導航:首頁 > 文檔加密 > 光纜pdf

光纜pdf

發布時間:2025-05-14 03:36:50

『壹』 光纖通信技術的技術分類

光纖技術的進步可以從兩個方面來說明: 一是通信系統所用的光纖; 二是特種光纖。早期光纖的傳輸窗口只有3個,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近幾年相繼開發出第四窗口(L波段)、第五窗口(全波光纖)以及S波段窗口。其中特別重要的是無水峰的全波窗口。這些窗口開發成功的巨大意義就在於從1280nm到1625nm的廣闊的光頻范圍內,都能實現低損耗、低色散傳輸,使傳輸容量幾百倍、幾千倍甚至上萬倍的增長。這一技術成果將帶來巨大的經濟效益。另一方面是特種光纖的開發及其產業化,這是一個相當活躍的領域。
特種光纖具體有以下幾種:
1. 有源光纖
這類光纖主要是指摻有稀土離子的光纖。如摻鉺(Er3+)、摻釹(Nb3+)、摻鐠(Pr3+)、摻鐿(Yb3+)、摻銩(Tm3+)等,以此構成激光活性物質。這是製造光纖光放大器的核心物質。不同摻雜的光纖放大器應用於不同的工作波段,如摻餌光纖放大器(EDFA)應用於1550nm附近(C、L波段);摻鐠光纖放大器(PDFA)主要應用於1310nm波段;摻銩光纖放大器(TDFA)主要應用於S波段等。這些摻雜光纖放大器與喇曼(Raman)光纖放大器一起給光纖通信技術帶來了革命性的變化。它的顯著作用是:直接放大光信號,延長傳輸距離;在光纖通信網和有線電視網(CATV網)中作分配損耗補償;此外,在波分復用(WDM)系統中及光孤子通信系統中是不可缺少的關鍵元器件。正因為有了光纖放大器,才能實現無中繼器的百萬公里的光孤子傳輸。也正是有了光纖放大器,不僅能使WDM傳輸的距離大幅度延長,而且也使得傳輸的性能最佳化。
2.色散補償光纖(Dispersion Compensation Fiber,DCF)
常規G.652光纖在1550nm波長附近的色散為17ps/nm×km。當速率超過2.5Gb/s時,隨著傳輸距離的增加,會導致誤碼。若在CATV系統中使用,會使信號失真。其主要原因是正色散值的積累引起色散加劇,從而使傳輸特性變壞。為了克服這一問題,必須採用色散值為負的光纖,即將反色散光纖串接入系統中以抵消正色散值,從而控制整個系統的色散大小。這里的反色散光纖就是所謂的色散補償光纖。在1550nm處,反色散光纖的色散值通常在-50~200ps/nm×km。為了得到如此高的負色散值,必須將其芯徑做得很小,相對折射率差做得很大,而這種作法往往又會導致光纖的衰耗增加(0.5~1dB/km)。色散補償光纖是利用基模波導色散來獲得高的負色散值,通常將其色散與衰減之比稱作質量因數,質量因數當然越大越好。為了能在整個波段均勻補償常規單模光纖的色散,又開發出一種既補償色散又能補償色散斜率的雙補償光纖(DDCF)。該光纖的特點是色散斜率之比(RDE)與常規光纖相同,但符號相反,所以更適合在整個波形內的均衡補償。
3. 光纖光柵(Fiber Grating)
光纖光柵是利用光纖材料的光敏性在紫外光的照射(通常稱為紫外光寫入)下,於光纖芯部產生周期性的折射率變化(即光柵)而製成的。使用的是摻鍺光纖,在相位掩膜板的掩蔽下,用紫外光照射(在載氫氣氛中),使纖芯的折射率產生周期性的變化,然後經退火處理後可長期保存。相位掩膜板實際上為一塊特殊設計的光柵,其正負一級衍射光相交形成干涉條紋,這樣就在纖芯逐漸產生成光柵。光柵周期模板周期的二分之一。眾所周知,光柵本身是一種選頻器件,利用光纖光柵可以製作成許多重要的光無源器件及光有源器件。例如:色散補償器、增益均衡器、光分插復用器、光濾波器、光波復用器、光模或轉換器、光脈沖壓縮器、光纖感測器以及光纖激光器等。
4. 多芯單模光纖(Multi-Coremono-Mode Fiber,MCF)
多芯光纖是一個共用外包層、內含有多根纖芯、而每根纖芯又有自己的內包層的單模光纖。這種光纖的明顯優勢是成本較低,生產成本較普通的光纖約低50%。此外,這種光纖可以提高成纜的集成密度,同時也可降低施工成本。以上是光纖技術在近幾年裡所取得的主要成就。至於光纜方面的成就,我們認為主要表現在帶狀光纜的開發成功及批量化生產方面。這種光纜是光纖接入網及區域網中必備的一種光纜。光纜的含纖數量達千根以上,有力地保證了接入網的建設。 光有源器件的研究與開發本來是一個最為活躍的領域,但由於前幾年已取得輝煌的成果,所以當今的活動空間已大大縮小。超晶格結構材料與量子阱器件,已完全成熟,而且可以大批量生產,已完全商品化,如多量子阱激光器(MQW-LD,MQW-DFBLD)。
