導航:首頁 > 操作系統 > 單片機脈沖計時設計

單片機脈沖計時設計

發布時間:2022-05-18 16:36:09

Ⅰ 急求一有關單片機的設計 在單片機一端輸入一脈沖或信號 記錄此脈沖或信號 然後按鍵顯示脈沖進入的時間

極為容易。首先你的單片機系統要一個時鍾IC,例如PCF8563、DS1307等等。脈沖經過光電隔離輸入單片機的中斷引腳(例如51系列的INT0口),外部脈沖使單片機產生中斷,中斷子程序讀時鍾晶元的日歷和時間數據,保存到存儲器裡面去。我做的感應ID卡門禁系統就是這么做的,能夠記錄進出們方向和日期、時間。時間的解析度是時鍾晶元的最小計時單位(秒),如果需要更高的時間解析度,通過軟體也可以到毫秒級。

Ⅱ 單片機用c語言編一個程序,要求用內部定時/計數器對30個脈沖進行計數,並同時對這三十個脈沖進行計時。

看了一下你的要求,單片機里有個GATE位的設置如果你懂得用,編這個程序就不難了。下面是我個人按照你要求剛編的程序:
/***********************
功能:內部定時/計數器記錄脈沖個數和這些脈沖通過後所用的時間。
硬體:單片機用AT89c51,12M晶振。
原理:當門控位GATE為「1」時,TR0/1=1,INT0/1才能啟動定時器。
利用這個特性可以測量外部輸入脈沖的寬度。
分析:設外部脈沖由(P3.2)輸入,T0工作於定時方式1(16位計數),
GATE設為1.測試時,應在INT0低電平時,設置TR0為1(避免檢測
到正在進行的脈沖);當INT0為高電平時,就啟動計數,INT0再
次變低時,停止計數。此計數值與機器周期的乘積即為被測正脈
沖的寬度。因晶振為12MHz,機器周期為1us.
************************/
#include <reg51.h>
//sbit INT0=P3^2;//INT0在頭文件里已定義為P3^2口
#define uint unsigned int
uint pulseWidth[30],num;
void init()
{
num=0;
TMOD=0x09;//選擇定時器並設T0為方式1
TH0=0x00; //設計數初會為最大值
TL0=0x00;
}
main()
{
init();
while(1)
{
if(num<30) //記錄30個脈沖
{
while(INT0);//等待INT0變低
TR0=1; //應在INT0低電平時,設置TR0為1
while(!INT0);//等待INT0變高,啟動定時器開始計數
while(INT0); //等待INT0變低,停止定時器開始計數
TR0=0;
pulseWidth[num]=(uint)TL0;
pulseWidth[num]|=(uint)(TH0<<8);
//因機器周期為1us,故pulseWidth數組里存的數目加上單位us,
//即為所求的脈沖寬度
num++;
}
}
}

Ⅲ 單片機定時器怎麼實現時間計時越細越好

定時/計數器的實質是加1計數器(16位),由高8位和低8位兩個寄存器組成。TMOD是定時/計數器的工作方式寄存器,確定工作方式和功能;TCON是控制寄存器,控制T0、T1的啟動和停止及設置溢出標志。

加1計數器輸入的計數脈沖有兩個來源,一個是由系統的時鍾振盪器輸出脈沖經12分頻後送來;一個是T0或T1引腳輸入的外部脈沖源。每來一個脈沖計數器加1,當加到計數器為全1時,再輸入一個脈沖就使計數器回零,且計數器的溢出使TCON中TF0或TF1置1,向CPU發出中斷請求(定時/計數器中斷允許時)。如果定時/計數器工作於定時模式,則表示定時時間已到;如果工作於計數模式,則表示計數值已滿。
可見,由溢出時計數器的值減去計數初值才是加1計數器的計數值。

•設置為定時器模式時,加1計數器是對內部機器周期計數(1個機器周期等於12個振盪周期,即計數頻率為晶振頻率的1/12)。計數值N乘以機器周期Tcy就是定時時間t。

Ⅳ 單片機已知定時時間如何設計PSC和ARR的值

對於STM32F4開發板,先弄清APB1的時鍾頻率是42M,是AHB時鍾168M經4分頻得到的,由於分頻系數不為1,因此CK-INT的頻率是APB1時鍾的2倍84M,可知
定時時間 us=(ARR+1)(PSC+1)/84M
取PSC=83, 剛好一個脈沖1us,則定時時間 us=(ARR+1),
定時1000US,ARR取999 定時100US,ARR取 99
16位定時器 最大可定時 65535 US。
取PSC=167, 則一個脈沖2us
取PSC=839, 則一個脈沖10us
取PSC=8399, 則一個脈沖100us 這時最大可定時 6.5535 S。
取PSC=83999 不行,超過16位寄存器的允許范圍
對於STM32F1開發板,APB1的時鍾頻率是36M,是AHB時鍾72M經2分頻得到的,由於分頻系數不為1,因此CK-INT的頻率是APB1時鍾的2倍即72M。

