導航:首頁 > 程序命令 > 程序員8個演算法題

程序員8個演算法題

發布時間:2025-09-19 08:48:01

A. 程序員演算法基礎——貪心演算法

貪心是人類自帶的能力,貪心演算法是在貪心決策上進行統籌規劃的統稱。

比如一道常見的演算法筆試題---- 跳一跳

我們自然而然能產生一種解法:盡可能的往右跳,看最後是否能到達。
本文即是對這種貪心決策的介紹。

狹義的貪心演算法指的是解最優化問題的一種特殊方法,解決過程中總是做出當下最好的選擇,因為具有最優子結構的特點,局部最優解可以得到全局最優解;這種貪心演算法是動態規劃的一種特例。 能用貪心解決的問題,也可以用動態規劃解決。

而廣義的貪心指的是一種通用的貪心策略,基於當前局面而進行貪心決策。以 跳一跳 的題目為例:
我們發現的題目的核心在於 向右能到達的最遠距離 ,我們用maxRight來表示;
此時有一種貪心的策略:從第1個盒子開始向右遍歷,對於每個經過的盒子,不斷更新maxRight的值。

貪心的思考過程類似動態規劃,依舊是兩步: 大事化小 小事化了
大事化小:
一個較大的問題,通過找到與子問題的重疊,把復雜的問題劃分為多個小問題;
小事化了:
從小問題找到決策的核心,確定一種得到最優解的策略,比如跳一跳中的 向右能到達的最遠距離

在證明局部的最優解是否可以推出全局最優解的時候,常會用到數學的證明方式。

如果是動態規劃:
要湊出m元,必須先湊出m-1、m-2、m-5、m-10元,我們用dp[i]表示湊出i元的最少紙幣數;
有 dp[i]=min(dp[i-1], dp[i-2], dp[i-5], dp[i-10]) + 1 ;
容易知道 dp[1]=dp[2]=dp[5]=dp[10]=1 ;
根據以上遞推方程和初始化信息,可以容易推出dp[1~m]的所有值。

似乎有些不對? 平時我們找零錢有這么復雜嗎?
從貪心演算法角度出發,當m>10且我們有10元紙幣,我們優先使用10元紙幣,然後再是5元、2元、1元紙幣。
從日常生活的經驗知道,這么做是正確的,但是為什麼?

假如我們把題目變成這樣,原來的策略還能生效嗎?

接下來我們來分析這種策略:
已知對於m元紙幣,1,2,5元紙幣使用了a,b,c張,我們有a+2b+5c=m;
假設存在一種情況,1、2、5元紙幣使用數是x,y,z張,使用了更少的5元紙幣(z<c),且紙幣張數更少(x+y+z<a+b+c),即是用更少5元紙幣得到最優解。
我們令k=5*(c-z),k元紙幣需要floor(k/2)張2元紙幣,k%2張1元紙幣;(因為如果有2張1元紙幣,可以使用1張2元紙幣來替代,故而1元紙幣只能是0張或者1張)
容易知道,減少(c-z)張5元紙幣,需要增加floor(5*(c-z)/2)張2元紙幣和(5*(c-z))%2張紙幣,而這使得x+y+z必然大於a+b+c。
由此我們知道不可能存在使用更少5元紙幣的更優解。
所以優先使用大額紙幣是一種正確的貪心選擇。

對於1、5、7元紙幣,比如說要湊出10元,如果優先使用7元紙幣,則張數是4;(1+1+1+7)
但如果只使用5元紙幣,則張數是2;(5+5)
在這種情況下,優先使用大額紙幣是不正確的貪心選擇。(但用動態規劃仍能得到最優解)

如果是動態規劃:
前i秒的完成的任務數,可以由前面1~i-1秒的任務完成數推過來。
我們用 dp[i]表示前i秒能完成的任務數
在計算前i秒能完成的任務數時,對於第j個任務,我們有兩種決策:
1、不執行這個任務,那麼dp[i]沒有變化;
2、執行這個任務,那麼必須騰出來(Sj, Tj)這段時間,那麼 dp[i] = max(dp[i], dp[ S[j] ] ) + 1 ;
比如說對於任務j如果是第5秒開始第10秒結束,如果i>=10,那麼有 dp[i]=max(dp[i], dp[5] + 1); (相當於把第5秒到第i秒的時間分配給任務j)

再考慮貪心的策略,現實生活中人們是如何安排這種多任務的事情?我換一種描述方式:

我們自然而然會想到一個策略: 先把結束時間早的兼職給做了!
為什麼?
因為先做完這個結束時間早的,能留出更多的時間做其他兼職。
我們天生具備了這種優化決策的能力。

