電子書集合|數據科學速查表|遷移學習實戰 ,免費下載
鏈接: https://pan..com/s/11qnpoLX1H_XzFB-RdVNG4w 提取碼: z9x7
B. 0基礎學習python怎麼入門呢
該如何學習Python呢?
(1)選擇學習方向。學習Python主要目的是用語言來解決問題,而不是了解這門語言。Python應用方向有很多,Python基礎知識學習完後,應用方向不同需求也不同;雖然Python需要系統化的學習,但是在學習Python的時候,想要告訴大家還是需要提前確定一下自己感興趣的方向,有針對性的學習更為重要。
(2)規劃學習路線。當確定好自己的發展方向之後,下一步就是順著方向去學習,建立好自己的學習路線。要有系統化的學習路線,需要完成什麼樣的目標,需要學習哪些知識,需要懂哪些知識,這樣每次學習一個部分,就可以有實際的結果輸出,結果的輸出才可以鼓勵進行下一步的學習。
(3)合理規劃時間。劃好自己的學習時間,每天進度是什麼,每天學習幾個小時都是需要提前確定的,有計劃有規劃的去學習,堅持下來才會有意外的收獲。
用任何編程語言來開發程序,都是為了讓計算機工作。目前有很多種流行的編程語言,如難學的C語言,普遍的Java語言,適合初學者的Basic語言,適合網頁編程的JavaScript語言等,Python適合初學者的一種計算機程序設計語言。
C. python的幾個高級特性
1切片
2 迭代
3 列表生成,是Python內置的非常簡單卻強大的可以用來創建list的生成式。
4 生成器
D. 怎樣學習python
再練習:
把前面的小項目用更高級的Python語法實現,提高效率,精簡代碼。
模仿:
看看Python大師是如何把Python玩出花來的吧,跟大師學習是最行之有效的方法。讀一些中型的Python開源項目,比如Tornado、Flask等,你將獲益匪淺。什麼!你說你看不懂?告訴你個訣竅:硬看,看懂為止。
編程本身就是個有意思的事情,如果你再用它來做有意思的東西,那就更有意思了。
自學視頻資料:http://tieba..com/p/5060701179?pid=105998864703&cid=0#105998864703
E. 如何自學編程python
首先先了解Python語言的四大發展方向。目前Python的主要方向有web後端開發、大數據分析網路爬蟲和人工智慧,當然如果再細分的話還有自動化測試、運維等方向。
在學習Python的基礎語法時,並不需要太多的基礎,基本只要熟練使用電腦日常功能並對Python感興趣就可以了,但如果想要在人工智慧領域方向發展的話,線性代數、概率、統計等高等數學知識基本是必需的,原因在於這些知識能夠讓你的邏輯更加清晰,在編程過程中有更強的思路。
分享一個千鋒Python的學習大綱給你
第一階段 - Python 數據科學
Python 基礎語法
入門及環境安裝 、基本語法與數據類型、控制語句、錯誤及異常、錯誤處理方法、異常處理方法 、常用內置函數 、函數創建與使用、Python 高級特性、高級函數、Python 模塊、PythonIO 操作 、日期與時間 、類與面向對象 、Python 連接資料庫
Python 數據清洗
數字化 Python 模塊Numpy、數據分析利器Pandas、Pandas 基本操作、Pandas 高級操作
Python 數據可視化
數據可視化基礎、MLlib(RDD-Base API)機器學習、MatPlotlib 繪圖進階、高級繪圖工具
第二階段 - 商業數據可視化
Excel 業務分析
Excel 基礎技能、Excel 公式函數、圖表可視化、人力 & 財務分析案例、商業數據分析方法、商業數據分析報告
Mysql 資料庫
Mysql 基礎操作(一)、Mysql 基礎操作(二)、Mysql 中級操作、Mysql 高級操作、電商數據處理案例
PowerBI
初級商業智能應用 (PowerQuery)、初級商業智能應用 (PowerPivot)、初級商業智能應用案例、存儲過程、PowerBI Desktop 案例、PowerBI Query 案例
統計學基礎
微積分、線性代數基礎、統計基礎
Tableau
