,成功解決了C10K問題(當然還有Pypy的功勞)。
在Linux里查文檔,可以看到epoll只有三類函數,調用起來比較方便易懂。
創建epoll對象,並返回其對應的文件描述符(file descriptor)。
int epoll_create(int size);
int epoll_create1(int flags);
控制監聽事件。第一個參數epfd就對應於前面命令創建的epoll對象的文件描述符;第二個參數表示該命令要執行的動作:監聽事件的新增、修改或者刪除;第三個參數,是要監聽的文件對應的描述符;第四個,代表要監聽的事件。
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
等候。這是一個阻塞函數,調用者會等候內核通知所注冊的事件被觸發。
int epoll_wait(int epfd, struct epoll_event *events,
int maxevents, int timeout);
int epoll_pwait(int epfd, struct epoll_event *events,
int maxevents, int timeout,
const sigset_t *sigmask);
在Python的select庫里:
select.epoll()對應於第一類創建函數;
epoll.register(),epoll.unregister(),epoll.modify()均是對控制函數epoll_ctl的封裝;
epoll.poll()則是對等候函數epoll_wait的封裝。
Python里epoll相關API的最大問題應該是在epoll.poll()。相比於其所封裝的epoll_wait,用戶無法手動指定要等候的事件,也就是後者的第二個參數struct epoll_event *events。沒法實現精確控制。因此只能使用替代方案:select.select()函數。
根據Python官方文檔,select.select(rlist, wlist, xlist[, timeout])是對Unix系統中select函數的直接調用,與C語言API的傳參很接近。前三個參數都是列表,其中的元素都是要注冊到內核的文件描述符。如果想用自定義類,就要確保實現了fileno()方法。
其分別對應於:
rlist: 等候直到可讀
wlist: 等候直到可寫
xlist: 等候直到異常。這個異常的定義,要查看系統文檔。
select.select(),類似於epoll.poll(),先注冊文件和事件,然後保持等候內核通知,是阻塞函數。
實際應用
Psycopg2庫支持對非同步和協程,但和一般情況下的用法略有區別。普通資料庫連接支持不同線程中的不同游標並發查詢;而非同步連接則不支持不同游標的同時查詢。所以非同步連接的不同游標之間必須使用I/O復用方法來協調調度。
所以,我的大致實現思路是這樣的:首先並發執行大量協程,從任務隊列中提取任務,再向連接池請求連接,創建游標,然後執行命令,並返回結果。在獲取游標和接受查詢結果之前,均要阻塞等候內核通知連接可用。
其中,連接池返回連接時,會根據引用連接的協程數量,返回負載最輕的連接。這也是自己定義AsyncConnectionPool類的目的。
我的代碼位於:bottle-blog/dbservice.py
存在問題
當然了,這個流程目前還一些問題。
首先就是每次輪詢拿到任務之後,都會走這么一個流程。
獲取連接 --> 新建游標 --> 執行任務 --> 關閉游標 --> 取消連接引用
本來,最好的情況應該是:在輪詢之前,就建好游標;在輪詢時,直接等候內核通知,執行相應任務。這樣可以減少輪詢時的任務量。但是如果協程提前對應好連接,那就不能保證在獲取任務時,保持各連接負載均衡了。
所以這一塊,還有工作要做。
還有就是epoll沒能用上,有些遺憾。
以後打算寫點C語言的內容,或者用Python/C API,或者用Ctypes包裝共享庫,來實現epoll的調用。
最後,請允許我吐槽一下Python的epoll相關文檔:簡直太弱了!!!必須看源碼才能弄清楚功能。

㈢ 【Python基礎】http請求是同步還是非同步

同步的
一般http請求都是同步,意味著你調用網路時候必須等著結果返回不能幹別的事
如果是非同步需要自己包裝,也有這樣的庫了

㈣ python非同步有哪些方式

yield相當於return,他將相應的值返回給調用next()或者send()的調用者,從而交出了CPU使用權,而當調用者再次調用next()或者send()的時候,又會返回到yield中斷的地方,如果send有參數,還會將參數返回給yield賦值的變數,如果沒有就和next()一樣賦值為None。但是這里會遇到一個問題,就是嵌套使用generator時外層的generator需要寫大量代碼,看如下示例:
注意以下代碼均在Python3.6上運行調試