除此之外,已在下列幾方面取得重大成就。
1. 集成器件
這里主要指光電集成(OEIC)已開始商品化,如分布反饋激光器(DFB-LD)與電吸收調制器(EAMD)的集成,即DFB-EA,已開始商品化;其它發射器件的集成,如DFB-LD、MQW-LD分別與MESFET或HBT或HEMT的集成;接收器件的集成主要是PIN、金屬、半導體、金屬探測器分別與MESFET或HBT或HEMT的前置放大電路的集成。雖然這些集成都已獲得成功,但還沒有商品化。
2. 垂直腔面發射激光器(VCSEL)
由於便於集成和高密度應用,垂直腔面發射激光器受到廣泛重視。這種結構的器件已在短波長(ALGaAs/GaAs)方面取得巨大的成功,並開始商品化;在長波長(InGaAsF/InP)方面的研製工作早已開始進行,也有少量商品。可以斷言,垂直腔面發射激光器將在接入網、區域網中發揮重大作用。
3. 窄帶響應可調諧集成光子探測器
由於DWDM光網路系統信道間隔越來越小,甚至到0.1nm。為此,探測器的響應譜半寬也應基本上達到這個要求。恰好窄帶探測器有陡銳的響應譜特性,能夠滿足這一要求。集F-P腔濾波器和光吸收有源層於一體的共振腔增強(RCE)型探測器能提供一個重要的全面解決方案。
4. 基於硅基的異質材料的多量子阱器件與集成(SiGe/Si MQW)
這方面的研究是一大熱點。眾所周知,硅(Si)、鍺(Ge)是間接帶隙材料,發光效率很低,不適合作光電子器件,但是Si材料的半導體工藝非常成熟。於是人們設想,利用能帶剪裁工程使物質改性,以達到在硅基基礎上製作光電子器件及其集成(主要是實現光電集成,即OEIC)的目的,這方面已取得巨大成就。在理論上有眾多的創新,在技術上有重大的突破,器件水平日趨完善。 光放大器的開發成功及其產業化是光纖通信技術中的一個非常重要的成果,它大大地促進了光復用技術、光孤子通信以及全光網路的發展。顧名思義,光放大器就是放大光信號。在此之前,傳送信號的放大都是要實現光電變換及電光變換,即O/E/O變換。有了光放大器後就可直接實現光信號放大。光放大器主要有3種:光纖放大器、拉曼放大器以及半導體光放大器。光纖放大器就是在光纖中摻雜稀土離子(如鉺、鐠、銩等)作為激光活性物質。每一種摻雜劑的增益帶寬是不同的。摻鉺光纖放大器的增益帶較寬,覆蓋S、C、L頻帶; 摻銩光纖放大器的增益帶是S波段;摻鐠光纖放大器的增益帶在1310nm附近。而喇曼光放大器則是利用喇曼散射效應製作成的光放大器,即大功率的激光注入光纖後,會發生非線性效應?喇曼散射。在不斷發生散射的過程中,把能量轉交給信號光,從而使信號光得到放大。由此不難理解,喇曼放大是一個分布式的放大過程,即沿整個線路逐漸放大的。其工作帶寬可以說是很寬的,幾乎不受限制。這種光放大器已開始商品化了,不過相當昂貴。半導體光放大器(S0A)一般是指行波光放大器,工作原理與半導體激光器相類似。其工作帶寬是很寬的。但增益幅度稍小一些,製造難度較大。這種光放大器雖然已實用了,但產量很小。
到此,我們系統、全面地評論了光纖通信技術的重大進展,至於光纖通信技術的發展方向,可以概括為兩個方面: 一是超大容量、超長距離的傳輸與交換技術; 二是全光網路技術。 隨著通信網路逐漸向全光平台發展,網路的優化、路由、保護和自愈功能在光通信領域中越來越重要。採用光交換技術可以克服電子交換的容量瓶頸問題,實現網路的高速率和協議透明性,提高網路的重構靈活性和生存性,大量節省建網和網路升級成本。光交換技術可分成光的電路交換(OCS)和光分組交換(OPS)兩種主要類型。光的電路交換類似於現存的電路交換技術,採用OXC、OADM等光器件設置光通路,中間節點不需要使用光緩存,對OCS的研究已經較為成熟。根據交換對象的不同OCS又可以分為:⑴ 光時分交換技術,時分復用是通信網中普遍採用的一種復用方式,時分光交換就是在時間軸上將復用的光信號的時間位置t1轉換成另一個時間位置t2 ⑵ 光波分交換技術,是指光信號在網路節點中不經過光/電轉換,直接將所攜帶的信息從一個波長轉移到另一個波長上。⑶ 光空分交換技術,即根據需要在兩個或多個點之間建立物理通道,這個通道可以是光波導也可以是自由空間的波束,信息交換通過改變傳輸路徑來完成⑷ 光碼分交換技術,光碼分復用(OCDMA)是一種擴頻通信技術,不同戶的信號用互成正交的不同碼序列填充,接受時只要用與發送方相同的法序列進行相關接受,即可恢復原用戶信息。光碼分交換的原理就是將某個正交碼上的光信號交換到另一個正交碼上,實現不同碼子之間的交換。