Ⅳ 51單片機怎麼實現計時

嘿嘿 還是讓俺來幫你解決吧
1 關於定時器定時時間的計算問題:
如果使用的是12M晶振計算,指令周期1uS,定時器是加1計數器,即是對內部時鍾即指令周期脈沖計數 每當1uS到時,計數器加1。
假設 定時器的初始值=X,則每到1uS 計數器的值就加1 ,則計數器值=X+1+1+...+1 值越來越大,最後達到FFFFH+1 就會產生溢出 結果計數器值回0(FFFFH+1=65536)
可以推出 定時時間=計數的1的個數×1uS=(65536—X )1 uS
結論: 定時時間跟初始值即時間常數X有關。
如果要定時0.5毫秒=500uS 根據定時時間公式 500=(65536—X )
即X=(65536-500) 一般把高8位送TH0 即 (65536-500)/256
把 (65536-500)%256即除上256後的余數 即低8位數送給TL0
每當定時時間到 計數器值都回0 必須重新送時間常數X
2每條指令的時間怎麼算? 答復:
可以查指令表 每一條指令的執行時間的周期數 都是固定的 如 NOP 為一個機器周期
MOV R6,#200; 為2個機器周期
機器周期=12/晶振頻率 如果晶振頻率=12MHZ 則機器周期=1 uS
就可以知道 ; 執行NOP指令的執行時間為 1 uS
執行MOV R6,#200指令的執行時間為 2 uS
因此 是可以精確計算出指令的延時時間的
呵呵 就介紹這些吧 滿意就 給加分吧

Ⅵ 利用51單片機,4個數碼管設計一個計時器,要求在數碼管上顯示的數據從0開始每1秒鍾加1。

沒有定時器的不過有數字鍾的
你可以參考下
其中可有有用的

摘要
本題給出基於單片機的數字中的設計,設計由單片機作為核心控制器,通過頻率計數實現計時功能,將實時時間經由單片機輸出到顯示設備——數碼管上顯示出來,並通過鍵盤來實現啟動、停止、復位和調整時間的功能。
關鍵詞: 單片機、數字鍾、AT89S52、LED
1 引言
在單片機技術日趨成熟的今天,其靈活的硬體電路的設計和軟體的設計,讓單片機得到了廣泛的應用,幾乎是從小的電子產品,到大的工業控制,單片機都起到了舉足輕重的作用。單片機小的系統結構幾乎是所有具有可編程硬體的一個縮影,可謂是「麻雀雖小,五臟俱全」。
現在是一個知識爆炸的新時代。新產品、新技術層出不窮,電子技術的發展更是日新月異。可以毫不誇張的說,電子技術的應用無處不在,電子技術正在不斷地改變我們的生活,改變著我們的世界。在這快速發展的年代,時間對人們來說是越來越寶貴,在快節奏的生活時,人們一旦遇到重要的事情而忘記了時間,這將會帶來很大的損失,因此我們需要一個計時系統來提醒這些忙碌的人。 然而,隨著科技的發展和社會的進步,人們對時鍾的要求也越來越高,傳統的時鍾已不能滿足人們的需求。多功能數字鍾不管在性能上還是在樣式上都發生了質的變化,如電子鬧鍾、數字鬧鍾等等。 單片機在多功能數字鍾中的應用已是非常普遍的,基於單片機的數字鍾給人們帶來了極大的方便。
現今,高精度的計時工具大多數都使用了石英晶體振盪器,由於電子鍾,石英錶,石英鍾都採用了石英技術,因此走時精度高,穩定性好,使用方便,不需要經常調校,數字式電子鍾用集成電路計時,解碼代替機械式傳動,用LED顯示器代替指針顯示進而顯示時間,減小了計時誤差,這種表具有時,分,秒顯示時間的功能,還可以進行時和分的校對,片選的靈活性好。本文利用單片機實現數字時鍾計時功能的主要內容,其中AT89S52是核心元件同時採用數碼管動態顯示「時」,「分」,「秒」的現代計時裝置。與傳統機械表相比,它具有走時精確,顯示直觀等特點。它的計時周期為24小時,顯滿刻度為「23時59分59秒」,另外具有校時功能,斷電後有記憶功能,恢復供電時可實現計時同步等特點。
2 方案論證
2.1 方案一
數字鍾採用FPGA作為主控制器。由於FPGA具有強大的資源,使用方便靈活,易於進行功能擴展,特別是結合了EDA,可以達到很高的效率。此方案邏輯雖然簡單一點,但是一塊FPGA的價格很高,對於做電子鍾來說有一點浪費,而且FPGA比較難掌握,本設計中不作過多研究,也不採用此方案。
2.2 方案二
數字鍾由幾種邏輯功能不同的CMOS數字集成電路構成,共使用了10片數字集成電路,其原理圖如圖2.1所示。它是由秒信號發生器(時基電路)、小時分鍾計數器及解碼和驅動顯示電路3部分組成,其基本工作過程是:時基電路產生精確周期的脈沖信號,經過分頻器作用給後面的計數器輸送1HZ的秒信號,最後由計數器及驅動顯示單元按位驅動數碼管時間顯示,但是這樣設計的電路比較復雜,使用也不靈活,而且價格比較高,故不採用此方案。