#!/usr/bin/env python# encoding:utf-8def inner_generator():
i = 0
while True:
i = yield i if i > 10: raise StopIterationdef outer_generator():
print("do something before yield")
from_inner = 0
from_outer = 1
g = inner_generator()
g.send(None) while 1: try:
from_inner = g.send(from_outer)
from_outer = yield from_inner except StopIteration: breakdef main():
g = outer_generator()
g.send(None)
i = 0
while 1: try:
i = g.send(i + 1)
print(i) except StopIteration: breakif __name__ == '__main__':
main()041

為了簡化,在Python3.3中引入了yield from

yield from

使用yield from有兩個好處,

1、可以將main中send的參數一直返回給最里層的generator,
2、同時我們也不需要再使用while循環和send (), next()來進行迭代。

我們可以將上邊的代碼修改如下:

def inner_generator():
i = 0
while True:
i = yield i if i > 10: raise StopIterationdef outer_generator():
print("do something before coroutine start") yield from inner_generator()def main():
g = outer_generator()
g.send(None)
i = 0
while 1: try:
i = g.send(i + 1)
print(i) except StopIteration: breakif __name__ == '__main__':
main()

執行結果如下:

do something before coroutine start123456789101234567891011

這里inner_generator()中執行的代碼片段我們實際就可以認為是協程,所以總的來說邏輯圖如下:

我們都知道Python由於GIL(Global Interpreter Lock)原因,其線程效率並不高,並且在*nix系統中,創建線程的開銷並不比進程小,因此在並發操作時,多線程的效率還是受到了很大制約的。所以後來人們發現通過yield來中斷代碼片段的執行,同時交出了cpu的使用權,於是協程的概念產生了。在Python3.4正式引入了協程的概念,代碼示例如下:

import asyncio# Borrowed from http://curio.readthedocs.org/en/latest/[email protected] countdown(number, n):
while n > 0:
print('T-minus', n, '({})'.format(number)) yield from asyncio.sleep(1)
n -= 1loop = asyncio.get_event_loop()
tasks = [
asyncio.ensure_future(countdown("A", 2)),
asyncio.ensure_future(countdown("B", 3))]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()12345678910111213141516

示例顯示了在Python3.4引入兩個重要概念協程和事件循環,
通過修飾符@asyncio.coroutine定義了一個協程,而通過event loop來執行tasks中所有的協程任務。之後在Python3.5引入了新的async & await語法,從而有了原生協程的概念。

async & await

在Python3.5中,引入了aync&await 語法結構,通過」aync def」可以定義一個協程代碼片段,作用類似於Python3.4中的@asyncio.coroutine修飾符,而await則相當於」yield from」。

先來看一段代碼,這個是我剛開始使用async&await語法時,寫的一段小程序。

#!/usr/bin/env python# encoding:utf-8import asyncioimport requestsimport time


async def wait_download(url):
response = await requets.get(url)
print("get {} response complete.".format(url))


async def main():
start = time.time()
await asyncio.wait([
wait_download("http://www.163.com"),
wait_download("http://www.mi.com"),
wait_download("http://www.google.com")])
end = time.time()
print("Complete in {} seconds".format(end - start))


loop = asyncio.get_event_loop()
loop.run_until_complete(main())

這里會收到這樣的報錯:

Task exception was never retrieved
future: <Task finished coro=<wait_download() done, defined at asynctest.py:9> exception=TypeError("object Response can't be used in 'await' expression",)>
Traceback (most recent call last):
File "asynctest.py", line 10, in wait_download
data = await requests.get(url)
TypeError: object Response can't be used in 'await' expression123456

這是由於requests.get()函數返回的Response對象不能用於await表達式,可是如果不能用於await,還怎麼樣來實現非同步呢?
原來Python的await表達式是類似於」yield from」的東西,但是await會去做參數檢查,它要求await表達式中的對象必須是awaitable的,那啥是awaitable呢? awaitable對象必須滿足如下條件中其中之一:

1、A native coroutine object returned from a native coroutine function .

原生協程對象

2、A generator-based coroutine object returned from a function decorated with types.coroutine() .

types.coroutine()修飾的基於生成器的協程對象,注意不是Python3.4中asyncio.coroutine

3、An object with an await method returning an iterator.