『貳』 光纖有哪些分類寫出各自特點

光纖分為 單模 多模
光纖跳線介面的種類及適用范圍

光纖跳線的分類和概述如下:

光纖跳線(又稱光纖連接器),也就是接入光模塊的光纖接頭,也有好多種,且相互之間不可以互用。SFP模塊接LC光纖連接器,而GBIC接的是SC光纖連接器。下面對網路工程中幾種常用的光纖連接器進行詳細的說明:

①FC型光纖跳線:外部加強方式是採用金屬套,緊固方式為螺絲扣。一般在ODF側採用(配線架上用的最多)

②SC型光纖跳線:連接GBIC光模塊的連接器,它的外殼呈矩形,緊固方式是採用插拔銷閂式,不須旋轉。(路由器交換機上用的最多)

③ST型光纖跳線:常用於光纖配線架,外殼呈圓形,緊固方式為螺絲扣。(對於10Base-F連接來說,連接器通常是ST類型。常用於光纖配線架)

④LC型光纖跳線:連接SFP模塊的連接器,它採用操作方便的模塊化插孔(RJ)閂鎖機理製成。(路由器常用)

⑤MT-RJ型光纖跳線:收發一體的方形光纖連接器,一頭雙纖收發一體

ST、SC連接器接頭常用於一般網路。ST頭插入後旋轉半周有一卡口固定,缺點是容易折斷;SC連接頭直接插拔,使用很方便,缺點是容易掉出來;FC連接頭一般電信網路採用,有一螺帽擰到適配器上,優點是牢靠、防灰塵,缺點是安裝時間稍長。MTRJ型光纖跳線由兩個高精度塑膠成型的連接器和光纜組成。連接器外部件為精密塑膠件,包含推拉式插拔卡緊機構。適用於在電信和數據網路系統中的室內應用。

光纖模塊:一般都支持熱插拔,GBIC使用的光纖介面多為SC或ST型;SFP,即:小型封裝GBIC,使用的光纖為LC型。

使用的光纖:

單模:L波長1310單模長距LH波長1310,1550

多模:SM波長850

SX/LH表示可以使用單模或多模光纖

在表示尾纖接頭的標注中,我們常能見到「FC/PC」,「SC/PC」等,其含義如下

1「/」前面部分表示尾纖的連接器型號

「SC」接頭是標准方型接頭,採用工程塑料,具有耐高溫,不容易氧化優點。傳輸設備側光介面一般用SC接頭

「LC」接頭與SC接頭形狀相似,較SC接頭小一些。

「FC」接頭是金屬接頭,一般在ODF側採用,金屬接頭的可插拔次數比塑料要多。

連接器的品種信號較多,除了上面介紹的三種外,還有MTRJ、ST、MU等,

2.'/'後面表明光纖接頭截面工藝,即研磨方式

「PC」在電信運營商的設備中應用得最為廣泛,其接頭截面是平的。

「UPC」的衰耗比「PC」要小,一般用於有特殊需求的設備,一些國外廠家ODF架內部跳纖用的就是FC/UPC,主要是為提高ODF設備自身的指標。

另外,在廣電和早期的CATV中應用較多的是「APC」型號,其尾纖頭採用了帶傾角的端面,可以改善電視信號的質量,主要原因是電視信號是模擬光調制,當接頭耦合面是垂直的時候,反射光沿原路徑返回。

由於光纖折射率分布的不均勻會再度返回耦合面,此時雖然能量很小但由於模擬信號是無法徹底消除雜訊的,所以相當於在原來的清晰信號上疊加了一個帶時延的微弱信號,表現在畫面上就是重影。尾纖頭帶傾角可使反射光不沿原路徑返回。一般數字信號一般不存在此問題。

使用范圍:

A:光纖通信系統

B:光纖寬頻接入網

C:光纖CATV

D:區域網LAN

E:光纖儀器表

F:光纖感測器

G:光纖教據傳輸系統

H:測試設備

光纖的分類主要是從工作波長、折射率分布、傳輸模式、原材料和製造方法上
作一歸納的,茲將各種分類舉例如下。
(1)工作波長:紫外光纖、可觀光纖、近紅外光纖、紅外光纖(0.85pm、1.3pm、

1.55pm)。
(2)折射率分布:階躍(SI)型、近階躍型、漸變(GI)型、其它(如三角型、W型、

凹陷型等)。
(3)傳輸模式:單模光纖(含偏振保持光纖、非偏振保持光纖)、多模光纖。
(4)原材料:石英玻璃、多成分玻璃、塑料、復合材料(如塑料包層、液體纖芯等)、

紅外材料等。按被覆材料還可分為無機材料(碳等)、金屬材料(銅、鎳等)和塑料

等。
(5)製造方法:預塑有汽相軸向沉積(VAD)、化學汽相沉積(CVD)等,拉絲法有

管律法(Rod intube)和雙坩鍋法等。

二, 石英光纖
是以二氧化硅(SiO2)為主要原料,並按不同的摻雜量,來控制纖芯和包層的
折射率分布的光纖。石英(玻璃)系列光纖,具有低耗、寬頻的特點,現在已廣泛
應用於有線電視和通信系統。

摻氟光纖(Fluorine Doped Fiber)為石英光纖的典型產品之一。通常,作為
1.3Pm波域的通信用光纖中,控制纖芯的摻雜物為二氧化緒(GeO2),包層是用SiO
炸作成的。但接氟光纖的纖芯,大多使用SiO2,而在包層中卻是摻入氟素的。由於,

瑞利散射損耗是因折射率的變動而引起的光散射現象。所以,希望形成折射率變動

因素的摻雜物,以少為佳。

氟素的作用主要是可以降低SIO2的折射率。因而,常用於包層的摻雜。由於摻
氟光纖中,纖芯並不含有影響折射率的氟素摻雜物。由於它的瑞利散射很小,而且
損耗也接近理論的最低值。所以多用於長距離的光信號傳輸。

石英光纖(Silica Fiber)與其它原料的光纖相比,還具有從紫外線光到近紅
外線光的透光廣譜,除通信用途之外,還可用於導光和傳導圖像等領域。

三, 紅外光纖
作為光通信領域所開發的石英系列光纖的工作波長,盡管用在較短的傳輸距離,

也只能用於2pm。為此,能在更長的紅外波長領域工作,所開發的光纖稱為紅外光纖。

紅外光纖(Infrared Optical Fiber)主要用於光能傳送。例如有:溫度計量、

熱圖像傳輸、激光手術刀醫療、熱能加工等等,普及率尚低。

四, 復台光纖
復合光纖(Compound Fiber)在SiO2原料中,再適當混合諸如氧化鈉(Na2O)、

氧化硼(B2O2)、氧化鉀(K2O2)等氧化物的多成分玻璃作成的光纖,特點是多成

分玻璃比石英的軟化點低且纖芯與包層的折射率差很大。主要用在醫療業務的光纖

內窺鏡。

五, 氟化物光纖
氯化物光纖(Fluoride Fiber)是由氟化物玻璃作成的光纖。這種光纖原料又
簡稱 ZBLAN(即將氟化鋁(ZrF4)、氰化鋇(BaF2)、氟化鑭(LaF3)、氟化鋁
(A1F2)、氰化鈉(NaF)等氯化物玻璃原料簡化成的縮語。主要工作在2~ 10pm
波長的光傳輸業務。

由於ZBLAN具有超低損耗光纖的可能性,正在進行著用於長距離通信光纖的可
行性開發,例如:其理論上的最低損耗,在3pm波長時可達10-2~10-3dB/km,而
石英光纖在1.55pm時卻在0.15~0.16dB/Km之間。

目前,ZBLAN光纖由於難於降低散射損耗,只能用在2.4~2.7pm的溫敏器和熱
圖像傳輸,尚未廣泛實用。

最近,為了利用ZBLAN進行長距離傳輸,正在研製1.3pm的摻錯光纖放大器(PD
FA)。

六, 塑包光纖
塑包光纖(Plastic Clad Fiber)是將高純度的石英玻璃作成纖芯,而將折射
率比石英稍低的如硅膠等塑料作為包層的階躍型光纖。它與石英光纖相比較,具有
纖芯租、數值孔徑(NA)高的特點。因此,易與發光二極體LED光源結合,損耗也
較小。所以,非常適用於區域網(LAN)和近距離通信。