圖2.1 方案二原理示意圖

2.3 方案三
AT89S52是一種低功耗、高性能CMOS 8位微控制器。使用Atmel公司高密度非易失性存儲器技術製造,與工業80C51產品指令和引腳完全兼容。片上Flash允許程序存儲器在系統可編程,亦適於常規編程器。在單晶元上,擁有靈巧的8位CPU和在系統可編程Flash,使得AT89S52為眾多嵌入式控制應用系統提供高靈活、有效的解決方案。它具有串列口,片內晶振及時鍾電路。另外,AT89S52可降至0Hz 靜態邏輯操作,支持2種軟體可選擇節電模式。空閑模式下,CPU停止工作,允許RAM、定時器/計數器、串口、中斷繼續工作。掉電保護方式下,RAM內容被保存,振盪器被凍結,單片機一切工作停止,直到下一個中斷或硬體復位為止。
基於AT89S52單片機來實現系統的控制,外圍電路比較簡單,成本比較低,此系統控制靈活能很好地滿足本課題的基本要求和擴展要求,因此選用該方案。其硬體框圖如圖2.2所示,原理圖見附錄圖6.1。

圖2.2 數字鍾硬體框圖

2.4 電路組成及工作原理
本文數字時鍾設計原理主要利用AT89S52單片機,由單片機的P0口控制數碼管的位顯示,P2口控制數碼管的段顯示,P1口與按鍵相接用於時間的校正。在設計中引入220V交流電經過整流、濾波後產生+5V電壓,用於給單片機及顯示電路提供工作電壓。
整個系統工作時,秒信號產生器是整個系統的時基信號,它直接決定計時系統的精度,將標准秒信號送入「秒計數器」,「秒計數器」採用60進制計數器,每累計60秒發出一個「分脈沖」信號,該信號將作為「分計數器」的時鍾脈沖。「分計數器」也採用60進制計數器,每累計60分鍾,發出一個「時脈沖」信號,該信號將被送到「時計數器」。「時計數器」採用24進制計時器,可實現對一天24小時的累計。顯示電路將「時」、「分」、「秒」計數器的輸出,通過六個七段LED顯示器顯示出來。校時電路是直接加一個脈沖信號到時計數器或者分計數器或者秒計數器來對「時」、「分」、「秒」顯示數字進行校對調整。在本設計中,24小時時鍾顯示、秒錶的設計和顯示都是依靠單片機中的定時器完成。使用定時器T0產生1s的中斷,在中斷程序中完成每一秒數字的變化,並在主程序中動態顯示該字元。其功能框圖如圖2.3所示。