實現了await method,並在其中返回了iterator的對象

根據這些條件定義,我們可以修改代碼如下:

#!/usr/bin/env python# encoding:utf-8import asyncioimport requestsimport time


async def download(url): # 通過async def定義的函數是原生的協程對象
response = requests.get(url)
print(response.text)


async def wait_download(url):
await download(url) # 這里download(url)就是一個原生的協程對象
print("get {} data complete.".format(url))


async def main():
start = time.time()
await asyncio.wait([
wait_download("http://www.163.com"),
wait_download("http://www.mi.com"),
wait_download("http://www.google.com")])
end = time.time()
print("Complete in {} seconds".format(end - start))


loop = asyncio.get_event_loop()
loop.run_until_complete(main())27282930

好了現在一個真正的實現了非同步編程的小程序終於誕生了。
而目前更牛逼的非同步是使用uvloop或者pyuv,這兩個最新的Python庫都是libuv實現的,可以提供更加高效的event loop。

uvloop和pyuv

pyuv實現了Python2.x和3.x,但是該項目在github上已經許久沒有更新了,不知道是否還有人在維護。
uvloop只實現了3.x, 但是該項目在github上始終活躍。

它們的使用也非常簡單,以uvloop為例,只需要添加以下代碼就可以了

import asyncioimport uvloop
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())123

㈤ python 什麼是http非同步請求

http請求為耗時IO操作,如果同步阻塞的話,進程會等待請求完成。
非同步的話,進程會發出http請求(請求以後不需要cpu),然後跳轉到別的任務,直到http請求完成,再調回來繼續處理得到的http回應。
最經典的例子就是燒水,同步阻塞就是你一直蹲在爐子旁邊等待水燒開,而非同步是把水壺放在爐子上,等水開了以後茶壺會叫,這時候你聽到聲音就會回來處理開水~

㈥ python里怎麼實現非同步調用

本文實例講述了python使用multiprocessing模塊實現帶回調函數的非同步調用方法。分享給大家供大家參考。具體分析如下:
multipressing模塊是python 2.6版本加入的,通過這個模塊可以輕松實現非同步調用
from multiprocessing import Pool
def f(x):
return x*x
if __name__ == '__main__':
pool = Pool(processes=1)
# Start a worker processes.
result = pool.apply_async(f, [10], callback)
# Evaluate "f(10)" asynchronously calling callback when finished.
希望本文所述對大家的Python程序設計有所幫助。

㈦ python 非同步是什麼意思

非同步是計算機多線程的非同步處理。與同步處理相對,非同步處理不用阻塞當前線程來等待處理完成,而是允許後續操作,直至其它線程將處理完成,並回調通知此線程。

㈧ python非同步和多進程有什麼區別

  1. 非同步本質還是由多線程來實現,但是是者運行環境/sdk/語言層面幫你隱藏了細節

  2. 非同步一般和多線程比較,至於和多進程比的一般也是多線程

  3. 多進程那就是內存等資源完全隔離開的,開銷比較大

㈨ python requests 是非同步的嗎

我找了一下requests本身沒有非同步功能
有一個庫grequests,但網上就一個範例
你需要把會發起請求的過程封裝成一個函數,然後用 gevent.spawn 調用。這個和多線程是類似的,只在一個 Greenlet 裡面當然還是順序執行的。

㈩ python 什麼是非同步通信


閱讀全文

與python是非同步嗎相關的資料

熱點內容
加密歐美航線 瀏覽:48
svn怎麼看伺服器的地址 瀏覽:187
騎馬與砍殺1命令部隊用盾牌 瀏覽:595
光纜pdf 瀏覽:350
加密流量實時監測 瀏覽:628
360壓縮和好壓哪個好 瀏覽:61
python判斷變數是否為list 瀏覽:906
雲伺服器1m帶寬表示什麼意思 瀏覽:702
429升冷櫃用多大壓縮機 瀏覽:116
決策樹演算法java實現 瀏覽:376
androidtv開發焦點控制 瀏覽:328
論人的成長pdf 瀏覽:282
python網站源代碼 瀏覽:827
手機文件壓縮器怎麼安裝 瀏覽:112
androidsdk封裝 瀏覽:266
微信加密不知道怎麼取消 瀏覽:705
分析演算法設計程序編寫 瀏覽:843
linux啟動dhcp失敗 瀏覽:356
芙蓉出水選股公式源碼 瀏覽:763
linux更改密碼錯誤 瀏覽:244