七, 塑料光纖
這是將纖芯和包層都用塑料(聚合物)作成的光纖。早期產品主要用於裝飾和
導光照明及近距離光鍵路的光通信中。
原料主要是有機玻璃(PMMA)、聚苯乙稀(PS)和聚碳酸酯(PC)。損耗受到
塑料固有的C-H結合結構制約,一般每km可達幾十dB。為了降低損耗正在開發應用
氟索系列塑料。由於塑料光纖(Plastic Optical fiber)的纖芯直徑為1000pm,

比單模石英光纖大100倍,接續簡單,而且易於彎曲施工容易。近年來,加上寬頻化

的進度,作為漸變型(GI)折射率的多模塑料光纖的發展受到了社會的重視。最近,

在汽車內部LAN中應用較快,未來在家庭LAN中也可能得到應用。

八, 單模光纖
這是指在工作波長中,只能傳輸一個傳播模式的光纖,通常簡稱為單模光纖
(SMF:Single ModeFiber)。目前,在有線電視和光通信中,是應用最廣泛的光纖。
由於,光纖的纖芯很細(約10pm)而且折射率呈階躍狀分布,當歸一化頻率V參
數<2.4時,理論上,只能形成單模傳輸。另外,SMF沒有多模色散,不僅傳輸頻帶
較多模光纖更寬,再加上SMF的材料色散和結構色散的相加抵消,其合成特性恰好形
成零色散的特性,使傳輸頻帶更加拓寬。
SMF中,因摻雜物不同與製造方式的差別有許多類型。凹陷型包層光纖(DePr-
essed Clad Fiber),其包層形成兩重結構,鄰近纖芯的包層,較外倒包層的折射
率還低。另外,有匹配型包層光纖,其包層折射率呈均勻分布。

九, 多模光纖
將光纖按工作彼長以其傳播可能的模式為多個模式的光纖稱作多模光纖(MMF:
MUlti ModeFiber)。纖芯直徑為50pm,由於傳輸模式可達幾百個,與SMF相比傳輸
帶寬主要受模式色散支配。在歷史上曾用於有線電視和通信系統的短距離傳輸。自
從出現SMF光纖後,似乎形成歷史產品。但實際上,由於MMF較SMF的芯徑大且與LED
等光源結合容易,在眾多LAN中更有優勢。所以,在短距離通信領域中MMF仍在重新
受到重視。
MMF按折射率分布進行分類時,有:漸變(GI)型和階躍(SI)型兩種。GI型
的折射率以纖芯中心為最高,沿向包層徐徐降低。從幾何光學角度來看,在纖芯中
前進的光束呈現以蛇行狀傳播。由於,光的各個路徑所需時間大致相同。所以,傳
輸容量較SI型大。
SI型MMF光纖的折射率分布,纖芯折射率的分布是相同的,但與包層的界面呈
階梯狀。由於SI型光波在光纖中的反射前進過程中,產生各個光路徑的時差,致使
射出光波失真,色激較大。其結果是傳輸帶寬變窄,目前SI型MMF應用較少。

十, 色散使移光纖

單模光纖的工作波長在1.3Pm時,模場直徑約9Pm,其傳輸損耗約0.3dB/km。
此時,零色散波長恰好在1.3pm處。
石英光纖中,從原材料上看1.55pm段的傳輸損耗最小(約0.2dB/km)。由於
現在已經實用的摻鉺光纖放大器(EDFA)是工作在1.55pm波段的,如果在此波段也
能實現零色散,就更有利於應用1.55Pm波段的長距離傳輸。

於是,巧妙地利用光纖材料中的石英材料色散與纖芯結構色散的合成抵消特性,

就可使原在1.3Pm段的零色散,移位到1.55pm段也構成零色散。因此,被命名為色
散位移光纖(DSF:DispersionShifted Fiber)。
加大結構色散的方法,主要是在纖芯的折射率分布性能進行改善。
在光通信的長距離傳輸中,光纖色散為零是重要的,但不是唯一的。其它性能
還有損耗小、接續容易、成纜化或工作中的特性變化小(包括彎曲、拉伸和環境變
化影響)。DSF就是在設計中,綜合考慮這些因素。

十一 色散平坦光纖
色散移位光纖(DSF)是將單模光纖設計零色散位於1.55pm波段的光纖。而色
散平坦光纖(DFF:Dispersion Flattened Fiber)卻是將從1.3Pm到1.55pm的較
寬波段的色散,都能作到很低,幾乎達到零色散的光纖稱作DFF。由於DFF要作到
1.3pm~1.55pm范圍的色散都減少。就需要對光纖的折射率分布進行復雜的設計。
不過這種光纖對於波分復用(WDM)的線路卻是很適宜的。由於DFF光纖的工藝比較
復雜,費用較貴。今後隨著產量的增加,價格也會降低。