這是一道 LeetCode題目 。
這個題目不能直接用動態規劃去解,比如用dp[i]表示前i個人需要的最少糖果數。
因為(前i個人的最少糖果數)這種狀態表示會收到第i+1個人的影響,如果a[i]>a[i+1],那麼第i個人應該比第i+1個人多。
即是 這種狀態表示不具備無後效性。

如果是我們分配糖果,我們應該怎麼分配?
答案是: 從分數最低的開始。
按照分數排序,從最低開始分,每次判斷是否比左右的分數高。
假設每個人分c[i]個糖果,那麼對於第i個人有 c[i]=max(c[i-1],c[c+1])+1 ; (c[i]默認為0,如果在計算i的時候,c[i-1]為0,表示i-1的分數比i高)
但是,這樣解決的時間復雜度為 O(NLogN) ,主要瓶頸是在排序。
如果提交,會得到 Time Limit Exceeded 的提示。

我們需要對貪心的策略進行優化:
我們把左右兩種情況分開看。
如果只考慮比左邊的人分數高時,容易得到策略:
從左到右遍歷,如果a[i]>a[i-1],則有c[i]=c[i-1]+1;否則c[i]=1。

再考慮比右邊的人分數高時,此時我們要從數組的最右邊,向左開始遍歷:
如果a[i]>a[i+1], 則有c[i]=c[i+1]+1;否則c[i]不變;

這樣講過兩次遍歷,我們可以得到一個分配方案,並且時間復雜度是 O(N)

題目給出關鍵信息:1、兩個人過河,耗時為較長的時間;
還有隱藏的信息:2、兩個人過河後,需要有一個人把船開回去;
要保證總時間盡可能小,這里有兩個關鍵原則: 應該使得兩個人時間差盡可能小(減少浪費),同時船回去的時間也盡可能小(減少等待)。

先不考慮空船回來的情況,如果有無限多的船,那麼應該怎麼分配?
答案: 每次從剩下的人選擇耗時最長的人,再選擇與他耗時最接近的人。

再考慮只有一條船的情況,假設有A/B/C三個人,並且耗時A<B<C。
那麼最快的方案是:A+B去, A回;A+C去;總耗時是A+B+C。(因為A是最快的,讓其他人來回時間只會更長, 減少等待的原則

如果有A/B/C/D四個人,且耗時A<B<C<D,這時有兩種方案:
1、最快的來回送人方式,A+B去;A回;A+C去,A回;A+D去; 總耗時是B+C+D+2A (減少等待原則)
2、最快和次快一起送人方式,A+B先去,A回;C+D去,B回;A+B去;總耗時是 3B+D+A (減少浪費原則)
對比方案1、2的選擇,我們發現差別僅在A+C和2B;
為何方案1、2差別里沒有D?
因為D最終一定要過河,且耗時一定為D。

如果有A/B/C/D/E 5個人,且耗時A<B<C<D<E,這時如何抉擇?
仍是從最慢的E看。(參考我們無限多船的情況)
方案1,減少等待;先送E過去,然後接著考慮四個人的情況;
方案2,減少浪費;先送E/D過去,然後接著考慮A/B/C三個人的情況;(4人的時候的方案2)

到5個人的時候,我們已經明顯發了一個特點:問題是重復,且可以由子問題去解決。
根據5個人的情況,我們可以推出狀態轉移方程 dp[i] = min(dp[i - 1] + a[i] + a[1], dp[i - 2] + a[2] + a[1] + a[i] + a[2]);
再根據我們考慮的1、2、3、4個人的情況,我們分別可以算出dp[i]的初始化值:
dp[1] = a[1];
dp[2] = a[2];
dp[3] = a[2]+a[1]+a[3];
dp[4] = min(dp[3] + a[4] + a[1], dp[2]+a[2]+a[1]+a[4]+a[2]);

由上述的狀態轉移方程和初始化值,我們可以推出dp[n]的值。

貪心的學習過程,就是對自己的思考進行優化。
是把握已有信息,進行最優化決策。
這里還有一些收集的 貪心練習題 ,可以實踐練習。
這里 還有在線分享,歡迎報名。

B. 大學要學會這8種演算法程序員

程序員8條程序演算法必須掌握

演算法一: 快速排序演算法

快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序n個項目要O(nlogn)次比較。在最壞狀況下則需要O(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他O(nlogn)演算法更快,因為它的內部循環 (innerloop)可以在大部分的架構上很有效率地被實現出來。快速排序使用分治法(Divideandconquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。

演算法二: 堆排序演算法

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小干(或者大幹)它的父節點。堆排序的平均時間復雜度為O(nlogn)。