圖2.3 秒錶外中斷的功能示意圖

數字鍾的電路設計主要功能是提供單片機和外部的LED顯示、273地址鎖存和片選以及外部存儲器2764的介面電路,此外還需要設計相關的LED驅動電路。
(1)電路原理和器件選擇
本實例相關的關鍵部分的器件名稱及其在數字鍾電路中的主要功能:
89S52:單片機,控制LED的數據顯示。
LED1--LED6:用於顯示單片機的數據,其中三個採用7段顯示用於顯示時、分、秒的十位,另三個採用8段顯示用於顯示時、分、秒的個位。
74LS273:鎖存器,LED顯示擴展電路中的段碼和位碼使用了兩片74LS273,上升沿鎖存。
74LS02:與非門,與單片機的讀寫信號一起使用,選中外部的74LS273,決定LED的欄位和字位的顯示內容。
7407:驅動門電路,提供數碼管顯示的驅動電流。
74LS04:非門,對單片機的片選信號取反,並和讀寫信號一起使用,決定74LS273的片選。
L1--L4:發光二極體,通過單片機的P1.4--P1.7控制,用以顯示秒錶和時鍾的時間變化。
BUZZER:揚聲器,在程序規定的情況下,發出聲音,提示計時完畢。
74LS373:地址鎖存器,將P0口的地址和數據分開,分別輸入到2764的數據和地址埠。
2764:EPROM,為單片機提供外部的程序存儲區。
開關K0、K1、K2分別調整秒、分、時。
按鍵RESET:在復位電路中,起到程序復位的作用。
按鍵PULSE:提供單脈沖,從而實現單片機對外部脈沖的計數功能,利用單脈沖實現相應位加1。
(2)地址分配和連接
P2.7:和寫信號一起組成字位口的片選信號,字位口的對應地址位8000H
P2.6:和寫信號一起組成欄位口的片選信號,欄位口的對應地址位4000H
D0--D7:單片機的數據匯流排,LED顯示的內容通過D0--D7數據線從單片機傳送到LED
P2.0--P2.5:單片機的P2口,和2764的高端地址線相連,決定2764中的存儲單元的地址。
P1.4--P1.7:單片機的P1口,和反光二極體L1--L4相連,通過單片機的P1.4--P1.7控制,用以顯示秒錶和時鍾的時間變化。
(3)功能簡介
LED顯示模塊與單片機的連接中,對LED顯示模塊的讀寫和字位、欄位通道的選擇是通過單片機的P2.6、P2.7口完成。其中,P2.6、P2.7口的片選信號需要和讀寫信號做一定的邏輯操作,以保證字位和欄位選擇的正確性。
外部存儲器2764是通過74LS373和單片機相連,並且通過P2口的相關信號線進行地址的分配。地址范圍為0000H--1FFFH。
3 各電路設計和論證
3.1電源電路設計
在各種電子設備中,直流穩壓電源是必不可少的組成部分,它不僅為系統提供多路電壓源,還直接影響到系統的技術指標和抗干擾性能。要想得到我們所要的+5V輸出電壓,就需將交流220V的電壓經過二極體全波整流、電容濾波、7805穩壓輸出穩定的5V直流電壓為整個電路提供電源。

圖3.1 電源電路圖
4個IN4004組成橋式整流電路,電容(104uf)用於濾波,LM7805將經過整流濾波的電壓穩定在5V輸出。
3.2 晶體振盪器
51系列單片機內部有一個時鍾電路(其核心時一個反相放大器),但並沒有形成時鍾的振盪信號,因此必須外接諧振器才能形成振盪。如何用這個內部放大器,可以根據不同的場合做出不同的選擇。這樣就對應了單片機時鍾產生的不同方式:若採用這個放大器,產生振盪即為內部方式;若採用外部振盪輸入,即為外部方式。
方案一、內部方式
如果在51單片機的XTAL1和XTAL2引腳之間外接晶體諧振器,便會產生自激振盪,即可在內部產生與外加晶體同頻率的振盪時鍾。
最常見的內部方式振盪圖如圖3.2所示。