十二 色散補償光纖
對於採用單模光纖的干線系統,由於多數是利用1.3pm波段色散為零的光纖構
成的。可是,現在損耗最小的1.55pm,由於EDFA的實用化,如果能在1.3pm零色散
的光纖上也能令1.55pm波長工作,將是非常有益的。
因為,在1.3Pm零色散的光纖中,1.55Pm波段的色散約有16ps/km/nm之多。
如果在此光纖線路中,插入一段與此色散符號相反的光纖,就可使整個光線路的
色散為零。為此目的所用的是光纖則稱作色散補償光纖(DCF:DisPersion Compe-
nsation Fiber)。
DCF與標準的1.3pm零色散光纖相比,纖芯直徑更細,而且折射率差也較大。
DCF也是WDM光線路的重要組成部分。

十三 偏派保持光纖
在光纖中傳播的光波,因為具有電磁波的性質,所以,除了基本的光波單一
模式之外,實質上還存在著電磁場(TE、TM)分布的兩個正交模式。通常,由於
光纖截面的結構是圓對稱的,這兩個偏振模式的傳播常數相等,兩束偏振光互不
干涉。但實際上,光纖不是完全地圓對稱,例如有著彎曲部分,就會出現兩個偏
振模式之間的結合因素,在光軸上呈不規則分布。偏振光的這種變化造成的色散,
稱之偏振模式色散(PMD)。對於現在以分配圖像為主的有線電視,影響尚不太大。
但對於一些未來超寬頻有特殊要求的業務,如:①相干通信中採用外差檢波,要
求光波偏振更穩定時;②光機器等對輸入輸出特性要求與偏振相關時;③在製作
偏振保持光耦合器和偏振器或去偏振器等時;④製作利用光干涉的光纖敏感器等,
凡要求偏振波保持恆定的情況下,對光纖經過改進使偏振狀態不變的光纖稱作偏
振保持光纖(PMF:Polarization Maintaining fiber),也有稱此為固定偏振
光纖的。

十四 雙折射光纖
雙折射光纖是指在單模光纖中,可以傳輸相互正交的兩個固有偏振模式的光
纖而言。因為,折射率隨偏報方向變異的現象稱為雙折射。在造成雙折射的方法
中。它又稱作PANDA光纖,即偏振保持與吸收減少光纖(Polarization-maintai-
ning AND Absorption- recing fiber)。它是在纖芯的橫向兩則,設置熱
膨脹系數大、截面是圓形的玻璃部分。在高溫的光纖拉絲過程中,這些部分收縮,
其結果在纖芯y方向產生拉伸,同時又在x方向呈現壓縮應力。致使纖材出現光彈
性效應,使折射率在X方向和y方向出現差異。依此原理達到偏振保持恆定。

十五 抗惡環境光纖
通信用光纖通常的工作環境溫度可在-40~+60℃之間,設計時也是以不受大
量輻射線照射為前提的。相比之下,對於更低溫或更高溫以及能遭受高壓或外力
影響、曝曬輻射線的惡劣環境下,也能工作的光纖則稱作抗惡環境光纖(Hard
Condition Resistant Fiber)。
一般為了對光纖表面進行機械保護,多塗覆一層塑料。可是隨著溫度升高,
塑料保護功能有所下降,致使使用溫度也有所限制。如果改用抗熱性塑料,如聚
四氟乙稀(Teflon)等樹脂,即可工作在300℃環境。也有在石英玻璃表面塗覆
鎳(Ni)和鋁(A1)等金屬的。這種光纖則稱為耐熱光纖(Heat Resistant Fib-
er)。
另外,當光纖受到輻射線的照射時,光損耗會增加。這是因為石英玻璃遇到
輻射線照射時,玻璃中會出現結構缺陷(也稱作色心:Colour Center),尤在
0.4~0.7pm波長時損耗增大。防止辦法是改用摻雜OH或F素的石英玻璃,就能抑
制因輻射線造成的損耗缺陷。這種光纖則稱作抗輻射光纖(Radiation Resista-
nt Fiber),多用於核發電站的監測用光纖維鏡等。

十六 密封塗層光纖
為了保持光纖的機械強度和損耗的長時間穩定,而在玻璃表面塗裝碳化硅
(SiC)、碳化鈦(TiC)、碳(C)等無機材料,用來防止從外部來的水和氫的
擴散所製造的光纖(HCF:HermeticallyCoated Fiber)。目前,通用的是在化
學氣相沉積(CVD)法生產過程中,用碳層高速堆積來實現充分密封效應。這種
碳塗覆光纖(CCF)能有效地截斷光纖與外界氫分子的侵入。據報道它在室溫的
氫氣環境中可維持20年不增加損耗。當然,它在防止水分侵入延緩機械強度的疲
勞進程,其疲勞系數(Fatigue Parameter)可達200以上。所以,HCF被應用於
嚴酷環境中要求可靠性高的系統,例如海底光纜就是一例。