演算法步驟:

1.創建一個堆H[0.n-1]

2.把堆首(最大值)和堆尾互換

3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置4.重復步驟2,直到堆的尺寸為1

演算法三: 歸並排序

歸並排序(Mergesort,台灣譯作: 合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(DivideandConquer)的一個非常典型的應用。

演算法步驟:

1.申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列

2.設定兩個指針,最初位置分別為兩個已經排序序列的起始位置

3.比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置4.重復步驟3直到某一指針達到序列尾5.將另一序列剩下的所有元素直接復制到合並序列尾

演算法四: 二分查找演算法二分查找演算法

是一種在有序數組中查找某一特定元素的搜索演算法。

搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束:如果某一特定元素大幹或者小干中間元素,則在數組大於或小千中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為O(logn)

如果在某一步驟數組為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為O(logn) 。

演算法五: BFPRT(線性查找演算法)

BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分析BFPRT可以保證在最壞情況下仍為線性時間復雜度該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜度,五位演算法作者做了精妙的處理。

演算法六: DFS(深度優先搜索)

深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。

如果還存在未被發現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。

演算法七: BFS廣度優先搜索演算法

(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止BFS同樣屬干盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。

演算法步驟:

1.首先將根節點放入隊列中。

2.從隊列中取出第一個節點,並檢驗它是否為目標。如果找到目標,則結束搜尋並回傳結果。否則將它所有尚未檢驗過的直接子節點加入隊列中。

3.若隊列為空,表示整張圖都檢查過了一一亦即圖中沒有欲搜尋的目標。結束搜尋並回傳「找不到目標」4.重復步驟2。

演算法八: 動態規劃演算法

動態規劃(Dynamicprogramming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。動態規劃常常適用干有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。

動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。通常許多子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量:一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個子問題解之時直接查表。



C. 大學里程序員必須掌握的核心演算法

程序員必須掌握的核心演算法

十大排序演算法

簡單排序插入排序、

選擇排序、冒泡排序(必學)

分治排序:快速排序、歸並排序(必學,快速排序還要關注中軸的選取方式)

分配排序桶排序、基數排序

樹狀排序:堆排序(必學)

其他:計數排序(必學)、希爾排序

圖論演算法

圖的表示:鄰接矩陣和鄰接表

遍歷演算法:深度搜索和廣度搜索(必學)

最短路徑演算法:FLOYD,DIJKSTRA(必學)

最小生成樹演算法:PRIM,KRUSKAL(必學)

實際演算法:關鍵路徑、拓抖排序(原理與應用)

二分圖匹配:配對、匈牙利演算法(原理與應用)

拓展:中心性演算法、社區發現演算法(原理與應用)

搜索與回溯演算法

貪心演算法(必學)

信發式搜索演算法:A*尋路演算法(了解)

地圖著色演算法、N皇後問題、最優加工順序旅行商問題

動態規劃

樹形DP:01背包問題

線性DP:最長公共千序列、最長公共子串

區間DP:矩陣最大值(和以及積)

數位DP:數字游戲

狀態壓縮DP:旅行商

字元匹配演算法

正則表達式

模式匹配:KMP、BOYER-MOORE

流相關演算法

最大流:最短增廣路、DINIC演算法

最大流最小割:最大收盆問題、方格取數問題

最小費用最大流:最小費用路、消遣

D. 程序員都應該精通的六種演算法,你會了嗎

對於一名優秀的程序員來說,面對一個項目的需求的時候,一定會在腦海里浮現出最適合解決這個問題的方法是什麼,選對了演算法,就會起到事半功倍的效果,反之,則可能會使程序運行效率低下,還容易出bug。因此,熟悉掌握常用的演算法,是對於一個優秀程序員最基本的要求。


那麼,常用的演算法都有哪些呢?一般來講,在我們日常工作中涉及到的演算法,通常分為以下幾個類型:分治、貪心、迭代、枚舉、回溯、動態規劃。下面我們來一一介紹這幾種演算法。


一、分治演算法


分治演算法,顧名思義,是將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。


分治演算法一般分為三個部分:分解問題、解決問題、合並解。

分治演算法適用於那些問題的規模縮小到一定程度就可以解決、並且各子問題之間相互獨立,求出來的解可以合並為該問題的解的情況。


典型例子比如求解一個無序數組中的最大值,即可以採用分治演算法,示例如下:


def pidAndConquer(arr,leftIndex,rightIndex):

if(rightIndex==leftIndex+1 || rightIndex==leftIndex){

return Math.max(arr[leftIndex],arr[rightIndex]);