圖3.2 晶體振盪電路

不同單片機最高工作頻率不一樣,如AT89C51的最高工作頻率為24MHZ,AT89S51的最高工作頻率可達33MHZ。由於製造工藝的改進,現在單片機的工作頻率范圍正向兩端延伸,可達40MHZ以上。振盪頻率越高表示單片機運行的速度越快,但同時對存儲器的速度和印刷電路板的要求也就越高。頻率太高有時反而會導致程序不好編寫(如延時程序)。一般來說,不建議使用很高頻率的晶體振盪器。51系列的單片機應用系統一般都選用頻率為6~12MHZ的晶振。
這個電路對C1、C2的值沒有嚴格的要求,但電容的大小多少會影響振盪器的穩定性、振盪器頻率的高低、起振的快速性等。一般外接晶體時,C1、C2的值通常選為20~100PF。
晶體振盪器是數字鍾的核心。振盪器的穩定度和頻率的精確度決定了數字鍾計時的准確程度,通常採用石英晶體構成振盪器電路。一般說來,振盪器的頻率越高,計時的精度也就越高。在此設計中,信號源提供1HZ秒脈沖,它是採用晶體分頻得到的。AT89S52單片機有一個用於構成內部振盪器的反相放大器,XTAL1和XTAL2分別是放大器的輸入、輸出端。石英晶體和陶瓷諧振器都可以用來一起構成自激振盪器。從外部時鍾源驅動器件,XTAL2可以不接,而從XTAL1接入,由於外部時鍾信號經過二分頻觸發後作為外部時鍾電路輸入的,所以對外部時鍾信號的占空比沒有其它要求,最長低電平持續時間和最少高電平持續時間等還是要符合要求的。反相放大器的輸入端為XTAL1,輸出端為XTAL2,兩端連接石英晶體及兩個電容形成穩定的自激振盪器。電容通常取30PF左右。振盪頻率范圍是1.2~12MHz。
晶體振盪器的振盪信號從XTAL2端輸出到片內的時鍾發生器上。時鍾發生器為二分頻器。向CPU提供兩相時鍾信號P1和P2。每個時鍾周期有兩個節拍(相)P1和P2,CPU就以兩相時鍾P1和P2為基本節拍指揮AT89S52單片機各部件協調工作。在本次設計中取石英晶體的振盪頻率為11.0592MHz。
另外在設計電路板時,晶振、電容等均應盡量靠近單片機晶元,以減小分布電容,進一步保證振盪器的穩定性。
方案二、外部方式
在較大規模的應用系統中可能會用到多個單片機,為保證各單片機之間時鍾信號的同步,應當引入唯一的公用外部脈沖信號作為各單片機的共同的振盪脈沖,也就是要採用外部方式,外部振盪信號直接引入XTAL1和XTAL2引腳。
由於HMOS、CHMOS單片機內部時鍾進入的引腳不同,因此外部振盪信號的接入方式也不一樣。所以不選用此方案。
3.3 校時電路
當數字鍾走時出現誤差時,需要校正時間。校時控制電路實現對「秒」、「分」、「時」的校準。其電路圖如圖3.3所示:

圖3.3 校時電路
3.4 解碼顯示電路
解碼電路的功能是將「秒」、「分」、「時」 計數器中每個計數器的輸出狀態(8421碼),翻譯成七段(或八段)數碼管能顯示十進制數所要求的電信號,然後再經數碼管把相應的數字顯示出來。解碼器採用74LS248解碼/驅動器。顯示器採用七段共陰極數碼管。顯示部分是整個電子時鍾最為重要的部分,共需要6位LED顯示器。採用動態顯示方式,所謂動態顯示方式是時間數字在LED上一個一個逐個顯示,它是通過位選端控制在哪個LED上顯示數字,由於這些LED數字顯示之間的時間非常的短,使的人眼看來它們是一起顯示時間數字的,並且動態顯示方式所用的介面少,節省了CPU的管腳。由於埠的問題以及動態顯示方式的優越性,在此設計的連接方式上採用共陰級接法。顯示器LED有段選和位選兩個埠,首先說段選端,它由LED八個埠構成,通過對這八個埠輸入的不同的二進制數據使得它的時間顯示也不同,從而可以得到我們所要的時間顯示和溫度。但對於二十個管腳的AT89S52來說,LED八個段選管腳太多,於是我選用2764晶元來擴展主晶元的管腳,74LS164是數據移位寄存器,還選用了74LS373作為數據緩存器。
選用器件時應注意解碼器和顯示器的匹配,包括兩個方面:一是功率匹配,即驅動功率要足夠大。因為數碼管工作電流較大,應選用驅動電流較大的解碼器或OC輸出解碼器。二是邏輯電平匹配。例如,共陰極型的LED數碼管採用高電平有效的解碼器。推薦使用的顯示解碼器有74LS48、74LS49、CC4511。
3.5 顯示電路結構及原理
(1)單片機中通常用七段LED構成 「8」 字型結構,另外,還有一個小數點發光二極體以顯示小數位!這種顯示器有共陰和共陽兩種!發光二極體的陽極連在一起的(公共端)稱為共陽極顯示器,陰極連在一起的稱為共陰極顯示器。
一位顯示器由8個發光二極體組成,其中,7個發光二極體構成字型「8」的各個筆劃,另一個發光二極體為小數點為。當在某段發光二極體上施加一定的正向電壓時,該段筆畫即亮;不加電壓則暗。為了保護各段LED不被損壞,需外加限流電阻。
在本設計中時、分、秒的十位採用七段顯示,個位採用八段顯示,使得更易於區分時、分、秒。
(2)LED顯示器介面及顯示方式
LED顯示器有靜態顯示方式和動態顯示方式兩種。靜態顯示就是當顯示器顯示某個字元時,相應的段恆定的導通或截止,直到顯示另一個字元為止。LED顯示器工作於靜態顯示方式時,各位的共陰極接地;若為共陽極則接+5V電源。每位的段選線分別與一個8位鎖存器的輸出口相連,顯示器中的各位相互獨立,而且各位的顯示字元一經確定,相應鎖存的輸出將維持不變。
正因為如此,靜態顯示器的亮度較高。這種顯示方式編程容易,管理也較簡單,但佔用I/O口線資源較多。因此,在顯示位數較多的情況下,一般都採用動態顯示方式。
由於所有6位段皆由一個I/O口控制,因此,在每一瞬間,6位LED會顯示相同的字元。要想每位顯示不同的字元,就必須採用掃描方法流點亮各位LED,即在每一瞬間只使某一位顯示字元。在此瞬間,段選控制I/O口輸出相應字元段選碼(字型碼),而位選則控制I/O口在該顯示位送入選通電平(因為LED為共陰,故應送低電平),以保證該位顯示相應字元。如此輪流,使每位分時顯示該位應顯示字元。
在多位LED顯示時,為了簡化電路,降低成本,將所有位的段選線並聯在一起,由一個8位I/O口控制。而共陰(共陽)極公共端分別由相應的I/O口線控制,實現各位的分時選通。
段選碼,位選碼每送入一次後延時2MS,因人的視覺暫留效應,給人看上去每個數碼管總在亮。