十七 碳塗層光纖
在石英光纖的表面塗敷碳膜的光纖,稱之碳塗層光纖(CCF:Carbon Coated
Fiber)。其機理是利用碳素的緻密膜層,使光纖表面與外界隔離,以改善光纖
的機械疲勞損耗和氫分子的損耗增加。CCF是密封塗層光纖(HCF)的一種。

十八 金屬塗層光纖
金屬塗層光纖(Metal Coated Fiber)是在光纖的表面塗布Ni、Cu、A1等
金屬層的光纖。也有再在金屬層外被覆塑料的,目的在於提高抗熱性和可供通
電及焊接。它是抗惡環境性光纖之一,也可作為電子電路的部件用。
早期產品是在拉絲過程中,塗布熔解的金屬作成的。由於此法因被玻璃與
金屬的膨脹系數差異太大,會增微小彎曲損耗,實用化率不高。近期,由於在
玻璃光纖的表面採用低損耗的非電解鍍膜法的成功,使性能大有改善。

十九 摻稀土光纖
在光纖的纖芯中,摻雜如何(Er)、欽(Nd)、譜(Pr)等稀土族元素的
光纖。1985年英國的索斯安普頓(Sourthampton)大學的佩思(Payne)等首
先發現摻雜稀土元素的光纖(Rare Earth DoPed Fiber)有激光振盪和光放大
的現象。於是,從此揭開了慘餌等光放大的面紗,現在已經實用的1.55pmEDFA
就是利用摻餌的單模光纖,利用1.47pm的激光進行激勵,得到1.55pm光信號放
大的。另外,摻錯的氟化物光纖放大器(PDFA)正在開發中。

二十 喇曼光纖
喇曼效應是指往某物質中射人頻率f的單色光時,在散射光中會出現頻率f
之外的f±fR, f±2fR等頻率的散射光,對此現象稱喇曼效應。由於它是物質
的分子運動與格子運動之間的能量交換所產生的。當物質吸收能量時,光的振
動數變小,對此散射光稱斯托克斯(stokes)線。反之,從物質得到能量,而
振動數變大的散射光,則稱反斯托克斯線。於是振動數的偏差FR,反映了能級,
可顯示物質中固有的數值。

利用這種非線性媒體做成的光纖,稱作喇曼光纖(RF:Raman Fiber)。
為了將光封閉在細小的纖芯中,進行長距離傳播,就會出現光與物質的相互作
用效應,能使信號波形不畸變,實現長距離傳輸。
當輸入光增強時,就會獲得相乾的感應散射光。應用感應喇曼散射光的設
備有喇曼光纖激光器,可供作分光測量電源和光纖色散測試用電源。另外,感
應喇曼散射,在光纖的長距離通信中,正在研討作為光放大器的應用。

二十一 偏心光纖
標准光纖的纖芯是設置在包層中心的,纖芯與包層的截面形狀為同心圓型。
但因用途不同,也有將纖芯位置和纖芯形狀、包層形狀,作成不同狀態或將包
層穿孔形成異型結構的。相對於標准光纖,稱這些光纖叫異型光纖。
偏心光纖(Excentric Core Fiber),它是異型光纖的一種。其纖芯設置
在偏離中心且接近包層外線的偏心位置。由於纖芯靠近外表,部分光場會溢出
包層傳播(稱此為漸消彼,Evanescent Wave)。
因此,當光纖表面附著物質時,因物質的光學性質在光纖中傳播的光波受
到影響。如果附著物質的折射率較光纖高時,光波則往光纖外輻射。若附著物
質的折射率低於光纖折射率時,光波不能往外輻射,卻會受到物質吸收光波的
損耗。利用這一現象,就可檢測有無附著物質以及折射率的變化。
偏心光纖(ECF)主要用作檢測物質的光纖敏感器。與光時域反射計(OTDR)
的測試法組合一起,還可作分布敏感器用。

二十二 發光光纖
採用含有熒光物質製造的光纖。它是在受到輻射線、紫外線等光波照射時,
產生的熒光一部分,可經光纖閉合進行傳輸的光纖。
發光光纖(Luminescent Fiber)可以用於檢測輻射線和紫外線,以及進
行波長變換,或用作溫度敏感器、化學敏感器。在輻射線的檢測中也稱作閃光
光纖(Scintillation Fiber)。
發光光纖從熒光材料和摻雜的角度上,正在開發著塑料光纖。