}

int mid=(leftIndex+rightIndex)/2;

int leftMax=pidAndConquer(arr,leftIndex,mid);

int rightMax=pidAndConquer(arr,mid,rightIndex);

return Math.max(leftMax,rightMax);


二、貪心演算法


貪心演算法是指在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的僅是在某種意義上的局部最優解。


貪心演算法的基本思路是把問題分成若干個子問題,然後對每個子問題求解,得到子問題的局部最優解,最後再把子問題的最優解合並成原問題的一個解。這里要注意一點就是貪心演算法得到的不一定是全局最優解。這一缺陷導致了貪心演算法的適用范圍較少,更大的用途在於平衡演算法效率和最終結果應用,類似於:反正就走這么多步,肯定給你一個值,至於是不是最優的,那我就管不了了。就好像去菜市場買幾樣菜,可以經過反復比價之後再買,或者是看到有賣的不管三七二十一先買了,總之最終結果是菜能買回來,但搞不好多花了幾塊錢。


典型例子比如部分背包問題:有n個物體,第i個物體的重量為Wi,價值為Vi,在總重量不超過C的情況下讓總價值盡量高。每一個物體可以只取走一部分,價值和重量按比例計算。

貪心策略就是,每次都先拿性價比高的,判斷不超過C。


三、迭代演算法


迭代法也稱輾轉法,是一種不斷用變數的舊值遞推新值的過程。迭代演算法是用計算機解決問題的一種基本方法,它利用計算機運算速度快、適合做重復性操作的特點,讓計算機對一組指令(或一定步驟)進行重復執行,在每次執行這組指令(或這些步驟)時,都從變數的原值推出它的一個新值。最終得到問題的結果。


迭代演算法適用於那些每步輸入參數變數一定,前值可以作為下一步輸入參數的問題。


典型例子比如說,用迭代演算法計算斐波那契數列。


四、枚舉演算法


枚舉演算法是我們在日常中使用到的最多的一個演算法,它的核心思想就是:枚舉所有的可能。枚舉法的本質就是從所有候選答案中去搜索正確地解。

枚舉演算法適用於候選答案數量一定的情況。


典型例子包括雞錢問題,有公雞5,母雞3,三小雞1,求m錢n雞的所有可能解。可以採用一個三重循環將所有情況枚舉出來。代碼如下:



五、回溯演算法


回溯演算法是一個類似枚舉的搜索嘗試過程,主要是在搜索嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就「回溯」返回,嘗試別的路徑。

許多復雜的,規模較大的問題都可以使用回溯法,有「通用解題方法」的美稱。


典型例子是8皇後演算法。在8 8格的國際象棋上擺放八個皇後,使其不能互相攻擊,即任意兩個皇後都不能處於同一行、同一列或同一斜線上,問一共有多少種擺法。


回溯法是求解皇後問題最經典的方法。演算法的思想在於如果一個皇後選定了位置,那麼下一個皇後的位置便被限制住了,下一個皇後需要一直找直到找到安全位置,如果沒有找到,那麼便要回溯到上一個皇後,那麼上一個皇後的位置就要改變,這樣一直遞歸直到所有的情況都被舉出。


六、動態規劃演算法


動態規劃過程是:每次決策依賴於當前狀態,又隨即引起狀態的轉移。一個決策序列就是在變化的狀態中產生出來的,所以,這種多階段最優化決策解決問題的過程就稱為動態規劃。


動態規劃演算法適用於當某階段狀態給定以後,在這階段以後的過程的發展不受這段以前各段狀態的影響,即無後效性的問題。


典型例子比如說背包問題,給定背包容量及物品重量和價值,要求背包裝的物品價值最大。


閱讀全文

與程序員8個演算法題相關的資料

熱點內容
一個普通程序員能幹多久 瀏覽:934
adobe的PDF轉換器 瀏覽:853
單片機數字碼表匯編 瀏覽:477
單片機開發用的軟體 瀏覽:151
程序員8個演算法題 瀏覽:401
php題庫系統 瀏覽:221
王牌戰爭文明重啟選什麼伺服器 瀏覽:653
簡述對稱加密法 瀏覽:658
c語言數學編程 瀏覽:990
F1B命令 瀏覽:630
cs命令快捷鍵 瀏覽:852
阿里雲購買伺服器如何用現金支付 瀏覽:691
pythontime等待 瀏覽:988
單片機串列通信方式 瀏覽:498
android表格demo 瀏覽:278
安卓怎麼讓相冊不顯示網頁 瀏覽:314
php文件系統源碼 瀏覽:727
易信java 瀏覽:501
北侖二級壓縮螺桿機 瀏覽:63
加密路線免費入口 瀏覽:759