圖3.4 六位LED動態顯示電路
3.6 鍵盤部分
它是整個系統中最簡單的部分,根據功能要求,本系統共需三個按鍵:分別對時、分、秒進行控制。並採用獨立式按鍵。
按鍵按照結構原理可分為兩類,一類是觸點式開關按鍵,如機械式開關、導電橡膠式開關等;另一類是無觸點式開關按鍵,如電氣式按鍵,磁感應按鍵等。前者造價低後者壽命長。目前,微機系統中最常見的是觸點式開關按鍵。
按鍵按照介面原理可分為編碼鍵盤與非編碼鍵盤兩類,這兩類鍵盤的主要區別是識別鍵符及給出相應鍵碼的方法。編碼鍵盤主要是用硬體來實現對鍵的識別,非編碼鍵盤主要是由軟體來實現鍵盤的定義與識別。
全編碼鍵盤能夠由硬體邏輯自動提供與鍵對應的編碼,此外,一般還具有去抖動和多鍵、竄鍵保護電路。這種鍵盤使用方便,但需要較多的硬體,價格較貴,一般的單片機應用系統較少採用。非編碼鍵盤只簡單地提供行和列的矩陣,其它工作均由軟體完成。由於其經濟實用,較多地應用於單片機系統中。在本套設計中由於只需要幾個功能鍵,此時,可採用獨立式按鍵結構。
獨立式按鍵是直接用I/O口線構成的單個按鍵電路,其特點是每個按鍵單獨佔用一根I/O口線,每個按鍵的工作不會影響其它I/O口線的狀態。獨立式按鍵的典型應用如圖3.5 所示。
獨立式按鍵電路配置靈活,軟體結構簡單,但每個按鍵必須佔用一根I/O口線,因此,在按鍵較多時,I/O口線浪費較大,不宜採用。

圖3.5 獨立式按鍵結構圖
3.7 復位電路
復位時使CPU和系統中的其他功能部件都處於一個確定的初始狀態,復位後計算機就從這個狀態開始工作。在復位期間,CPU並沒有開始執行程序,是在做准備工作。
無論時在計算機剛上電時、斷電後、還是系統出現故障時都需要復位。
51單片機的復位條件靠外部電路實現。當時鍾電路工作時,只要在單片機的RESET引腳上持續出現2個TP以上的高電平就可以使單片機復位。但時間過短往往使復位部可靠。為了確保復位,RESET引腳上的高電平一般要維持大約10ms以上。
常見的復位電路有上電復位和按鍵復位電路。在此我們選用按鍵復位電路。
(1)上電復位電路
上電復位電路是利用電容充電來實現的。在接通電源的瞬間,RESET端的電位與VCC相同,都是+5V。隨著RC電路的充電,RESET的電位逐漸下降,只要保證RESET為高電平的時間大於10ms就能正常復位了。如圖3.6(1)所示。