二十三 多芯光纖
通常的光纖是由一個纖芯區和圍繞它的包層區構成的。但多芯光纖(Multi
Core Fiber)卻是一個共同的包層區中存在多個纖芯的。由於纖芯的相互接近
程度,可有兩種功能。
其一是纖芯間隔大,即不產生光耦會的結構。這種光纖,由於能提高傳輸
線路的單位面積的集成密度。在光通信中,可以作成具有多個纖芯的帶狀光纜,
而在非通信領域,作為光纖傳像束,有將纖芯作成成千上萬個的。
其二是使纖芯之間的距離靠近,能產生光波耦合作用。利用此原理正在開
發雙纖芯的敏感器或光迴路器件。

二十四 空心光纖
將光纖作成空心,形成圓筒狀空間,用於光傳輸的光纖,稱作空心光纖
(Hollow Fiber)。
空心光纖主要用於能量傳送,可供X射線、紫外線和遠紅外線光能傳輸。空
心光纖結構有兩種:一是將玻璃作成圓筒狀,其纖芯與包層原理與階躍型相同。
利用光在空氣與玻璃之間的全反射傳播。由於,光的大部分可在無損耗的空氣
中傳播,具有一定距離的傳播功能。二是使圓筒內面的反射率接近1,以減少反
射損耗。為了提高反射率,有在簡內設置電介質,使工作波長段損耗減少的。
例如可以作到波長10.6pm損耗達幾dB/m的。

『叄』 光纖的種類

光纖按照ITU-T 建議分類

1、G.651 多模光纖(50/125μm,多模漸變型折射率光纖) 適用於波長為850nm/1310nm的短距離傳送

2、G.652 常規單模光纖(非色散位移光纖STD SMF):適用於1310-1550nm的接入網, 是應用最廣泛的光纖,目前除了光纖到戶(FTTH)的入戶光纜外,長途、城域使用的光纖幾乎全為G.652光纖,應用於數據通信和圖像傳輸。


3、G.653 光纖(色散位移光纖DSF):在λ=1310nm附近的零色散點,移至1550nm波長處,使其在λ=1550nm波長處的損耗系數和色散系數均很小。 適用於1550nm的長距離傳輸(主幹網/海底光纜)。

4、G.654 光纖(截止波長位移光纖):適用於1550nm長距離傳輸(海底光纜但是不支持DWDM)它在λ=1550nm處損耗系數很小,α=0.2dB/km,光纖的彎曲性能好。主要用於無需插入有源器件的長距離無再生海底光纜系統。其缺點是製造困難,價格貴。

5、G.655 光纖(非零色散位移光纖NZDSF,NonZero DispersionShifted Fiber):適用於1550nm的長距離傳輸(主幹網。海底光纜/支持DWDM)。

6、G.656光纖(低斜率非零色散位移光纖):是非色散位移光纖的一種,對於色散的速度有嚴格的要求,確保了DWDM系統中更大波長范圍內的傳輸,為了進一步擴展DWDM系統的可用波長范圍,在S(1460~1530 nm)、C(1 530~1 565 nm)和L(1 565~1 625 nm)波段均保持非零色散的一種新型光纖。

7、G657 光纖(彎曲損耗不明顯單模光纖):FTTx彎曲半徑大於G.652,所以用於光纖到戶中。

根據光纖接頭類型分類,光纖跳線可以分為FC LC SC ST MTRJ和MPO

上海態路通信技術有限公司回答,望採納,謝謝

『肆』 聯通光纖貓的LOS燈變紅了,還一閃一閃的什麼意思

光貓LOS光信號指示燈紅燈閃爍,表示設備未收到光信號。
建議:1、重啟光貓;
2、檢查線路是否有彎折角度過大、擠壓現象;
3、檢查光纖介面是否松動,插緊接頭;
如果上述方式仍不能解決,可以撥打當地運營商客服進行寬頻報障。

閱讀全文

與光纜pdf相關的資料

熱點內容
賣手錶的app哪裡可以賣 瀏覽:51
放管伺服器怎麼辦理 瀏覽:627
手機號碼如何加密 瀏覽:424
沈陽程序員培訓學校 瀏覽:538
一般伺服器如何配置 瀏覽:895
圖片怎樣加密發郵件 瀏覽:619
萬虹電腦文件夾密碼忘記了怎麼辦 瀏覽:631
rc108單片機 瀏覽:867
戰雷如何改變伺服器 瀏覽:674
mactelnet命令 瀏覽:51
壓縮袋壓縮了拿出來 瀏覽:401
安卓手機相機怎麼設置許可權 瀏覽:121
美女程序員轉行做主播 瀏覽:671
辦理解壓房產 瀏覽:575
道路工程概論pdf 瀏覽:389
超棒數學速演算法大全 瀏覽:938
小米易語言登錄源碼 瀏覽:31
磚牆內加密鋼筋 瀏覽:993
鄉關何處pdf 瀏覽:85
小豬領贊小程序源碼 瀏覽:336