Tableau 基本操作、Tableau 繪圖、Tableau 數據分析、Tableau 流量分析
SPSS
客戶畫像、客戶價值模型、神經網路、決策樹、時間序列
第三階段 - Python 機器學習
Python 統計分析
數據准備、一元線性回歸、多元線性回歸、一般 logistic 回歸、ogistic 回歸與修正
Python 機器學習基礎
機器學習入門、KNN 講義、模型評估方法、模型優化方法、Kmeans、DBSCAN、決策樹演算法實戰
Python 機器學習中級
線性回歸、模型優化方法、邏輯回歸、樸素貝葉斯、關聯規則、協同過濾、推薦系統案例
Python 機器學習高級
集成演算法 - 隨機森林、集成演算法 -AdaBoost、數據處理和特徵工程、SVM、神經網路、XGBoost
第四階段 - 項目實戰
電商市場數據挖掘項目實戰
項目背景 & 業務邏輯 、指定分析策略 、方法實現與結果 、營銷活動設計及結果評價 、撰寫數據分析報告
金融風險信用評估項目實戰
項目背景 & 業務邏輯 、建模准備 、數據清洗 、模型訓練 、模型評估 、模型部署與更新
第五階段 - 數據採集
爬蟲類庫解析 、數據解析 、動態網頁提取 、驗證碼、IP 池 、多線程爬蟲 、反爬應對措施 、scrapy 框架
第六階段 - 企業課
團隊戶外拓展訓練 、企業合作項目課程 、管理課程 、溝通表達訓練 、職業素養課程
以上就是零基礎Python學習路線的所有內容,希望對大家的學習有所幫助。
F. python爬蟲學習教程哪個好
第一階段
Python開發基礎和核心特性1.變數及運算符2.分支及循環3.循環及字元串4.列表及嵌套列表5.字典及項目練習6.函數的使用7.遞歸及文件處理8.文件9.面向對象10.設計模式及異常處理11.異常及模塊的使用12.坦克大戰13.核心編程14.高級特性15.內存管理
第二階段
資料庫和linux基礎1.並發編程2.網路通信3.MySQL4.Linux5.正則表達式
第三階段
web前端開發基礎1.html基本標簽2.css樣式3.css浮動和定位4.js基礎5.js對象和函數6.js定時器和DOM7.js事件響應8.使用jquery9.jquery動畫特效10.Ajax非同步網路請求
第四階段
Python Web框架階段1.Django-Git版本控制2.Django-博客項目3.Django-商城項目4.Django模型層5.Django入門6.Django模板層7.Django視圖層8.Tornado框架
第五階段
Python 爬蟲實戰開發1.Python爬蟲基礎2.Python爬蟲Scrapy框架
G. 學習Python的教程
Python作為一門面向對象的解釋性語言,其實它的學習套路也很簡單
- 環境配置
- Python基礎(語法、變數、數據類型、高級變數、函數、Python高級特性)
- 面向對象編程、面向對象高級編程
- 錯誤、調試、測試
- 網路編程、進程、線程、協程、內建模塊,常用第三方模塊
- web開發(Django、Flask、tornado等框架)
- 運維開發、測試開發
- 爬蟲、數據分析、數據挖掘、數據清洗
- 最後當然是最火的AI(TensorFlow等)
黑馬程序員社區當中含有相關的,線路圖,並且每一個階段下面都有配套的學習視頻。
H. python學習分幾個階段
分為七大階段!
階段一:python基礎知識和高級特性
I. python高級特性知多少
bobby《Python3高級核心技術97講》(超清視頻)網路網盤
鏈接: https://pan..com/s/1iJ9VvVE3Km_x4-RCfI5Anw
若資源有問題歡迎追問~
J. 想要自學python,有什麼好的學習方法推薦
人生苦短,我選Python!
在學習之前先給自己定一個目標規劃,培養自己對編程的興趣,在學習過程中一定要碰敲代碼,學會做筆記,但不用刻意去記住這些代碼,理解代碼比記住代碼更重要。學會使用搜索引擎的能力,學會自己解決問題,除了這些要多看大牛的技術專欄,通過對比大牛認清自己的現狀並及時做出調整和改變。
學編程是一個長期的過程。所有各位小夥伴一定要有自己的一個長期計劃,並把長期的計劃分解成段目標,目標完成後給自己一定的激勵,一句話,加油就完事兒了。