圖3.6(1)上電復位電路
(2)按鍵復位電路
在單片機已經通電的情況下,只需要按下圖3.6(2)的K鍵也可以復位,此時VCC經過電阻Rs、Rk分壓,在RESET端產生一個復位高電平。
在圖3.6(2)的電路中,干擾容易竄入復位端,雖然在大多數情況下不會造成單片機的錯誤復位,但可能會引起內部某些寄存器的錯誤復位。這時可在RESET端接上一個去耦電容。
另外有些單片機應用系統中的外圍晶元也需要復位,如果這些復位端的復位電平要求和單片機的復位要求一致,則可以直接與之相連。常將RC電路接施密特電路後再接入單片機的復位端。這樣系統可以有多個復位端,以便保證外部晶元和單片機可靠地同步復位。

圖3.6(2) 按鍵復位電路
4 軟體設計
4.1 程序流程
程序整體設計:定時模塊,顯示模塊,時間調整模塊,狀態調整模塊。
(1)總體介紹:此部分主要介紹定時模塊,和顯示模塊。定時部分採用經典的定時器定時。它實現了數字鍾的主要部分和秒錶的主要部分,以及進行定時設置。顯示模塊是實現數字鍾的又一重要部分,其模塊的獨立程度直接影響到數字鍾的可視化程度。在此部分的設計中,設置專用顯示數據緩沖區,與分、時及其他數據緩沖區數據區別,在其中存放的是顯示段碼,而其他緩沖區存放的是時間數據。在顯示時,首先將時間十進制數據轉化為顯示段碼,然後送往數碼管顯示。顯示段碼採用動態掃描的方式。在要求改變顯示數據的類別時,只須改變指向數據緩沖區的指針所指向的十進制數據緩沖區即可。
(2)時間調整:時間調整有多種方式。一、可以直接進入相關狀態進行有關操作,二、將調整分兩步,先進入狀態,然後執行操作,這兩步分別由兩個鍵控制。方式一,比較直接,設計思想也比較簡單,但是,這種方式存在操作時間和控制鍵數目的矛盾。如果用比較少的鍵,那麼可能會在進入狀態後處於數據調整等待狀態,這樣會影響到顯示的掃描速度(顯示部分可以採用8279晶元來控制,可以解決此問題)。 當然在這種方式下,還可以使用多個狀態鍵,每個狀態鍵,完成一個對應數據的調整。如果採用二的方式,就不會出現這種情況。因為狀態的調整,與狀態的操作可以分別由兩個鍵控制,其狀態的調整數可以多達256個(理論上),操作的完成是這樣的,一鍵控制狀態的調整,一鍵控制數據的調整。以上兩種方式的實現都可以採用查詢和中斷的方式。兩種方式必須注意的問題是兩者進行相關操作的過程不能太長否則會影響顯示的掃描。利用查詢的方式,方法傳統,對此就不作過多的討論,以下是採用中斷的方式實現的數字鍾的一些討論和有關問題作的一些處理。基於以上的討論可以設計如下:將調整分為狀態調整和數據調整兩部分,每次進入中斷只執行一次操作,然後返回,這樣,就不必讓中斷處於調整等待狀態,這樣,可以使中斷的耗時很小。將定時器中斷的優先順序設置為最高級,那麼中斷的方式和查詢的方式一樣不會影響到時鍾的記數。
(3)中斷方式應注意的問題:
採用中斷的方式,最好將定時器中斷的優先順序設置為最高級,關於程序數據的穩定性應注意兩個問題:一、在低優先順序中斷響應時,應在入棧保護數據時禁止高優先順序的中斷響應。二、在入棧保護有關數據後,對中斷程序執行有影響的狀態位,寄存器,必須恢復為復位狀態的值。例如,在用到了十進制調整時,在中斷進入時,需將PSW中的AC,CY位清零,否則,十進制調整出錯。
(4)定時准確性的討論:
程序中定時器,一直處於運行狀態,也就是說定時器是理想運作的,其中斷程序每隔0.1秒執行一次,在理想狀態下,定時器定時是沒有系統誤差的,但由於定時器中斷溢出後,定時器從0開始計數,直到被重新置數,才開始正確定時,這樣中斷溢出到中斷響應到定時器被重新置數,其間消耗的時間就造成了定時器定時的誤差。如果在前述定時器不關的情況下,在中斷程序的一開始就給定時器置數,此時誤差最小,誤差大約為:每0.1秒,誤差7—12個機器周期。當然這是在定時器定時剛好為0.1秒時的情況,由以上分析,如果數字鍾設計為查詢的方式或是在中斷的方式下將定時器中斷設置為最高級,我們在定時值設置時,可以適當的扣除9個機器周期的時間值。但如果在中斷的情況下,沒有將定時器中斷設置為最高級,那就要視中斷程序的大小,在定時值設置時,扣除相應的時間值。
(5)軟體消抖:
消抖可以採用硬體(施密特觸發器)的方式如圖4.4所示,也可以採用軟體的方式。在此只討論軟體方式。軟體消抖有定時器定時,和利用延時子程序的方式。一,定時器定時消抖可以不影響顯示模塊掃描速度,其實現方法是:設置標志位,在定時器中斷中將其置位,然後在程序中查詢。將其中斷優先順序設置為低於時鍾定時中斷,那麼它就可以完全不影響時鍾定時。二,在採用延時子程序時,如果顯示模塊的掃描速度本來就不是很快,此時可能會影響到顯示的效果,一般情況下,每秒的掃描次數不應小於50次,否則,數碼的顯示會出現閃爍的情況。因此,延時子程序的延時時間應該小於20毫秒,如果採用定時器定時的方式,延時時間不影響時鍾。
如果,設計時採用的是中斷的方式來完成有關操作,同樣可以採用軟體的方式來消抖,其處理思想是:中斷不能連續執行,兩次之間有一定的時間間隔。
4.1.1 系統主程序流程圖

圖4.1 主程序流程圖
4.1.2 各子程序流程圖

圖4.2 時鍾調整子程序流程圖 希望可以幫到你.!

Ⅶ 如何單片機編程定時器0外部脈沖計數

將定時器設置成計數器模式,就可以對外部脈沖進行計數。用外部中斷的邊沿觸發模式也可以對外部脈沖計數。

Ⅷ 61單片機怎麼數脈沖計時

61單片機中有兩個獨立的16位定時/計數器,分別稱為TimerA和TimerB,其脈沖輸入引腳分別是:
IOB2 EXT1 外部中斷申請(或計數脈沖)輸入,下降沿觸發,應設置為輸入;
IOB3 EXT2 功能與EXT1基本相同。
預先需要設置。
61單片機的功能,比MCS-51單片機強,設置起來,也比較麻煩。

Ⅸ 一個單位時間內計算脈沖的程序,基於單片機,我設計的是有外部脈沖送到INT0,中斷計數,有T0計時50MS一次

1,Proteus默認晶振是12MHz,你的定時程序根本不是50ms,在12MHz晶振下定時50ms:TH0=(65536-50000)/256;TL0=(65536-50000)%256;
2,定時中斷和外中斷裡面也有錯誤,建議你先閱讀別人的中斷相關代碼。關於脈沖頻率測量的邏輯你還沒有完全清楚,多讀別人相關代碼,搜索「單片機 頻率計」就會有一堆。
void timer() interrupt 1 //定時器0計算1s
{
TH0=(65536-50000)/256; //50MS每次中斷
TL0=(65535-50000)%256;
num++; //全局變數,數值會保留
if(num==20) {num=0;shu=pulse;pulse=0;}//1秒時間到,將脈沖個數送到全局變數,同時num一定記得清零,否則不會有第二次num=0,同樣pulse也要清零
}
void exter() interrupt 2 //每來一個脈沖,計數加一
{
pulse++;//這個
}

Ⅹ 51單片機 用LCD12864顯示的脈沖計數器該怎麼做

1,整理脈沖信號,到可接受范圍,用運放,三極體等。
2,根據脈沖最高速率決定運算速率。
3,用觸發器捕捉脈沖,輸入單片機計數。
4,LCD驅動顯示
大概就這些思路

閱讀全文

與單片機脈沖計時設計相關的資料

熱點內容
解壓小熊手機殼 瀏覽:344
成都市區建成面積演算法 瀏覽:660
智能家居單片機 瀏覽:97
買男裝用什麼app好 瀏覽:855
文件夾合並了怎麼拆開 瀏覽:259
波段副圖源碼無未來函數 瀏覽:86
livecn伺服器地址 瀏覽:257
程序員這個工作真的很吃香嗎 瀏覽:846
程序員和數學分析師待遇 瀏覽:680
壓縮氣彈簧怎麼拆 瀏覽:321
華為公有雲伺服器添加虛擬ip 瀏覽:211
程序員和運營哪個累 瀏覽:26
抖音安卓信息提示音怎麼設置 瀏覽:456
光速虛擬機的共享文件夾 瀏覽:248
程序員培訓機構發的朋友圈真實性 瀏覽:744
天乾地支簡單演算法 瀏覽:299
下載個壓縮文件 瀏覽:300
普通人電腦關機vs程序員關機 瀏覽:630
米酷建站源碼 瀏覽:115
氫氣app怎麼搜搭配 瀏覽:619